Efecto de la restricción proteica como modulador de la respuesta inmune del Tracto gastrointestinal de ratones BALB/c infectados con Leishmania infantumntum

dc.contributor.advisorUmaña Péres, Yadi Adriana
dc.contributor.authorGaitán Albarracín, Felipe Andrés
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2024-05-07T13:31:49Z
dc.date.available2024-05-07T13:31:49Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, mapas, tablasspa
dc.description.abstractLa desnutrición proteica es la causa más frecuente de inmunodeficiencia secundaria que conlleva a alteraciones del sistema inmune innato y adaptativo, generando la colonización y proliferación de agentes patogénicos, convirtiéndose en uno de los principales factores de riesgo para el desarrollo de formas clínicas de leishmania visceral (LV). Usando como modelo biológico ratones BALB/c, nuestro grupo de investigación mostró que animales sometidos a restricción proteica e infección con L. infantum, presentan graves atrofias en órganos linfoides, alteraciones en las subpoblaciones de linfocitos T y en niveles de expresión de factores quimiotácticos en timo y bazo. Esas alteraciones sugieren que una precondición de desnutrición proteica afecta la respuesta inmune frente a L. infantum, modificando la migración de células T y la capacidad de controlar la proliferación de parásitos. Aunque un patrón diseminación y respuesta inmune órgano especifica aún no ha sido claramente elucidado para el tracto gastrointestinal, algunos estudios reportan la aparición de estos parásitos en mucosa intestinal. Nuestro objetivo fue evaluar la influencia de la restricción proteica en la respuesta inmune en tracto gastrointestinal de ratones BALB/c frente a la infección con L. infantum, observando como la infección y desnutrición generaron alteraciones inmunes en función del reclutamiento linfocitario tisular, alteraciones estructurales del tejido intestinal y alteraciones en la respuesta inmune adaptativa celular mediada por citoquinas y humoral a través de la secreción de Inmunoglobulina A de forma diferencial para el intestino delgado y grueso. (Texto tomado de la fuente)spa
dc.description.abstractProtein malnutrition is the most frequent cause of secondary immunodeficiency that leads to alterations of the innate and adaptive immune system, generating the colonization and proliferation of pathogenic agents, becoming one of the main risk factors for the development of clinical forms of visceral leishmania (LV). Using BALB/c mice as a biological model, our research group showed that animals subjected to protein restriction and infection with L. infantum present severe atrophies in lymphoid organs, alterations in T lymphocyte subpopulations and in expression levels of chemotactic factors in thymus and spleen. These alterations suggest that a precondition of protein malnutrition affects the immune response against L. infantum, modifying the migration of T cells and the ability to control the proliferation of parasites. Although a pattern of dissemination and organ-specific immune response has not yet been clearly elucidated for the gastrointestinal tract, some studies report the appearance of these parasites in the intestinal mucosa. Our objective was to evaluate the influence of protein restriction on the immune response in the gastrointestinal tract of BALB/c mice against infection with L. infantum, observing how infection and malnutrition generated immune alterations based on tissue lymphocyte recruitment, structural alterations of the intestinal tissue and alterations in the cellular adaptive immune response mediated by cytokines and humoral through the secretion of Immunoglobulin A differentially for the small and large intestine.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Bioquímicaspa
dc.description.researchareaEje GH/IGF-I y Nutriciónspa
dc.format.extentxii, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86037
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.references1. Antinori, S., Schifanella, L., Corbellino, M., Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis, 2012. 31(2): p. 109-18.spa
dc.relation.references2. Cecilio, P., et al., Deception and manipulation: the arms of leishmania, a successful parasite. Front Immunol, 2014. 5: p. 1-16.spa
dc.relation.references3. McGwire, B.S., Satoskar, A. R., Leishmaniasis: clinical syndromes and treatment. QJM, 2014. 107(1): p. 7-14.spa
dc.relation.references4. Lima Maciel, B.L., Lacerda, H. G., Queiroz, J. W., Galvão, J., Pontes, N. N., Dimenstein, R., McGowan,S. E., Pedrosa, L. F. C., and Jerônimo, S. M. B., Association of Nutritional Status with the Response to Infection with Leishmania chagasi. Am. J. Trop. Med. Hyg., 2008. 79(4): p. 591–598.spa
dc.relation.references5. Cuervo, E.S., Losada, B. M., Umana P. A., Porrozzi, R., Saboia, V. L., Miranda,L., Morgado, F. N., Menezes, R. C., Sanchez G. M., Cuervo, P., T-cell populations and cytokine expression are impaired in thymus and spleen of protein malnourished BALB/c mice infected with Leishmania infantum. PLoS One, 2014. 9(12): p. e114584.spa
dc.relation.references6. Schaible, U.E., Kaufmann, S. H., Malnutrition and infection: complex mechanisms and global impacts. PLoS Med, 2007. 4(5): p. e115.spa
dc.relation.references7. Borelli, P., Mariano, M., and Borojevic, R., Protein Malnutrition : Effect On Myeloid Cell Production And Mobilization Into Inflammatory Reactions In Mice. Nutrition Research, 1995. 15(10): p. 1477-1485.spa
dc.relation.references8. Losada, B.M., Umaña, P. A., Cuervo, E. S., Berbert, L. R., Porrozzi,R., Morgado, N.F., Mendes-daCruz, A. D., Savino, W., Gómez, S. M., and Cuervo, P., Protein malnutrition promotes dysregulation of molecules involved in T cell migration in the thymus of mice infected with Leishmania infantum. Scientific RepoRts 2017. 7(45991): p. 1-13.spa
dc.relation.references9. Worbs, T., Bode, U., Sheng Yan, S., Hoffmann, M. W., Hintzen, G., Bernhardt, G., Förster, R., and Pabst, O., Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. JEM, The Rockefeller University Press 2006. 203(3): p. 519–527.spa
dc.relation.references10. Iweala, O.I., Nagler C. R., Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunological Reviews 2006. 213: p. 82–100.spa
dc.relation.references11. Meleney, H.E., The Histopathology of Kala-Azar in the Hamster, Monkey, and Man. Am J Pathol, 1925. 1(2): p. 147-168.spa
dc.relation.references12. Barati, M., Sharifi, I., Daie Parizi, M., and M. Fasihi Harandi, Bacterial infections in children with visceral leishmaniasis: observations made in Kerman province, southern Iran, between 1997 and 2007. Ann Trop Med Parasitol, 2008. 102(7): p. 635-41.spa
dc.relation.references13. Kleber, G.L., Tuon, F. F., Duarte, M. I. S., Maia, G. M., Matos, P., de Oliveira Ramos, A. M., and Nicodemo, A. C., Cytokine expression in the duodenal mucosa of patients with visceral leishmaniasis. Revista da Sociedade Brasileira de Medicina Tropical 2010. 43(4): p. 393-395.spa
dc.relation.references14. Adamama-Moraitou, K.K., Rallis, T. S., Koytinas, A. F., Tontis, D., Plevraki, K., and Kritsepi, M., Asymptomatic Colitis In Naturally Infected Dogs With Leishmania Infantum: A Prospective Study. Am. J. Trop. Med. Hyg., 2007. 76(1): p. 53–57.spa
dc.relation.references15. P. C. Sen Gupta, et al., Avitaminosis in Kala-Azar: Preliminary Observations. Ind Med Gaz. , 1952. 87(10): p. 444–448.spa
dc.relation.references16. Quinnell, R.J. and O. Courtenay, Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology, 2009. 136(14): p. 1915-34.spa
dc.relation.references17. Akhoundi, M., et al., A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis, 2016. 10(3): p. e0004349.spa
dc.relation.references18. Steverding, D., The history of leishmaniasis. Parasit Vectors, 2017. 10(1): p. 82.spa
dc.relation.references19. Volf*, A.D.a.P., Leishmania development in sand flies: parasite-vector interactions overview. Dostálová and Volf Parasites & Vectors 2012. 5(5): p. 276.spa
dc.relation.references20. Carlos E. Muskus, M.M.V., Metaciclogénesis: un proceso fundamental en la biología de Leishmania. Biomédica: revista del Instituto Nacional de Salud, 2002 22(2): p. Biomédica: revista del Instituto Nacional de Salud.spa
dc.relation.references21. C Bogdan 1, N.D., R Döring, M Röllinghoff, A Diefenbach, M G Rittig, Fibroblasts as Host Cells in Latent Leishmaniosis. J Exp Med., 2000. 191(12): p. 2121–2129.spa
dc.relation.references22. Kaye, P. and P. Scott, Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol, 2011. 9(8): p. 604-15.spa
dc.relation.references23. WHO, Weekly epidemiological record.spa
dc.relation.references24. Alvar, J., et al., Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012. 7(5): p. e35671.spa
dc.relation.references25. McCall, L.I., W.W. Zhang, and G. Matlashewski, Determinants for the development of visceral leishmaniasis disease. PLoS Pathog, 2013. 9(1): p. e1003053.spa
dc.relation.references26. Mathers, C.D., M. Ezzati, and A.D. Lopez, Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis, 2007. 1(2): p. e114.spa
dc.relation.references27. Pavli, A. and H.C. Maltezou, Leishmaniasis, an emerging infection in travelers. Int J Infect Dis, 2010. 14(12): p. e1032-9.spa
dc.relation.references28. P.D., R., Climate change: impact on the epidemiology and control of animal diseases. Revue Scientifique et Technique, 2008. 27(2): p. 399-412.spa
dc.relation.references29. Purse, B.V., et al., How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS One, 2017. 12(10): p. e0183583.spa
dc.relation.references30. Peacock, C.S., et al., Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet, 2007. 39(7): p. 839-47.spa
dc.relation.references31. William H Markle 1 and K. Makhoul, Cutaneous leishmaniasis: recognition and treatment. Am Fam Physician, 2004. 69(6): p. 1455-60.spa
dc.relation.references32. Valdir Sabbaga Amato a, Heitor Franco de Andrade Jr b, and M.I.S.D. c, Mucosal leishmaniasis: in situ characterization of the host inflammatory response, before and after treatment. Acta Tropica 2003. 85: p. 39-49.spa
dc.relation.references33. McGwire, B.S. and A.R. Satoskar, Leishmaniasis: clinical syndromes and treatment. QJM, 2014. 107(1): p. 7-14.spa
dc.relation.references34. Salud., O.P.d.l., Leishmaniasis: informe epidemiológico de las Américas [Internet]. Washington, D.C.: OPS, 2021. 10.spa
dc.relation.references35. Salud., I.N.d., Boletín Epidemiológico Semanal. Diciembre 2019. Reporte No. 41. 2019.spa
dc.relation.references36. Salud., I.N.d., Boletín Epidemiológico Semanal. Diciembre 2021. Reporte No. 52. 2021.spa
dc.relation.references37. Salgado-Almario, J., C.A. Hernandez, and C.E. Ovalle, Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 2019. 39(2): p. 278-290.spa
dc.relation.references38. Khadem, F. and J.E. Uzonna, Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol, 2014. 9(7).spa
dc.relation.references39. Antinori, S., L. Schifanella, and M. Corbellino, Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis, 2012. 31(2): p. 109-118.spa
dc.relation.references40. Kumar, R. and S. Nylen, Immunobiology of visceral leishmaniasis. Front Immunol, 2012. 3: p. 251.spa
dc.relation.references41. Rodrigues, V., et al., Regulation of immunity during visceral Leishmania infection. Parasit Vectors, 2016. 9: p. 118.spa
dc.relation.references42. Gupta, G., S. Oghumu, and A.R. Satoskar, Mechanisms of immune evasion in leishmaniasis. Adv Appl Microbiol, 2013. 82: p. 155-184.spa
dc.relation.references43. Asad, M.D. and N. Ali, Dynamicity of Immune Regulation during Visceral Leishmaniasis. Proceedings of the Indian National Science Academy, 2014. 80(2): p. 247.spa
dc.relation.references44. Vieira de Morais, C.G., et al., The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. Biomed Res Int, 2015. 2015: p. 324915.spa
dc.relation.references45. Vannier-Santos, M.A., A. Martiny, and W. de Souza, Cell Biology of Leishmania spp.: Invading and Evading. Current Pharmaceutical Design, 2002. 8(4): p. 297-318.spa
dc.relation.references46. Mougneau, E., F. Bihl, and N. Glaichenhaus, Cell biology and immunology of Leishmania. Immunological Reviews, 2011. 240 p. 286-296.spa
dc.relation.references47. Stanley, A.C. and C.R. Engwerda, Balancing immunity and pathology in visceral leishmaniasis. Immunology and Cell Biology 2007. 85: p. 138-147.spa
dc.relation.references48. Wilson, M.E., S.M. Jeronimo, and R.D. Pearson, Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog, 2005. 38(4): p. 147-160.spa
dc.relation.references49. Gollob, K.J., et al., Immunoregulatory mechanisms and CD4-CD8- (double negative) T cell subpopulations in human cutaneous leishmaniasis: a balancing act between protection and pathology. Int Immunopharmacol, 2008. 8(10): p. 1338-43.spa
dc.relation.references50. Nylen, S. and D. Sacks, Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol, 2007. 28(9): p. 378-384.spa
dc.relation.references51. Faleiro, R.J., et al., Immune regulation during chronic visceral leishmaniasis. PLoS Negl Trop Dis, 2014. 8(7): p. e2914.spa
dc.relation.references52. Diro, E., et al., Atypical manifestations of visceral leishmaniasis in patients with HIV in north Ethiopia: a gap in guidelines for the management of opportunistic infections in resource poor settings. The Lancet Infectious Diseases, 2015. 15(1): p. 122-129.spa
dc.relation.references53. Mowat, A.M. and W.W. Agace, Regional specialization within the intestinal immune system. Nature Reviews - Immunology, 2014. 14: p. 667-685.spa
dc.relation.references54. Steenwinckel, V., et al., IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J Immunol, 2009. 182(8): p. 4737-43.spa
dc.relation.references55. Ouellette, A.J., Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol, 2010. 26(6): p. 547-553.spa
dc.relation.references56. Bain, C.C. and A.M. Mowat, Macrophages in intestinal homeostasis and inflammation. Immunological Reviews 2014. 260: p. 102–117.spa
dc.relation.references57. Maynard, C.L., et al., Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol, 2007. 8(9): p. 931-941.spa
dc.relation.references58. Veenbergen, S. and J.N. Samsom, Maintenance of small intestinal and colonic tolerance by IL-10-producing regulatory T cell subsets. Curr Opin Immunol, 2012. 24(3): p. 269-276.spa
dc.relation.references59. Mabbott, N.A., et al., Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol, 2013. 6(4): p. 666-77.spa
dc.relation.references60. Zeissig, S. and R.S. Blumberg, Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol, 2013. 25(6): p. 690-6.spa
dc.relation.references61. Aldair J.W, et al., Unusual Small Intestine Inflamatory Lesions in a Dog Whith Visceral Leishmaniasis. Brazilian Journal of Veterinary Pathology, 2013. 6(1): p. 19- 25.spa
dc.relation.references62. F. Purchiaroni, et al., The role of intestinal microbiota and the immune system. European Review for Medical and Pharmacological Sciences, 2013. 17: p. 323-333.spa
dc.relation.references63. Cornes, J.S., Number, size, and distribution of Peyer's patches in the human small intestine. Part I The development of Peyer's patches. Gut, 1965. 6: p. 225 - 229.spa
dc.relation.references64. J.L. Gonzailez, et al., Intestinal amyloidosis in hamsters with visceral leishmaniasis. British Journal of Experimental Pathology, 1986. 67: p. 353-360.spa
dc.relation.references65. Pinto, A.J., et al., Histopathological and parasitological study of the gastrointestinal tract of dogs naturally infected with Leishmania infantum. Acta Vet Scand, 2011. 53: p. 67.spa
dc.relation.references66. Figueiredo, M.M., et al., Expression of regulatory T cells in jejunum, colon, and cervical and mesenteric lymph nodes of dogs naturally infected with Leishmania infantum. Infect Immun, 2014. 82(9): p. 3704-12.spa
dc.relation.references67. Silva, D.T., et al., Correlation study and histopathological description of intestinal alterations in dogs infected with Leishmania infantum. Rev Bras Parasitol Vet, 2016. 25(1): p. 24-36.spa
dc.relation.references68. FAO, F.y.P., El estado de la inseguridad alimentaria en el mundo 2015. Cumplimiento de los objetivos internacionales para 2015 en relación con el hambre: balance de los desiguales progresos. 2015.spa
dc.relation.references69. Black, R.E., et al., Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet, 2008. 371(9608): p. 243-260.spa
dc.relation.references70. FAO, Panorama de la Inseguridad Alimentaria en América Latina y el Caribe. 2015.spa
dc.relation.references71. Mejía Naranjo, W. and M. Sánchez Gomez, Protein malnutrition up-regulates growth hormone receptor expression in rat splenic B lymphocytes. Biomédica 2004. 24: p. 403-412.spa
dc.relation.references72. Malafaia, G., Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol, 2009. 31(10): p. 587-96.spa
dc.relation.references73. Mejia Naranjo, W., et al., Protein Calorie Restriction Affects Nonhepatic IGF-I Production and the Lymphoid System: Studies Using the Liver-Specific IGF-I Gene-Deleted Mouse Model. Endocrinology 2002. 143(6): p. 2233–2241.spa
dc.relation.references76. Hughes, S. and P. Kelly, Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol, 2006. 28(11): p. 577-88.spa
dc.relation.references77. Howes, A., et al., Differential Production of Type I IFN Determines the Reciprocal Levels of IL-10 and Proinflammatory Cytokines Produced by C57BL/6 and BALB/c Macrophages. J Immunol, 2016. 197(7): p. 2838-53.spa
dc.relation.references78. Grover, Z. and L.C. Ee, Protein energy malnutrition. Pediatr Clin North Am, 2009. 56(5): p. 1055-68.spa
dc.relation.references79. Evering, T. and L.M. Weiss, The immunology of parasite infections in immunocompromised hosts. Parasite Immunol, 2006. 28(11): p. 549-565.spa
dc.relation.references80. Ibrahim MK, et al., The Malnutrition-Related Increase in Early Visceralization of Leishmania donovani Is Associated with a Reduced Number of Lymph Node Phagocytes and Altered Conduit System Flow. PLoS Negl Trop Dis 2013. 7(8): p. e2329.spa
dc.relation.references81. Barragána, L.M., Adriana Umaña, P.A., Vega, R. A., Escobar, C. S., Renata Azevedo, R., Morgado, F.,de Frias-Carvalho, V., Aquino, P., Carvalho, C. P., Porrozzia, R., Gómez, S. M., Padron, G., Cuervo, P., Proteomic profiling of splenic interstitial fluid of malnourished mice infected with Leishmania infantum reveals defects on cell proliferation and pro-inflammatory response. Journal of Proteomics 2019. 208: p. 103492-14.spa
dc.relation.references82. Prevatto, P.J., Torres,C.R., Diaz,L.B., Silva,R.M.P.,Martins, A.M., and Carvalho,F. V., Antioxidant Treatment Induces Hyperactivation of the HPA Axis by Upregulating ACTH Receptor in the Adrenal and Downregulating Glucocorticoid Receptors in the Pituitary. Hindawi Oxidative Medicine and Cellular Longevity 2017. 2017: p. 1-10.spa
dc.relation.references83. Gómez, F., Galvan, R. R., Frenk, S., Muñoz, J. C., Chávez, R., and Vázquez, J., Mortality in second and third degree malnutrition. Bull World Health Organ, 2000. 78(10): p. 1275–1280.spa
dc.relation.references84. Anstead, G.M., Chandrasekar, B., Zhao, W., Yang, J., Perez, L. E., and Melby, P. C., Malnutrition Alters the Innate Immune Response and Increases Early Visceralization following Leishmania donovani Infection. Infection And Immunity, 2001. 69(8): p. 4709–4718.spa
dc.relation.references85. Pérez, M., Rojas, C., Hernández, O., Díaz, S., Alarcón, M., Zulay Maizo de Segnini, Z.,Loredana Goncalves, L., Sánchez, M., Determinación de la especificidad de IgA sérica producida en respuesta a antígenos de Leishmania (Leishmania) mexicana en leishmaniosis murina. Invest Clin 2011. 53(2): p. 216 - 229.spa
dc.relation.references86. Marshall, S., Protein-energy malnutrition in the rehabilitation setting: Evidence to improve identification. Maturitas 2016. 86: p. 77-85.spa
dc.relation.references87. Attia, S., Feenstra, M., Swain, N., Cuesta, M., and Bandsma, R. H. J., Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition. JPGN, 2017. 65(5): p. 491-495.spa
dc.relation.references88. Savino, W., The thymus gland is a target in malnutrition. European Journal of Clinical Nutrition 2002. 56: p. 46-49.spa
dc.relation.references89. Rytter, M.J.H., Kolte, L., Briend, A., Friis, H., Christensen, V. B., The Immune System in Children with Malnutrition—A Systematic Review. PLoS ONE 2014. 9(8).spa
dc.relation.references90. Nascimento, M.S.L., Carregaro, V., Lima-Júnior, D. S., Costa, D. L., Ryffel, B., Duthie, D. S., de Jesus, A.,Pacheco de Almeida, R., and Santana da Silva, J., Interleukin 17A Acts Synergistically With Interferon γ to Promote Protection Against Leishmania infantum Infection. The Journal of Infectious Diseases, 2015. 211: p. 1015–26.spa
dc.relation.references91. Maurya, R., Bhattacharya, P., Dey, R., Nakhasi, H. L., Leptin Functions in Infectious Diseases. Front Immunol, 2018. 9: p. 2741.spa
dc.relation.references92. Soares, R.O., Oliveira, L. M., Marchini, J. S., Rodrigues, A. J., Elias, L. L., Almeida, S. S., Effects of early protein malnutrition and environmental stimulation on behavioral and biochemical parameters in rats submitted to the elevated plus-maze test. Nutr Neurosci, 2013. 16(3): p. 104-12.spa
dc.relation.references93. Maurya, R., Bhattacharya, P., Ismail, N., Dagur, P. K., Joshi, A. B., Razdan, K., Philip McCoy J. P. Jr., Ascher, J., Dey, R., and Nakhasi, H. L., Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice. Am. J. Trop. Med. Hyg., 2016. 95(1): p. 109–119.spa
dc.relation.references94. Khadem, F., and Uzonna, J. E., Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol., 2014. 9(7): p. 901-15.spa
dc.relation.references95. Faleiro, R.J., Kumar, R., Hafner, L. M., Engwerda, C. R., Immune regulation during chronic visceral leishmaniasis. PLoS Negl Trop Dis, 2014. 8(7): p. e2914.spa
dc.relation.references96. Rodrigues, V., Cordeiro-da-Silva, A., Laforge, M., Silvestre, R., Estaquier, J., Regulation of immunity during visceral Leishmania infection. Parasit Vectors, 2016. 9: p. 118-31.spa
dc.relation.references97. Pinto, A.J.W., Figueiredo, M. M., Ferreira, R. A., Caliari, M. V., Tafuri, L. W., Unusual Small Intestine Inflammatory Lesions in a Dog with Visceral Leishmaniasis. Brazilian Journal of Veterinary Pathology, 2013. 6(1): p. 19-25.spa
dc.relation.references98. Gonzailez, J.L., Insa, F., Novoa, C., and Pizarro, M., Intestinal amyloidosis in hamsters with visceral leishmaniasis. Br. J. exp. Path. , 1986. 67: p. 353-360.spa
dc.relation.references99. Amann, K., Bogdan, C., Harrer, T., and Rech, J., Renal Leishmaniasis as Unusual Cause of Nephrotic Syndrome in an HIV Patient. J Am Soc Nephrol, 2012. 23: p. 586–590.spa
dc.relation.references100. Alwazzeh, M.J., Alhashimalsayed, Z. H., Visceral Leishmaniasis and Glomerulonephritis: A Case Report. Saudi J Med Med Sci 2019. 7: p. 40-3.spa
dc.relation.references101. Bispo, A.J.B., Almeida, M. L. D., de Almeida, R. P., Bispo Neto, J., de Oliveira Brito A. V., Franc¸a, C. M., Pulmonary involvement in human visceral leishmaniasis: Clinical and tomographic evaluation. PLoS ONE 2020. 15(1): p. 1-12.spa
dc.relation.references102. Alves, G.B.B., Pinho, F. A., Silva, S. M. M. S., Cruz, M. S. P., and Costa, F. A. L. , Cardiac and pulmonary alterations in symptomatic and asymptomatic dogs infected naturally with Leishmania (Leishmania) chagasi. Braz J Med Biol Res, 2010. 43(3): p. 310-315.spa
dc.relation.references103. Silva, D.T., Neves, M. F., de Queiroz, N. M., Spada, J. C., Alves, M. L., Floro e Silva, M., Coelho, W. M., Panosso, A. R., Noronha Junior, A. C., Starke-Buzetti, W. A., Correlation study and histopathological description of intestinal alterations in dogs infected with Leishmania infantum. Rev Bras Parasitol Vet, 2016. 25(1): p. 24-36.spa
dc.relation.references104. Figueiredo, M.M., Deoti, B., Amorim, I. F., Pinto, A. J., Moraes, A., Carvalho, C. S., da Silva, S. M., de Assis, A. C., de Faria, A. M., Tafuri, W. L., Expression of regulatory T cells in jejunum, colon, and cervical and mesenteric lymph nodes of dogs naturally infected with Leishmania infantum. Infect Immun, 2014. 82(9): p. 3704-12.spa
dc.relation.references105. Pinto, A.J., Figueiredo, M. M., Silva, F. L., Martins, T., Michalick, M. S., Tafuri, W. L., Tafuri, W. L., Histopathological and parasitological study of the gastrointestinal tract of dogs naturally infected with Leishmania infantum. Acta Vet Scand, 2011. 53: p. 53-67.spa
dc.relation.references106. Opazo, M.C., Ortega-Rocha, E. M., Coronado-Arrazola, I., Bonifaz, L. C., Boudin, H., Neunlist, M., Bueno, S. M., Kalergis, A. M., Riedel, C. A., Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol, 2018. 9: p. 432.spa
dc.relation.references107. Dayakar, A., Chandrasekaran, S., Kuchipudi, S., and Kalangi S., Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front. Immunol, 2019. 10(670).spa
dc.relation.references108. Murray, H., Flanders, K., Donaldson, D., Sypek, J., Gotwals, P., Liu, L., and Ma, X., Antagonizing Deactivating Cytokines To Enhance Host Defense and Chemotherapy in Experimental Visceral Leishmaniasis. Infection And Immunity, 2005. 73(7): p. 3903–3911.spa
dc.relation.references109. Adjei-Frempong, M., Minkah, B., Quaye, L., Acquah, S., Opoku, A., and Imrana, M., Evaluation of changes in pro-inflammatory cytokines in malnourished children: A Ghanaian case study. Journal of Medical and Biomedical Sciences 2012. 1(3): p. 21-28.spa
dc.relation.references110. Maran, N., Gomes, P. S., Freire-de-Lima, L., Freitas, E. O., Freire-de-Lima, C. G., Morrot, A., Host resistance to visceral leishmaniasis: prevalence and prevention. Expert Rev Anti Infect Ther, 2016. 14(4): p. 435-42.spa
dc.relation.references111. Gantt, K., Schultz-Cherry, S., Rodriguez, N., Jeronimo, S., Nascimento, E., Goldman, T., Recker, T., Miller, M., and Wilson, M., Activation of TGF- β by Leishmania chagasi : Importance for Parasite Survival in Macrophages. J Immunol March 2003. 170(5): p. 2613-2620.spa
dc.relation.references112. Rolão, N., Cortes, S., Gomes-Pereira, S., Campino, L., Leishmania infantum: Mixed T-helper-1/T-helper-2 immune response in experimentally infected BALB/c mice. Experimental Parasitology 2007. 115: p. 270–276.spa
dc.relation.references113. Pérez-Cabezas, B., Cecílio, P., Gaspar, T.B., Gärtner, F., Vasconcellos, R., and Cordeiro-da-Silva, A. , Understanding Resistance vs. Susceptibility in Visceral Leishmaniasis Using Mouse Models of Leishmania infantum Infection. Front. Cell. Infect. Microbiol, 2019. 9(30).spa
dc.relation.references114. Das, V., Bimal, S., Siddiqui, N., Kumar, A., Pandey, K., Sinha, S., Conversion of asymptomatic infection to symptomatic visceral leishmaniasis: A study of possible immunological markers. PLoS Negl Trop Dis 2020. 14(6): p. e0008272.spa
dc.relation.references115. Sirisinha, S., Suskind, R., Edelman, R., Asvapaka, C., and Olson, R.E., Secretory and Serum IgA in Children With Protein-Calorie Malnutrition. Pediatrics 1975. 55(2): p. 166-170.spa
dc.relation.references116. McMurray, D.N., Rey, H., Casazza, L.J., Watson, R.R, Effect of moderate malnutrition on concentrations of immunoglobulins and enzymes in tears and saliva of young Colombian children. The American Journal of Clinical Nutrition, 1877. 30(12): p. 1944–1948.spa
dc.relation.references117. Mcgee, D.W., and Mcmurray, D.N., The effect of protein malnutrition on the IgA immune response in mice. Immunology 1988. 63: p. 25-29.spa
dc.relation.references118. Macpherson, A.J., Yilmaz, B., Limenitakis, J. P., Ganal-Vonarburg, S. C., IgA Function in Relation to the Intestinal Microbiota. Annu Rev Immunol, 2018. 36: p. 359-381.spa
dc.relation.references119. Yel, L., Selective IgA deficiency. J Clin Immunol, 2010. 30(1): p. 10-6.spa
dc.relation.references120. Green, F., and Heyworth, B., Immunoglobulin-containing cells in jejunal mucosa of children with protein-energy malnutrition and gastroenteritis. Archives of Disease in Childhood, 1980. 55: p. 380-383.spa
dc.relation.references121. Reddy, V., Raghuramulu, N., and Bhaskaram, C., Secretory IgA in protein-calorie malnutrition. Archives of Disease in Childhood, 1976. 51: p. 871-4.spa
dc.relation.references122. Amaral, J.F., Foschetti, D.A., Assis, F.A., Menezes,J.S., Vaz N.M., and Faria,A.M.C.,, Immunoglobulin production is impaired in protein-deprived mice and can be restored by dietary protein supplementation. Brazilian Journal of Medical and Biological Research 2006. 39: p. 1581-1586.spa
dc.relation.references123. Korpe, P.S., Petri, W. A., Jr., Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med, 2012. 18(6): p. 328-36.spa
dc.rightsDerechos reservados al autor, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsDeficiencia de Proteínaspa
dc.subject.decsProtein Deficiencyeng
dc.subject.decsLeishmaniaspa
dc.subject.decsTracto Gastrointestinaleng
dc.subject.decsGastrointestinal Tractspa
dc.subject.proposalIgAspa
dc.subject.proposalLeishmania infantumspa
dc.subject.proposalDuodenospa
dc.subject.proposalGUTeng
dc.subject.proposalInflamaciónspa
dc.subject.proposalMalnutriciónspa
dc.subject.proposalleishmaniasis visceralspa
dc.titleEfecto de la restricción proteica como modulador de la respuesta inmune del Tracto gastrointestinal de ratones BALB/c infectados con Leishmania infantumntumspa
dc.title.translatedEffect of protein restriction as a modulator of the immune response of the gastrointestinal tract of BALB/c mice infected with Leishmania infantumeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80865742.2024.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorados en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: