Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de microrredes residenciales
dc.contributor.advisor | Cortés Guerrero, Camilo Andrés | spa |
dc.contributor.advisor | Martínez, Wilmar Hernán | spa |
dc.contributor.author | Latorre Correa, Javier Alejandro | spa |
dc.contributor.researchgroup | Grupo de Investigación EMC-UN | spa |
dc.date.accessioned | 2021-03-03T20:36:08Z | spa |
dc.date.available | 2021-03-03T20:36:08Z | spa |
dc.date.issued | 2020-11-25 | spa |
dc.description.abstract | Among the hybrid energy storage systems, we have the battery-ultracapacitor systems in active topology that use DC-DC power converters for their operation. Hybrid storage systems are part of the set of solutions designed to improve the power systems of the future in different applications. Taking the application to residential microgrids, a multilevel control system is required to manage the available energy and interactions among the microgrid components. For this purpose, a rule-based power management system was designed, its operation was validated in simulation, and the performance of different controllers was compared to select the best strategy to be used in the DC-DC converters. The average current control with internal model principle was proposed as the most suitable controller according to the contemplated performance parameters, which allows having voltage regulation values close to 1 %. With this result, the system was implemented in Hardware in-the-loop using an OPAL-RT®, validating the correct functioning of the energy management system and the performance of the selected controller. These systems can be taken to a laboratory implementation to extract real results and be easily adjusted for other applications such as electric vehicles. | spa |
dc.description.abstract | Dentro de los sistemas híbridos de almacenamiento de energía se encuentran los sistemas bateríaultracapacitor en topología activa, los cuales emplean convertidores de potencia DC-DC para sufuncionamiento. Los sistemas de almacenamiento híbrido hacen parte del conjunto de soluciones planteadas para mejorar los sistemas de potencia del futuro en diferentes aplicaciones. Tomando la aplicación a microrredes residenciales, se requiere un sistema de control multinivel que permita gestionar la energía disponible y las interacciones entre los componentes de la microrred. Para esto se diseñó un sistema de gestión de energía basado en reglas, se validó su funcionamiento en simulación y se comparó el desempeño de diferentes controladores para seleccionar la mejor estrategia a ser empleada en los convertidores DC-DC. El control de corriente promedio con principio del modelo interno se propuso como el controlador más adecuado según los parámetros de desempeño contemplados, el cual permite tener valores de regulación de tensión cercanos a 1 %. Con este resultado se implementó el sistema en Hardware in-the-loop usando un OPAL-RT®, logrando validar el correcto funcionamiento del sistema de gestión de energía y el desempeño del controlador seleccionado. Estos sistemas pueden llevarse a una implementación de laboratorio para extraer resultados reales y ajustarse fácilmente para otras aplicaciones como vehículos eléctricos. | spa |
dc.description.additional | Línea de Investigación: Convertidores de Electrónica de Potencia y Sistemas de Almacenamiento de Energía Este proyecto fue realizado con el apoyo de la Vicedecanatura de Investigacióny Extensión de la Facultad de Ingeniería. En colaboración con la Universidad Católica de Lovaina, Bélgica, el instituto EnergyVille, Bélgica y la Universidad Distrital Francisco José de Caldas | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 1 recurso en línea (201 páginas) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | A. Latorre "Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de de microrredes residenciales", Universidad Nacional de Colombia, Noviembre de 2020 p.p. 1-201 | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79339 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | Unidad de Planeación Minero Energética, “PROYECCIÓN DE LA DEMANDA DE ENERGÍA ELÉCTRICA Y POTENCIA MÁXIMA EN COLOMBIA Revisión Febrero de 2017,” UPME, Bogotá, Tech. Rep., 2017. [Online]. Available: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/UPME_Proyeccion_Demanda_Energia_Febrero_2017.pdf | spa |
dc.relation.references | H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, January 2010. | spa |
dc.relation.references | H. Gharavi and R. Ghafurian, “Smart grid: The electric energy system of the future,” IEEE Transactions on Power Systems, 2011. | spa |
dc.relation.references | J. A. Momoh, “Smart grid design for efficient and flexible power networks operation and control,” in 2009 IEEE/PES Power Systems Conference and Exposition, March 2009, pp. 1–8. | spa |
dc.relation.references | R. H. Lasseter, “Microgrids,” in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), vol. 1, 2002, pp. 305–308 vol.1. | spa |
dc.relation.references | N. Hatziargyriou, N. Jenkins, et. al. , “Microgrids: Large scale integration of microgeneration to low voltage grids,” Modern power systems, 2003. | spa |
dc.relation.references | N. Hatziargyriou, “Microgrid: architectures and control,” Microgrid : architectures and control, pp. 1–24, 2003. | spa |
dc.relation.references | C. Schwaegerl and L. Tao, “More microgrids: Advanced architectures and control concepts for more microgrids,” Modern power systems, 2009. | spa |
dc.relation.references | B. Nordman and K. Christensen, “Local power distribution with nanogrids,” 2013 International Green Computing Conference Proceedings, pp. 1–8, 2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6604464 | spa |
dc.relation.references | B. Nordman, K. Christensen, and A. Meier, “Think globally, distribute power locally: The promise of nanogrids,” Computer, vol. 45, no. 9, pp. 89–91, 2012. | spa |
dc.relation.references | H. Kakigano, Y. Miura, and T. Ise, “Configuration and control of a dc microgrid for residential houses,” Transmission and Distribution Conference and Exposition: Asia and Pacific, T and D Asia 2009, pp. 1–4, 209. | spa |
dc.relation.references | D. Burmester, R. Rayudu, W. Seah, and D. Akinyele, “A review of nanogrid topologies and technologies,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 760–775, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2016.09.073 | spa |
dc.relation.references | B. Nordman and K. Christensen, “DC Local Power Distribution with microgrids and nanogrids,” 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, pp. 199–204, 2015. | spa |
dc.relation.references | A. Narváez, “Concepción del proceso de diseño de un Sistema Híbrido de Almacenamiento de Energía compuesto por baterías y supercondensadores, con aplicación a microrredes eléctricas residenciales, proyecto de tesis doctoral,” aprobada. | spa |
dc.relation.references | J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122–132, 2012. | spa |
dc.relation.references | R. A. Dougal, S. Liu, and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Transactions on Components and Packaging Technologies, vol. 25, no. 1, pp. 120–131, 2002. | spa |
dc.relation.references | W. Gao, “Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell ultracapacitor hybrid powertrain,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 846–855, 2005. | spa |
dc.relation.references | A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010. | spa |
dc.relation.references | D. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustain. Energy Technol. Assessments, 2014. | spa |
dc.relation.references | QUANTA TECHNOLOGY., “Electric Energy Storage Systems.” proceedings of the 10th WSEAS international conference on energy, environment, ecosystems and sustainable development 2013. [Online]. Available: http://quanta-technology.com/sites/default/files/doc-files/ Energy_Storage-12-01-13.pdf | spa |
dc.relation.references | A. Narvaez, C. Cortes, and C. L. Trujillo, “Comparative analysis of topologies for the interconnection of batteries and supercapacitors in a hybrid energy storage system,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2017, pp. 1–6. | spa |
dc.relation.references | Z. Kong, N. Cui, and P. Li, “Energy management strategy coordinating lithium-ion battery and ultra-capacitor for electric vehicle,” in 2017 36th Chinese Control Conference (CCC). IEEE, Jul. 2017. [Online]. Available: https://doi.org/10.23919/chicc.2017.8028837 | spa |
dc.relation.references | A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010. | spa |
dc.relation.references | Z. Chen, W. Yong, and W. Gao, “Pi and sliding mode control of a multi-input-multi-output boost- boost converter,” 2014. | spa |
dc.relation.references | G. A. Ramos, R. Costa-castelló, and J. M. Olm, Digital Repetitive Control under Varying Frequency Conditions, 1st ed., Springer, Ed. Springer-Verlag Berlin Heidelberg, 2013. | spa |
dc.relation.references | M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-Ion Batteries, 1st ed., S. Ltd., Ed. Saga, Japan: Springer, 2016. | spa |
dc.relation.references | B. Scrosati and J. Garche, “Lithium batteries: Status, prospects and future,” Journal of Power Sources, vol. 195, no. 9, pp. 2419–2430, 2010. | spa |
dc.relation.references | L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272–288, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.10.060 | spa |
dc.relation.references | J. M. Tarascon, J. M. Tarascon, M. Armand, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11713543 | spa |
dc.relation.references | V. A. Shah, J. A. Joshi, R. Maheshwari, and R. Roy, “Review of Ultracapacitor Technology and its Applications,” Journal on power systems, no. December, 2008. | spa |
dc.relation.references | L. Murata Manofacturing Co., “High Performance Electrical Double-Layer Capacitors,” Technical Guides, no. 1, p. 16, 2013. | spa |
dc.relation.references | BOOSTCAP Energy Storage Modules for Heavy Duty Transportation Applications, Maxwell Technologies, 6 2016, ver. 2.2. | spa |
dc.relation.references | A. Burke, “Ultracapacitors: Why, how, and where is the technology,” Journal of Power Sources, vol. 91, no. 1, pp. 37–50, 2000. | spa |
dc.relation.references | M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, “Main aging mechanisms in Li ion batteries,” Journal of Power Sources, vol. 146, no. 1-2, pp. 90–96, 2005. | spa |
dc.relation.references | A. Narvaez, C. Cortes, and C. Trujillo, “Real-time frequency-decoupling control for a hybrid energy storage system in an active parallel topology connected to a residential microgrid with intermittent generation,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, E. R. López-Santana, and J. I. Rodriguez-Molano, Eds. Cham: Springer International Publishing, 2018, pp. 596–605. | spa |
dc.relation.references | A. Latorre, C. A. Cortes, and W. Martinez, “Ems for bidirectional boost converters of a hybrid energy storage system for residential microgrid applications,” in 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), 2018, pp. P.1–P.9. | spa |
dc.relation.references | N. Mohan, Power Electronics: Converters, Applications and Design, I. John Wiley & Sons, Ed. Wiley, 1995. | spa |
dc.relation.references | D. Hart, Power Electronics. McGraw Hill, University of Valparaiso, 2011. | spa |
dc.relation.references | Y. Gu, W. Li, and X. He, “Frequency-coordinating virtual impedance for autonomous power management of dc microgrid,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2328– 2337, 2015. | spa |
dc.relation.references | Q. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, C. Wen, and M. Y. Lee, “A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous dc microgrid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5930–5941, 2017. | spa |
dc.relation.references | Q. Xu, J. Xiao, X. Hu, P. Wang, and M. Y. Lee, “A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state-ofcharge recovery,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7098–7108, 2017. | spa |
dc.relation.references | S. Bacha, I. Munteanu, and A. I. Bratcu, Power electronic converters modeling and control : with case studies. London: Springer, 2014. | spa |
dc.relation.references | R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Springer US, 2001. [Online]. Available: https://doi.org/10.1007/b100747 | spa |
dc.relation.references | M. Korkmaz, O. Aydogdu, and H. Dogan, “Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller,” in 2012 International Symposium on Innovations in Intelligent Systems and Applications. IEEE, Jul. 2012. [Online]. Available: https://doi.org/10.1109/inista.2012.6246935 | spa |
dc.relation.references | S. Lee and H. Almurib, “Control techniques for power converters in photovoltaic hybrid energy storage system,” in 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014. Institution of Engineering and Technology, 2014. [Online]. Available: https://doi.org/10.1049/cp.2014.1494 | spa |
dc.relation.references | C.-T. Chen, Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods. USA: Oxford University Press, Inc., 1995. | spa |
dc.relation.references | S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” in Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148). IEEE, 2001. [Online]. Available: https://doi.org/10.1109/acc.2001.945964 | spa |
dc.relation.references | H. D. Morales, “Fundamentos de control,” no publicado. | spa |
dc.relation.references | B. Hauke, “Application report slva477b: Basic calculation of a buck converter’s power stage,” Texas Instruments, Low PowerDC/DC Applications, pp. 1–8, 2011, rev. 2015. | spa |
dc.relation.references | C. Edwards and S. Spurgeon, Sliding Mode Control: Theory And Applications, ser. Series in Systems and Control. Taylor & Francis, 1998. [Online]. Available: https://books.google. com.co/books?id=uH2RJhIPsiYC | spa |
dc.relation.references | E. Okyere, A. Bousbaine, G. T. Poyi, A. K. Joseph, and J. M. Andrade, “Lqr controller design for quad-rotor helicopters,” The Journal of Engineering, vol. 2019, no. 17, pp. 4003–4007, 2019. | spa |
dc.relation.references | K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall, 1998. | spa |
dc.relation.references | B. Francis and W. Wonham, “Internal model principle in control theory,” Automatica 12, pp. 457–465, 1976. | spa |
dc.relation.references | S. Bhattacharyya, A. Datta, and L. Keel, Linear Control Theory: Structure, Robustness, and Optimization, ser. Automation and Control Engineering. CRC Press, 2018. [Online]. Available: https://books.google.com.co/books?id=2vK4aqHqW1IC | spa |
dc.relation.references | Juwari, S. Chin, N. Samad, and B. Aziz, “Two-degree-of-freedom internal model control for parallel cascade scheme,” in 2008 International Symposium on Information Technology. IEEE, Aug. 2008. [Online]. Available: https://doi.org/10.1109/itsim.2008.4632063 | spa |
dc.relation.references | A. Ghosh, M. Prakash, S. Pradhan, and S. Banerjee, “A comparison among PID, sliding mode and internal model control for a buck converter,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2014. [Online]. Available: https://doi.org/10.1109%2Fiecon.2014.7048624 | spa |
dc.relation.references | A. T. Azar and F. E. Serrano, “Robust IMC–PID tuning for cascade control systems with gain and phase margin specifications,” Neural Computing and Applications, vol. 25, no. 5, pp. 983–995, Mar. 2014. [Online]. Available: https://doi.org/10.1007/s00521-014-1560-x | spa |
dc.relation.references | OP4510 Simulator, OPAL-RT Technologies, 7 2015. [Online]. Available: https://blob.opal-rt.com/medias/L00161_0124.pdf | spa |
dc.relation.references | HV Floating MOS-Gate Driver ICs, International Rectifier, 3 2007. [Online]. Available: https://www.mouser.in/pdfDocs/HVFloatingMOS-GateDriverICs.pdf | spa |
dc.relation.references | M. Oswal, J. Paul, and R. Zhao, “A comparative study of lithium-ion batteries,” Storage systems for renewables, 2015. | spa |
dc.relation.references | HIGH CAPACITY K2B12V7EB ENERGY MODULE, K2 Energy, 4 2016, rev. 3. | spa |
dc.relation.references | P. Sharma and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Conversion and Management, vol. 51, no. 12, pp. 2901–2912, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2010.06.031 | spa |
dc.relation.references | M. Mastragostino, C. Arbizzani, and F. Soavi, “Polymer-based supercapacitors,” Journal of Power Sources, vol. 97–98, pp. 812 – 815, 2001, proceedings of the 10th International Meeting on Lithium Batteries. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378775301006139 | spa |
dc.relation.references | J. Pascual, I. S. Martin, A. Ursua, P. Sanchis, and L. Marroyo, “Implementation and control of a residential microgrid based on renewable energy sources, hybrid storage systems and thermal controllable loads,” in 2013 IEEE Energy Conversion Congress and Exposition. IEEE, Sep. 2013. [Online]. Available: https://doi.org/10.1109/ecce.2013.6646995 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.proposal | Almacenamiento de energía | spa |
dc.subject.proposal | OPAL-RT. | eng |
dc.subject.proposal | Hardware in-the-loop | eng |
dc.subject.proposal | Gestión de energía | spa |
dc.subject.proposal | Real-time simulation | eng |
dc.subject.proposal | Convertidores de potencia | spa |
dc.subject.proposal | Controladores | spa |
dc.subject.proposal | Controllers | eng |
dc.subject.proposal | Power converters | eng |
dc.subject.proposal | Simulación en tiempo real | spa |
dc.subject.proposal | Hardware in-the-loop | spa |
dc.subject.proposal | Energy management | eng |
dc.subject.proposal | OPAL-RT | spa |
dc.subject.proposal | Energy storage | eng |
dc.title | Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de microrredes residenciales | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |