Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de microrredes residenciales

dc.contributor.advisorCortés Guerrero, Camilo Andrésspa
dc.contributor.advisorMartínez, Wilmar Hernánspa
dc.contributor.authorLatorre Correa, Javier Alejandrospa
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2021-03-03T20:36:08Zspa
dc.date.available2021-03-03T20:36:08Zspa
dc.date.issued2020-11-25spa
dc.description.abstractAmong the hybrid energy storage systems, we have the battery-ultracapacitor systems in active topology that use DC-DC power converters for their operation. Hybrid storage systems are part of the set of solutions designed to improve the power systems of the future in different applications. Taking the application to residential microgrids, a multilevel control system is required to manage the available energy and interactions among the microgrid components. For this purpose, a rule-based power management system was designed, its operation was validated in simulation, and the performance of different controllers was compared to select the best strategy to be used in the DC-DC converters. The average current control with internal model principle was proposed as the most suitable controller according to the contemplated performance parameters, which allows having voltage regulation values close to 1 %. With this result, the system was implemented in Hardware in-the-loop using an OPAL-RT®, validating the correct functioning of the energy management system and the performance of the selected controller. These systems can be taken to a laboratory implementation to extract real results and be easily adjusted for other applications such as electric vehicles.spa
dc.description.abstractDentro de los sistemas híbridos de almacenamiento de energía se encuentran los sistemas bateríaultracapacitor en topología activa, los cuales emplean convertidores de potencia DC-DC para sufuncionamiento. Los sistemas de almacenamiento híbrido hacen parte del conjunto de soluciones planteadas para mejorar los sistemas de potencia del futuro en diferentes aplicaciones. Tomando la aplicación a microrredes residenciales, se requiere un sistema de control multinivel que permita gestionar la energía disponible y las interacciones entre los componentes de la microrred. Para esto se diseñó un sistema de gestión de energía basado en reglas, se validó su funcionamiento en simulación y se comparó el desempeño de diferentes controladores para seleccionar la mejor estrategia a ser empleada en los convertidores DC-DC. El control de corriente promedio con principio del modelo interno se propuso como el controlador más adecuado según los parámetros de desempeño contemplados, el cual permite tener valores de regulación de tensión cercanos a 1 %. Con este resultado se implementó el sistema en Hardware in-the-loop usando un OPAL-RT®, logrando validar el correcto funcionamiento del sistema de gestión de energía y el desempeño del controlador seleccionado. Estos sistemas pueden llevarse a una implementación de laboratorio para extraer resultados reales y ajustarse fácilmente para otras aplicaciones como vehículos eléctricos.spa
dc.description.additionalLínea de Investigación: Convertidores de Electrónica de Potencia y Sistemas de Almacenamiento de Energía Este proyecto fue realizado con el apoyo de la Vicedecanatura de Investigacióny Extensión de la Facultad de Ingeniería. En colaboración con la Universidad Católica de Lovaina, Bélgica, el instituto EnergyVille, Bélgica y la Universidad Distrital Francisco José de Caldasspa
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (201 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationA. Latorre "Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de de microrredes residenciales", Universidad Nacional de Colombia, Noviembre de 2020 p.p. 1-201spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79339
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesUnidad de Planeación Minero Energética, “PROYECCIÓN DE LA DEMANDA DE ENERGÍA ELÉCTRICA Y POTENCIA MÁXIMA EN COLOMBIA Revisión Febrero de 2017,” UPME, Bogotá, Tech. Rep., 2017. [Online]. Available: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/UPME_Proyeccion_Demanda_Energia_Febrero_2017.pdfspa
dc.relation.referencesH. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, January 2010.spa
dc.relation.referencesH. Gharavi and R. Ghafurian, “Smart grid: The electric energy system of the future,” IEEE Transactions on Power Systems, 2011.spa
dc.relation.referencesJ. A. Momoh, “Smart grid design for efficient and flexible power networks operation and control,” in 2009 IEEE/PES Power Systems Conference and Exposition, March 2009, pp. 1–8.spa
dc.relation.referencesR. H. Lasseter, “Microgrids,” in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), vol. 1, 2002, pp. 305–308 vol.1.spa
dc.relation.referencesN. Hatziargyriou, N. Jenkins, et. al. , “Microgrids: Large scale integration of microgeneration to low voltage grids,” Modern power systems, 2003.spa
dc.relation.referencesN. Hatziargyriou, “Microgrid: architectures and control,” Microgrid : architectures and control, pp. 1–24, 2003.spa
dc.relation.referencesC. Schwaegerl and L. Tao, “More microgrids: Advanced architectures and control concepts for more microgrids,” Modern power systems, 2009.spa
dc.relation.referencesB. Nordman and K. Christensen, “Local power distribution with nanogrids,” 2013 International Green Computing Conference Proceedings, pp. 1–8, 2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6604464spa
dc.relation.referencesB. Nordman, K. Christensen, and A. Meier, “Think globally, distribute power locally: The promise of nanogrids,” Computer, vol. 45, no. 9, pp. 89–91, 2012.spa
dc.relation.referencesH. Kakigano, Y. Miura, and T. Ise, “Configuration and control of a dc microgrid for residential houses,” Transmission and Distribution Conference and Exposition: Asia and Pacific, T and D Asia 2009, pp. 1–4, 209.spa
dc.relation.referencesD. Burmester, R. Rayudu, W. Seah, and D. Akinyele, “A review of nanogrid topologies and technologies,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 760–775, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2016.09.073spa
dc.relation.referencesB. Nordman and K. Christensen, “DC Local Power Distribution with microgrids and nanogrids,” 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, pp. 199–204, 2015.spa
dc.relation.referencesA. Narváez, “Concepción del proceso de diseño de un Sistema Híbrido de Almacenamiento de Energía compuesto por baterías y supercondensadores, con aplicación a microrredes eléctricas residenciales, proyecto de tesis doctoral,” aprobada.spa
dc.relation.referencesJ. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122–132, 2012.spa
dc.relation.referencesR. A. Dougal, S. Liu, and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Transactions on Components and Packaging Technologies, vol. 25, no. 1, pp. 120–131, 2002.spa
dc.relation.referencesW. Gao, “Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell ultracapacitor hybrid powertrain,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 846–855, 2005.spa
dc.relation.referencesA. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010.spa
dc.relation.referencesD. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustain. Energy Technol. Assessments, 2014.spa
dc.relation.referencesQUANTA TECHNOLOGY., “Electric Energy Storage Systems.” proceedings of the 10th WSEAS international conference on energy, environment, ecosystems and sustainable development 2013. [Online]. Available: http://quanta-technology.com/sites/default/files/doc-files/ Energy_Storage-12-01-13.pdfspa
dc.relation.referencesA. Narvaez, C. Cortes, and C. L. Trujillo, “Comparative analysis of topologies for the interconnection of batteries and supercapacitors in a hybrid energy storage system,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2017, pp. 1–6.spa
dc.relation.referencesZ. Kong, N. Cui, and P. Li, “Energy management strategy coordinating lithium-ion battery and ultra-capacitor for electric vehicle,” in 2017 36th Chinese Control Conference (CCC). IEEE, Jul. 2017. [Online]. Available: https://doi.org/10.23919/chicc.2017.8028837spa
dc.relation.referencesA. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010.spa
dc.relation.referencesZ. Chen, W. Yong, and W. Gao, “Pi and sliding mode control of a multi-input-multi-output boost- boost converter,” 2014.spa
dc.relation.referencesG. A. Ramos, R. Costa-castelló, and J. M. Olm, Digital Repetitive Control under Varying Frequency Conditions, 1st ed., Springer, Ed. Springer-Verlag Berlin Heidelberg, 2013.spa
dc.relation.referencesM. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-Ion Batteries, 1st ed., S. Ltd., Ed. Saga, Japan: Springer, 2016.spa
dc.relation.referencesB. Scrosati and J. Garche, “Lithium batteries: Status, prospects and future,” Journal of Power Sources, vol. 195, no. 9, pp. 2419–2430, 2010.spa
dc.relation.referencesL. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272–288, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.10.060spa
dc.relation.referencesJ. M. Tarascon, J. M. Tarascon, M. Armand, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11713543spa
dc.relation.referencesV. A. Shah, J. A. Joshi, R. Maheshwari, and R. Roy, “Review of Ultracapacitor Technology and its Applications,” Journal on power systems, no. December, 2008.spa
dc.relation.referencesL. Murata Manofacturing Co., “High Performance Electrical Double-Layer Capacitors,” Technical Guides, no. 1, p. 16, 2013.spa
dc.relation.referencesBOOSTCAP Energy Storage Modules for Heavy Duty Transportation Applications, Maxwell Technologies, 6 2016, ver. 2.2.spa
dc.relation.referencesA. Burke, “Ultracapacitors: Why, how, and where is the technology,” Journal of Power Sources, vol. 91, no. 1, pp. 37–50, 2000.spa
dc.relation.referencesM. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, “Main aging mechanisms in Li ion batteries,” Journal of Power Sources, vol. 146, no. 1-2, pp. 90–96, 2005.spa
dc.relation.referencesA. Narvaez, C. Cortes, and C. Trujillo, “Real-time frequency-decoupling control for a hybrid energy storage system in an active parallel topology connected to a residential microgrid with intermittent generation,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, E. R. López-Santana, and J. I. Rodriguez-Molano, Eds. Cham: Springer International Publishing, 2018, pp. 596–605.spa
dc.relation.referencesA. Latorre, C. A. Cortes, and W. Martinez, “Ems for bidirectional boost converters of a hybrid energy storage system for residential microgrid applications,” in 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), 2018, pp. P.1–P.9.spa
dc.relation.referencesN. Mohan, Power Electronics: Converters, Applications and Design, I. John Wiley & Sons, Ed. Wiley, 1995.spa
dc.relation.referencesD. Hart, Power Electronics. McGraw Hill, University of Valparaiso, 2011.spa
dc.relation.referencesY. Gu, W. Li, and X. He, “Frequency-coordinating virtual impedance for autonomous power management of dc microgrid,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2328– 2337, 2015.spa
dc.relation.referencesQ. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, C. Wen, and M. Y. Lee, “A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous dc microgrid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5930–5941, 2017.spa
dc.relation.referencesQ. Xu, J. Xiao, X. Hu, P. Wang, and M. Y. Lee, “A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state-ofcharge recovery,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7098–7108, 2017.spa
dc.relation.referencesS. Bacha, I. Munteanu, and A. I. Bratcu, Power electronic converters modeling and control : with case studies. London: Springer, 2014.spa
dc.relation.referencesR. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Springer US, 2001. [Online]. Available: https://doi.org/10.1007/b100747spa
dc.relation.referencesM. Korkmaz, O. Aydogdu, and H. Dogan, “Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller,” in 2012 International Symposium on Innovations in Intelligent Systems and Applications. IEEE, Jul. 2012. [Online]. Available: https://doi.org/10.1109/inista.2012.6246935spa
dc.relation.referencesS. Lee and H. Almurib, “Control techniques for power converters in photovoltaic hybrid energy storage system,” in 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014. Institution of Engineering and Technology, 2014. [Online]. Available: https://doi.org/10.1049/cp.2014.1494spa
dc.relation.referencesC.-T. Chen, Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods. USA: Oxford University Press, Inc., 1995.spa
dc.relation.referencesS. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” in Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148). IEEE, 2001. [Online]. Available: https://doi.org/10.1109/acc.2001.945964spa
dc.relation.referencesH. D. Morales, “Fundamentos de control,” no publicado.spa
dc.relation.referencesB. Hauke, “Application report slva477b: Basic calculation of a buck converter’s power stage,” Texas Instruments, Low PowerDC/DC Applications, pp. 1–8, 2011, rev. 2015.spa
dc.relation.referencesC. Edwards and S. Spurgeon, Sliding Mode Control: Theory And Applications, ser. Series in Systems and Control. Taylor & Francis, 1998. [Online]. Available: https://books.google. com.co/books?id=uH2RJhIPsiYCspa
dc.relation.referencesE. Okyere, A. Bousbaine, G. T. Poyi, A. K. Joseph, and J. M. Andrade, “Lqr controller design for quad-rotor helicopters,” The Journal of Engineering, vol. 2019, no. 17, pp. 4003–4007, 2019.spa
dc.relation.referencesK. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall, 1998.spa
dc.relation.referencesB. Francis and W. Wonham, “Internal model principle in control theory,” Automatica 12, pp. 457–465, 1976.spa
dc.relation.referencesS. Bhattacharyya, A. Datta, and L. Keel, Linear Control Theory: Structure, Robustness, and Optimization, ser. Automation and Control Engineering. CRC Press, 2018. [Online]. Available: https://books.google.com.co/books?id=2vK4aqHqW1ICspa
dc.relation.referencesJuwari, S. Chin, N. Samad, and B. Aziz, “Two-degree-of-freedom internal model control for parallel cascade scheme,” in 2008 International Symposium on Information Technology. IEEE, Aug. 2008. [Online]. Available: https://doi.org/10.1109/itsim.2008.4632063spa
dc.relation.referencesA. Ghosh, M. Prakash, S. Pradhan, and S. Banerjee, “A comparison among PID, sliding mode and internal model control for a buck converter,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2014. [Online]. Available: https://doi.org/10.1109%2Fiecon.2014.7048624spa
dc.relation.referencesA. T. Azar and F. E. Serrano, “Robust IMC–PID tuning for cascade control systems with gain and phase margin specifications,” Neural Computing and Applications, vol. 25, no. 5, pp. 983–995, Mar. 2014. [Online]. Available: https://doi.org/10.1007/s00521-014-1560-xspa
dc.relation.referencesOP4510 Simulator, OPAL-RT Technologies, 7 2015. [Online]. Available: https://blob.opal-rt.com/medias/L00161_0124.pdfspa
dc.relation.referencesHV Floating MOS-Gate Driver ICs, International Rectifier, 3 2007. [Online]. Available: https://www.mouser.in/pdfDocs/HVFloatingMOS-GateDriverICs.pdfspa
dc.relation.referencesM. Oswal, J. Paul, and R. Zhao, “A comparative study of lithium-ion batteries,” Storage systems for renewables, 2015.spa
dc.relation.referencesHIGH CAPACITY K2B12V7EB ENERGY MODULE, K2 Energy, 4 2016, rev. 3.spa
dc.relation.referencesP. Sharma and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Conversion and Management, vol. 51, no. 12, pp. 2901–2912, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2010.06.031spa
dc.relation.referencesM. Mastragostino, C. Arbizzani, and F. Soavi, “Polymer-based supercapacitors,” Journal of Power Sources, vol. 97–98, pp. 812 – 815, 2001, proceedings of the 10th International Meeting on Lithium Batteries. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378775301006139spa
dc.relation.referencesJ. Pascual, I. S. Martin, A. Ursua, P. Sanchis, and L. Marroyo, “Implementation and control of a residential microgrid based on renewable energy sources, hybrid storage systems and thermal controllable loads,” in 2013 IEEE Energy Conversion Congress and Exposition. IEEE, Sep. 2013. [Online]. Available: https://doi.org/10.1109/ecce.2013.6646995spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalAlmacenamiento de energíaspa
dc.subject.proposalOPAL-RT.eng
dc.subject.proposalHardware in-the-loopeng
dc.subject.proposalGestión de energíaspa
dc.subject.proposalReal-time simulationeng
dc.subject.proposalConvertidores de potenciaspa
dc.subject.proposalControladoresspa
dc.subject.proposalControllerseng
dc.subject.proposalPower converterseng
dc.subject.proposalSimulación en tiempo realspa
dc.subject.proposalHardware in-the-loopspa
dc.subject.proposalEnergy managementeng
dc.subject.proposalOPAL-RTspa
dc.subject.proposalEnergy storageeng
dc.titleControl de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de microrredes residencialesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1096951655.2020.pdf
Tamaño:
10.09 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: