Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada

dc.contributor.advisorVinck Posada, Herbertspa
dc.contributor.authorRodríguez Martínez, Gina Tatianaspa
dc.contributor.orcid0009-0001-4470-1381spa
dc.contributor.researchgroupSuperconductividad y Nanotecnologíaspa
dc.contributor.researchgroupGrupo de Óptica E Información Cuánticaspa
dc.date.accessioned2024-01-31T14:02:53Z
dc.date.available2024-01-31T14:02:53Z
dc.date.issued2023
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLas moléculas orgánicas presentan algunas ventajas en comparación con otros emisores ópticos debido a sus características particulares. Entre estas, se destaca la formación de grandes momentos dipolares, induciendo un acoplamiento fuerte con la luz de manera prácticamente inherente y generando notables energías de Rabí. Además, exhiben un amplio rango de emisión, son fácilmente escalables y se distinguen por su bajo costo de producción mediante métodos de síntesis utilizados. Estas propiedades hacen que las moléculas orgánicas sean especialmente atractivas para aplicaciones en tecnologías ópticas, contribuyendo tanto en el avance de la investigación científica como el desarrollo de dispositivos cuánticos. El objetivo de esta tesis consistió en estudiar la respuesta óptica de estos sistemas orgánicos cuando han sido sometidos a diferentes mecanismos de bombeo. Para ello, se modeló la molécula como un sistema de dos niveles, la cual estuvo inmersa en una microcavidad. Adicionalmente, se consideraron las vibraciones moleculares como un mecanismo disipativo que facilita la interacción entre la radiación y el sistema orgánico. Para describir el estado del sistema, se empleó la matriz densidad y se incorporaron los efectos de los mecanismos disipativos mediante la aplicación de la ecuación maestra en las aproximaciones de Born y Markov. Los cálculos numéricos se llevaron a cabo mediante el uso de la librería de Python: Qtip. Inicialmente, se llevó a cabo un análisis hamiltoniano para investigar la influencia de las constantes de acoplamiento, definiendo ası́ los parámetros necesarios para obtener diversos comportamientos de los estados vestidos del sistema. Posteriormente, mediante la aplicación de la teoría espectral en el sistema abierto, se determinó que los términos de asistencia vibracional redistribuyen las poblaciones del sistema, generando modificaciones en la emisión que resultan en la coalescencia o supresión de algunos picos. Además, se observó que el sistema puede funcionar como una fuente de fotones individuales y exhibe la propiedad adicional de generar fotones con polarización contraria al láser utilizado para su bombeo. Asimismo, se realizaron caracterizaciones de los espectros de emisión bajo diferentes mecanismos de bombeo, identificando las transiciones más relevantes. Por último, se propuso un modelo en el que la interacción tipo Förster induce transparencia electromagnética. (Texto tomado de la fuente)spa
dc.description.abstractOrganic molecules offer distinct advantages over other optical emitters due to their particular characteristics. One notable feature is the formation of large dipole moments, leading to strong coupling with light almost inherently and generating remarkable Rabi energies. Additionally, they exhibit a broad emission range, are easily scalable, and stand out for their cost-effectiveness through commonly used synthesis methods. These properties make organic molecules particularly appealing for applications in optical technologies, contributing to both the advancement of scientific research and the development of quantum devices. This thesis aimed to investigate the optical response of these organic systems when subjected to different pumping mechanisms. To achieve this, the molecule was modeled as a two-level system immersed in a microcavity. Additionally, molecular vibrations were considered as a dissipative mechanism facilitating the interaction between radiation and the organic system. To describe the system’s state, density matrix formalism was employed, and the effects of dissipative mechanisms were incorporated using the master equation in Born and Markov approximations. Numerical calculations were performed using the Python library Qutip. Initially, a Hamiltonian analysis was conducted to explore the influence of coupling constants, defining the necessary parameters to obtain various behaviors of the dressed states of the system. Subsequently, applying spectral theory in the open system determined that vibrational assistance terms redistributed the system’s populations, resulting in modifications to the emission that led to the coalescence or suppression of certain peaks. Moreover, it was observed that the system could operate as a source of individual photons and exhibited the additional property of generating photons with polarization opposite to the laser used for pumping. Characterizations of emission spectra under different pumping mechanisms were also performed, identifying the most relevant transitions. Finally, a model was proposed in which Förster-type interaction induces electromagnetic transparency.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaOptica cuánticaspa
dc.format.extentxvii, 109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85550
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesP. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Applied Physics Letters, vol. 81, pp. 3519–3521, 2002.spa
dc.relation.referencesF. Herrera and F. C. Spano, “Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states,” ACS Photonics, vol. 5, p. 65–79, 2017.spa
dc.relation.referencesP. Coles, D.and Michetti, C. Clark, W. Chung, S. Adawi, J. Kim, and D. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic- semiconductor microcavities,” Advanced Functional Materials, vol. 21, no. 19, pp. 3691–3696, 2011.spa
dc.relation.referencesL. Gisslen, “Influence of frenkel excitons and charge transfer states on the spectroscopic properties of organic molecular crystals,” Technischen Universitat Munchen, 2010.spa
dc.relation.referencesX. Zhang, M. Zeng, Y. Zhang, C. Zhang, Z. Gao, F. He, X. Xue, H. Li, P. Li, G. Xie, H. Li, X. Zhang, N. Guo, H. Cheng, A. Luo, W. Zhao, Y. Zhang, T. Ye, C. Runfeng, and W. Huang, “Multicolor hyperafterglow from isolated fluorescence chromophores,” Nature Communications, vol. 14, p. 475, 2023.spa
dc.relation.referencesJ. Vuckovic, D. Fattal, D. Englund, E. Waks, C. Santori, G. Solomon, and Y. Yamamo- to, “Cavity-enhanced single photons from a quantum dot,” in Physics and Simulation of Optoelectronic Devices XIII, M. Osinski, F. Henneberger, and H. Amano, Eds., vol. 5722, International Society for Optics and Photonics. SPIE, 2005.spa
dc.relation.referencesLiuJ., B. i Li, and Y. Xiao, “Electromagnetically induced transparency in optical mi- crocavities,” vol. 6, p. 168, 2017.spa
dc.relation.referencesM. Ahsan, P. Kirton, and J. Keeling, “Exact quantum states of the holstein-tavis- cummings model,” arXiv: Mesoscale and Nanoscale Physics, 2016.spa
dc.relation.referencesF. Hachim, B. Al-Nashy, and A. Al-khursan, “Slow light in a double quantum dot system,” Optical and Quantum Electronics, vol. 55, 2023.spa
dc.relation.referencesA. Napoli and A. Messina, “Nonclassical features in the dynamics of a new quadratic quantum model of the radiation - matter interaction in a confined space,” Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol. 9, p. 587, 1997.spa
dc.relation.referencesJ. Galego, F. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nature Communications, vol. 7, p. 13841, 2016.spa
dc.relation.referencesD. Young and A. Deiters, “Light-regulated rna-small molecule interactions,” Chem- BioChem, vol. 9, p. 1225–1228, 2008.spa
dc.relation.referencesA. Carmele, Theory for strongly coupled quantum dot cavity quantum electrodynamics:: Photon statistics and phonon signatures in quantum light emission. Südwestdeutscher Verlag für Hochschulschriften AG Co. KG, 2011.spa
dc.relation.referencesJ. Kasprzak, M. Richard, S. Kundermann, and et al., “Bose–einstein condensation of exciton polaritons,” Nature, vol. 443, p. 409–414, 2006.spa
dc.relation.referencesD. Basov, M. Fogler, and J. Garcia de Abajo, “Polaritons in van der waals materials,” Science, vol. 354, p. aag1992, 2016.spa
dc.relation.referencesA. Zasedatelev, A. Baranikov, D. Urbonas, and et al., “A room-temperature organic polariton transistor,” Nature Photonics, vol. 13, p. 378–383, 2019.spa
dc.relation.referencesA. L. and B. F., “Exchange interaction and polariton effects in quantum-well excitons,” Psychic review B, vol. 41, pp. 7536–7544, 1990.spa
dc.relation.referencesS. Kéna-Cohen, Cavity QED Effects in Molecular Systems, 2017.spa
dc.relation.referencesW. Hobson, D. Barnes, and G. Lidzey, “Strong exciton–photon coupling in a low-q all-metal mirror microcavity,” Applied Physics Letters, vol. 81, pp. 3519–3521, 2002.spa
dc.relation.referencesM. Furno, M. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” APL: Organic Electronics and Photonics, vol. 100, p. 253301, 2012.spa
dc.relation.referencesD. Wang, H. Kelkar, D. Martin-Cano, and et al., “Coherent coupling of a single mo- lecule to a scanning fabry-perot microcavity,” Physical Review X, vol. 7, p. 021014, 2017.spa
dc.relation.referencesT. Schwartz, J. Hutchison, C. Genet, and T. Ebbesen, “Reversible switching of ultras- trong light-molecule coupling,” Physical Review Letters, vol. 106, p. 196405, 2011.spa
dc.relation.referencesA. Canaguier, C. Genet, A. Lambrecht, T. Ebbesen, and S. Reynaud, “Non-markovian polariton dynamics in organic strong coupling,” The European Physical Journal D, vol. 69, p. 24, 2015.spa
dc.relation.referencesJ. Cwik, S. Reja, P. Littlewood, and J. Keeling, “Polariton condensation with saturable molecules dressed by vibrational modes,” EPL (Europhysics Letters), vol. 105, p. 47009, 2014. [Online]. Available: http://iopscience.iop.org/0295-5075/105/4/47009spa
dc.relation.referencesI. Hertel and C. Schulz, Atoms, Molecules and optical physics 2: Molecules and Photons - Spectroscopy and Collisions. Springer Berlin Heidelberg, 2014.spa
dc.relation.referencesS. Kena-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics, vol. 4, no. 6, pp. 371–375, 2010.spa
dc.relation.referencesC. Dietrich, A. Steude, L. Tropf, M. Schubert, N. Kronenberg, K. Ostermann, S. Ho- fling, and M. Gather, “An exciton-polariton laser based on biologically produced fluo- rescent protein,” Science Advances, vol. 2, p. e1600666, 2016.spa
dc.relation.referencesJ. del Pino, F. Garcia-Vidal, and J. Feist, “Exploiting vibrational strong coupling to make an optical parametric oscillator out of a raman laser,” Physical Review Letter, vol. 117, p. 277401, 2016.spa
dc.relation.referencesF. Garcı́a-Vidal and J. Pendry, “Collective theory for surface enhanced raman scatte- ring,” Physical Review Letter, vol. 77, pp. 1163–1166, 1996.spa
dc.relation.referencesP. Roelli, C. Galland, N. Piro, and T. Kippenberg, “Molecular cavity optomechanics: a theory of plasmon-enhanced raman scattering,” Nature Nanotechnology, vol. 11, p. 164–169, 2016.spa
dc.relation.referencesY. Mu, M. Liu, J. Li, and X. Zhang, “Multifold enhanced raman detection of organic molecules as environmental water pollutants,” Biosensors, vol. 13, p. 4, 2023.spa
dc.relation.referencesM. Gather and S. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nature communi- cations, vol. 5, no. 1, 2014.spa
dc.relation.referencesA. Jonas, M. Aas, Y. Karadag, S. Manioglu, S. Anand, D. McGloin, H. Bayraktarc, and A. Kirazb, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab on a Chip, vol. 14, pp. 3093–3100, 2014.spa
dc.relation.referencesY. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, and H. Zhou, “Luminescent sensors based on metal-organic frameworks,” Coordination Chemistry Reviews, vol. 354, pp. 28–45, 2017.spa
dc.relation.referencesA. C. Leonard and T. A. Whitehead, “Design and engineering of genetically encoded protein biosensors for small molecules,” Current Opinion in Biotechnology, vol. 78, p. 102787, 2022.spa
dc.relation.referencesV. Vaňová, K. Mitrevska, V. Milosavljevic, and et al., “Peptide-based electrochemical biosensors utilized for protein detection,” Biosensors and Bioelectronics, vol. 180, p. 113087, 2021.spa
dc.relation.referencesS. Duwel, C. Hundshammer, M. Gersch, B. Feuerecker, K. Steigeri, and et al., “Imagin of ph in vivo using hyperpolarized 13c-labelled zymonic acid,” Nature Communications, vol. 8, p. 15126, 2017.spa
dc.relation.referencesA. Majumdar, E. Kim, Y. Gong, and et al., “Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot,” Physical Review B, vol. 84, p. 085309, 2011.spa
dc.relation.referencesC. Toninelli, I. Gerhardt, A. Clark, and et al., “Single organic molecules for photonic quantum technologies,” vol. 20, pp. 1615–1628, 2020.spa
dc.relation.referencesJ. Lipton, J.and Macleod, “Innovations in nanosynthesis: emerging techniques for preci- sion, scalability, and spatial control in reactions of organic molecules on solid surfaces,” Journal of physics. Condensed matter : an Institute of Physics journal, vol. 35, 2023.spa
dc.relation.referencesC. Zhang, Y. Yan, Y. Zhao, and J. Yao, “From molecular design and materials cons- truction to organic nanophotonic devices,” Accounts of chemical research, vol. 47, pp. 3448–3458, 2014.spa
dc.relation.referencesJ. Plumhof, T. Stöferle, L. Mai, and et al., “Room-temperature bose–einstein conden- sation of cavity exciton–polaritons in a polymer,” Nature Materials, vol. 13, p. 247–252, 2014.spa
dc.relation.referencesT. Cookson, K. Georgiou, A. Zasedatelev, and et al., “A yellow polariton condensate in a dye filled microcavity,” Advanced Optical Materials, vol. 5, p. 1700203, 2017.spa
dc.relation.referencesS. Betzold, M. Dusel, O. Kyriienko, and et al., “Coherence and interaction in confined room-temperature polariton condensates with frenkel excitons,” ACS Photonics, vol. 7, pp. 384–392, 2020.spa
dc.relation.referencesM. Wei, S. Rajendran, H. Ohadi, and et al., “Low threshold polariton lasing in a highly disordered conjugated polymer,” Optica, vol. 6, pp. 1124–1129, 2019.spa
dc.relation.referencesR. Grant, P. Michetti, A. Musser, and et al., “Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye,” Advanced Optical Materials, vol. 4, pp. 1615–1623, 2016.spa
dc.relation.referencesS. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics, vol. 4, pp. 371–375, 2010.spa
dc.relation.referencesC. Polisseni, K. Major, S. Boissier, and et al., “Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices,” Optics Express, vol. 24, pp. 5615–5627, 2016.spa
dc.relation.referencesM. Gaither-Ganim, S. Newlon, M. Anderson, and B. Lee, “Organic molecule single- photon sources,” Oxford Open Materials Science, vol. 3, p. itac017, 2022.spa
dc.relation.referencesR. C. Schofield, D. P. Bogusz, R. A. Hoggarth, S. Nur, K. D. Major, and A. S. Clark, “Polymer-encapsulated organic nanocrystals for single photon emission,” Optical Ma- terials Express, vol. 10, pp. 1586–1596, 2020.spa
dc.relation.referencesS. Han, C. Qin, Y. Song, S. Dong, Y. Lei, S. Wang, X. Su, A. Wei, X. Li, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, “Photostable fluorescent molecules on layered he- xagonal boron nitride: Ideal single-photon sources at room temperature,” The Journal of Chemical Physics, vol. 155, p. 244301, 2021.spa
dc.relation.referencesG. Mazzamuto, A. Tabani, S. Pazzagli, and et al., “Single-molecule study for a graphene-based nano-position sensor,” Optics Express, vol. 16, p. 113007, 2014.spa
dc.relation.referencesA. Shkarin, D. Rattenbacher, J. Renger, S. Hönl, T. Utikal, P. Seidler, S. Götzinger, and V. Sandoghdar, “Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules,” Physical Review Letter, vol. 126, p. 133602, 2021.spa
dc.relation.referencesF. Troiani, A. Ghirri, M. Paris, C. Bonizzoni, and M. Affronte, “Towards quantum sensing with molecular spins,” Journal of Magnetism and Magnetic Materials, vol. 491, p. 165534, 2019.spa
dc.relation.referencesM. Colautti, P. Lombardi, M. Trapuzzano, F. Piccioli, S. Pazzagli, B. Tiribilli, S. No- centini, F. Cataliotti, D. Wiersma, and C. Toninelli, “A 3d polymeric platform for photonic quantum technologies,” Advanced Quantum Technologies, vol. 3, p. 2000004, 2020.spa
dc.relation.referencesD. Coles, N. Somaschi, P. Michetti, and et al., “Polariton-mediated energy transfer bet- ween organic dyes in a strongly coupled optical microcavity,” Nature material, vol. 13, p. 712–719, 2014.spa
dc.relation.referencesK. Georgiou, P. Michetti, L. Gai, and et al., “Control over energy transfer between fluorescent bodipy dyes in a strongly coupled microcavity,” ACS Photonics, vol. 5, pp. 258–266, 2018.spa
dc.relation.referencesD. Lidzey, D. Bradley, M. Skolnick, and et al., “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature, vol. 395, p. 53–55, 1998.spa
dc.relation.referencesJ. Tang, A. Ren, Z. Zhonghao, and Y. Zhao, “Strong exciton–photon coupling in dye- doped polymer microcavities,” Macromolecular Materials and Engineering, vol. 305, p. 2000456, 2020.spa
dc.relation.referencesR. Chikkaraddy, B. de Nijs, F. Benz, and et al., “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, vol. 535, p. 127–130, 2016.spa
dc.relation.referencesD. Wang, H. Kelkar, D. Martin-Cano, and et al., “Coherent coupling of a single mole- cule to a scanning fabry-perot microcavity,” Phys. Rev. X, vol. 7, p. 021014, 2017.spa
dc.relation.referencesV. Agranovich and G. La Rocca, “Electronic excitations in organic microcavities with strong light–matter coupling,” Solid State Communications, vol. 135, pp. 544–553, 2005.spa
dc.relation.referencesH. Zoubi and G. La Rocca, “Microscopic theory of anisotropic organic cavity exciton polaritons,” Physical Review B, vol. 71, p. 235316, 2005.spa
dc.relation.referencesJ. Quach, K. McGhee, L. Ganzer, and et al., “Superabsorption in an organic microca- vity: Toward a quantum battery,” Science Advances, vol. 8, p. eabk3160, 2022.spa
dc.relation.referencesD. Wang, H. Kelkar, D. Martin-Cano, and et al., “Turning a molecule into a coherent two-level quantum system,” Nature Physics, vol. 15, p. 1, 2019.spa
dc.relation.referencesV. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B, vol. 67, p. 085311, 2003.spa
dc.relation.referencesL. Fontanesi, L. Mazza, and G. C. La Rocca, “Organic-based microcavities with vi- bronic progressions: Linear spectroscopy,” Phys. Rev. B, vol. 80, p. 235313, 2009.spa
dc.relation.referencesC. Ooi and K. Chia, Unified master equation for molecules in phonon and radiation baths. Scientific reports, 2022.spa
dc.relation.referencesY. Zhang, A. Wirthwein, F. Alharbi, and et al., “Dark states enhance the photocell power via phononic dissipation,” Physical chemistry, vol. 18, pp. 31 845–31 849, 2016.spa
dc.relation.referencesQ. Zhang and K. Zhang, “Collective effects of organic molecules based on the hols- tein–tavis–cummings model,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 54, p. 145101, 2021.spa
dc.relation.referencesF. Spano, “Optical microcavities enhance the exciton coherence length and elimina- te vibronic coupling in j-aggregates,” The Journal of Chemical Physics., vol. 142, p. 184707, 2015.spa
dc.relation.referencesC. Clear, R. Schofield, K. Major, and et al., “Phonon-induced optical dephasing in single organic molecules,” Physical Review Letters, vol. 124, p. 153602, 2020.spa
dc.relation.referencesA. Shalabney, J. George, J. Hutchison, and et al., “Coherent coupling of molecular resonators with a microcavity mode,” Nature Communications, vol. 6, p. 5981, 2015.spa
dc.relation.referencesI. Dolado, C. Maciel-Escudero, E. Nikulina, and et al., “Remote near-field spectros- copy of vibrational strong coupling between organic molecules and phononic nanore- sonators,” Nature Communications, vol. 13, p. 6850, 2022.spa
dc.relation.referencesI. Shlesinger, K. Cognée, E. Verhagen, and A. Koenderink, “Integrated molecular op- tomechanics with hybrid dielectric–metallic resonators,” ACS Photonics, vol. 8, p. 3506–3516, 2021.spa
dc.relation.referencesF. Herrera and F. Spano, “Absorption and photoluminescence in organic cavity qed,” Physical Review A, vol. 95, p. 053867, 2017.spa
dc.relation.referencesF. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Physical Review Letters, vol. 116, p. 238301, 2016.spa
dc.relation.referencesA. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities. Oxford University Press, 2011.spa
dc.relation.referencesO. Ruiz, “Crecimiento y caracterización de microcavidades ópticas,” tesis de Maestrı́a, Unversidad Autónoma de San Luis Potosı́, 2017.spa
dc.relation.referencesP. Eastham, Nanophotonics I: quantum theory of microcavities. Course Notes, Trinity Collegue Dublin, 2010.spa
dc.relation.referencesP. Yeh, “Optical waves in layered media,” John Wiley & Sons, 1991.spa
dc.relation.referencesY. Zhao, Organic Nanophotonics: Fundamentals and Applications, 1st ed. Springer Berlin, Heidelberg, 2015.spa
dc.relation.referencesM. Hertzog, M. Wang, J. Mony, and K. Börjesson, “Strong light-matter interactions: A new direction within chemistry,” Chemical Society Reviews, vol. 48, pp. 937–961, 2019.spa
dc.relation.referencesK. McGhee, A. Putintsev, R. Jayaprakash, and et al., “Polariton condensation in an organic microcavity utilising a hybrid metal-dbr mirror,” Scientific Reports, vol. 11, p. 20879, 2021.spa
dc.relation.referencesH. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluo- rescence,” Physical Review Letter, vol. 39, pp. 691–695, 1977.spa
dc.relation.referencesF. Danielli, “The jaynes-cummings model,” Universiy of Sao Paulo, Tech. Rep., 2020.spa
dc.relation.referencesM. Lewenstein, A. Sampera, and M. Pospiech, Quantum Optics an Introduction. Uni- versity of Hannover, 2006.spa
dc.relation.referencesM. Sarovar, A. Ishizaki, G. Fleming, and K. Whaley, “Quantum entanglement in photosynthetic light-harvesting complexes,” Nature Physics, vol. 6, p. 462–467, 2010.spa
dc.relation.referencesF. Yang, L. Moss, and P. G., “The molecular structue of green fluorescent protein,” Nature Biotecnology, vol. 14, pp. 1246–1251, 1996.spa
dc.relation.referencesM. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between stokes shift and huang–rhys parameter,” Physical Chemistry, vol. 17, pp. 16 959–16 969, 2015.spa
dc.relation.referencesM. De Jong, L. Seijo, A. Meijerink, and F. Rabouw, “Visualizing and controlling vibrational wave packets of single molecules,” Nature, vol. 465, pp. 905–908, 2010.spa
dc.relation.referencesG. Rodriguez, “Calculo de espectros de emisión un sistema de dos cromóforos interac- tuando en presencia de dos modos de la microcavidad,” tesis de pregrado, Unversidad Nacional de Colombia, 2015.spa
dc.relation.referencesV. Agranovich and G. Bassani, Thin Films and Nanostructures: Electronic Excitations in Organic Based Nanostructures. Elsevier Academic Press, 2003, vol. 31.spa
dc.relation.referencesJ. Golbeck and A. van der Est, The Biophysics of Photosynthesis, ser. Biophysics for the Life Sciences. Springer New York, 2014.spa
dc.relation.referencesM. Reitz, “Quantum optics with molecules,” tesis Doctoral, Friedrich-Alexander- Universität Erlangen-Nürnberg, 2022.spa
dc.relation.referencesW. Li, J. Ren, and Z. Shuai, “A general charge transport picture for organic semicon- ductors with nonlocal electron-phonon couplings,” Nature Communications, vol. 12, p. 4260, 2021.spa
dc.relation.referencesI. Medintz and N. Hildebrandt, FRET-Förster Resonance Energy Transfer: From Theory to Applications. John Wiley & Sons, 2013.spa
dc.relation.referencesP. Bonancia, “Especies transitorias en sistemas bioorgánicos modelo conteniendo cromóforos de tipo bifenilo, naftaleno o benzofenona.” Tesis doctoral, Universitat Po- litècnica de València, 2012.spa
dc.relation.referencesS. Hussain, “An introduction to fluorescence resonance energy transfer (fret),” Tripura University, Suryamaninagar, vol. 132, 2009.spa
dc.relation.referencesH. Carmichael, An open system approach to quantum optics, 1st ed. Springer, 1993.spa
dc.relation.referencesM. Schlosshauer, Decoherence: And the Quantum-To-Classical Transition. Springer, 2007.spa
dc.relation.referencesH. Andersen, Time-dependent statistical mechanics 12. quantum correlation function. Standford, 2009.spa
dc.relation.referencesM. Scully and M. Zubairy, Quantum Optics. Cambridge university press, 1997.spa
dc.relation.referencesD. Walls and G. Milburn, Quantum Optics. University Waikato, 2012.spa
dc.relation.referencesS. Swain, “Master equation derivation of quantum regression theorem,” Journal of Physics A: Mathematical and General., vol. 14, p. 2577, 1981.spa
dc.relation.referencesF. Petruccione and H. Peter, The Theory Of Open Quantum System, 1st ed. Oxford university press, 2002.spa
dc.relation.referencesS. Harris, “Electromagnetically induced transparency,” Physics Today, vol. 50, pp. 36–42, 1997.spa
dc.relation.referencesB. Peng, S. Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electro- magnetically induced transparency in whispering-gallery microcavities,” Nature Com- munications, vol. 5, p. 5082, 2014.spa
dc.relation.referencesM. cho, Two Dimensional Optical Espectroscpy. Taylor and Francis group, 2009.spa
dc.relation.referencesJ. Garcia, H. Vinck, and B. Rodriguez, “All quantum theory of linear electrical sus- ceptibility,” Momento, pp. 57–67, 2016.spa
dc.relation.referencesJ. Garcia, “Extensiones a la teorı́a semiclásica estándar de la susceptibilidad eléctrica,” Tesis doctoral, Universidad de Antioquia, 2018.spa
dc.relation.referencesJ. Frenkel, “On the transformation of light into heat in solids. i,” Physical Review, vol. 37, pp. 17–44, 1931.spa
dc.relation.referencesN. Wu, J. Feist, and F. Garcia-Vidal, “When polarons meet polaritons: Exciton- vibration interactions in organic molecules strongly coupled to confined light fields,” Physical Review B., vol. 94, p. 195409, 2016.spa
dc.relation.referencesD. Wang, K. Hrishikesh, D. Cano, and et al., “Coherent coupling of a single molecule to a scanning fabry-perot microcavity,” Physical Review X., vol. 7, p. 021014, 2017.spa
dc.relation.referencesD. Dovzhenko, S. Ryabchuk, Y. Rakovich, and I. Nabiev, “Light–matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale Journal., vol. 10, pp. 3589–3605, 2018.spa
dc.relation.referencesS. Echeverry, “Interacción radiación-materia mediada por fonones en la electrodinámi- ca cuántica de cavidades.” Tesis doctoral, Universidad Nacional de Colombia, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembCompuestos orgánicosspa
dc.subject.lembOrganic compoundseng
dc.subject.lembAnálisis espectralspa
dc.subject.lembSpectrum analysiseng
dc.subject.lembBombeo ópticospa
dc.subject.lembOptical pumpingeng
dc.subject.lembEspectros vibracionalesspa
dc.subject.lembVibrational spectraeng
dc.subject.lembMolecular spectroscopyeng
dc.subject.lembEspectroscopía molecularspa
dc.subject.lembÓptica cuánticaspa
dc.subject.lembQuantum opticseng
dc.subject.proposalMolécula orgánicaspa
dc.subject.proposalEspectro de emisiónspa
dc.subject.proposalMicrocavidadesspa
dc.subject.proposalEITspa
dc.subject.proposalAsistencia vibracionalspa
dc.subject.proposalAntiagrupamientospa
dc.subject.proposalPolarizaciónspa
dc.subject.proposalAcoplamiento fuertespa
dc.subject.proposalOrganic moleculeeng
dc.subject.proposalEmission spectrumeng
dc.subject.proposalMicrocavitieseng
dc.subject.proposalEITeng
dc.subject.proposalVibrational assistanceeng
dc.subject.proposalAnti-bunchingeng
dc.subject.proposalPolarizationeng
dc.subject.proposalStrong couplingeng
dc.titleEstudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinadaspa
dc.title.translatedStudy of the pumping mechanisms in organic molecules strongly coupled to confined light fieldseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032458462.2023.pdf
Tamaño:
9.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: