Modelo de coordinación para la actividad autorregulada en redes definidas por software

dc.contributor.advisorToro García, Nicolás
dc.contributor.authorAristizábal Quintero, Luz Angela
dc.contributor.cvlacAristizábal Quintero, Luz Angela [0000219169]spa
dc.contributor.orcidAristizábal Quintero, Luz Angela [0000-0003-4510-9029]spa
dc.contributor.researchgroupGrupo de Investigación en Recursos Energéticos Girespa
dc.date.accessioned2023-02-13T14:42:53Z
dc.date.available2023-02-13T14:42:53Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractEn esta tesis se estudian, adaptan y aplican dos prometedoras áreas de investigación influyentes en la automatización de Redes de Datos: las Redes definidas por software (Software Definid Network - SDN) y Procesamiento de señales en grafos (Graph Signal Processing -GSP). Este documento presenta un conjunto de estrategias, soportadas por la teoría de procesamiento de señales en grafos, para la autorregulación del comportamiento ante eventos de anormalidad en una red definida por software (SDN) y para la coordinación entre el conjunto de procesos que interactúan en la reprogramación de la Red Definida por Software para lograr un estado funcional acorde a parámetros de normalidad para la red. Las contribuciones y hallazgos más relevantes de esta tesis son los siguientes: 0) Se establece un puente referencial de aplicación entre las áreas de investigación SDN y GSP; 1) se propone e implementa un monitor multicapa, basado en la teoría de procesamiento de señales en grafos que explota las características inherentes a las Redes Definidas por Software (SDN); 2) se propone e implementa una estrategia de autorregulación del direccionamiento de tráfico en una SDN ante la presencia de anomalías, basado en la técnica de aprendizaje por refuerzo (Reinforcement Learning – RL) y en el procesamiento de señales en grafos (GSP); 3) Se propone e implementa una técnica de coordinación de las actividades inherentes a los procesos de adaptación sobre las SDN; 4) se presenta un esquema de conectividad de las herramientas de desarrollo de software que actualmente son utilizadas en procesos de automatización de redes de datos. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, two promising research areas that are influential in the automation of Data Networks are studied, adapted and applied: Software Defined Networks (SDN) and Graph Signal Processing (GSP). This document presents a set of strategies, supported by the theory of signal processing in graphs, for the self-regulation of behavior in presence of abnormality events in a network and for the coordination between the set of processes that interact in the reprogramming of the Software Defined Network to achieve a functional state according to normality parameters for the network. The most relevant contributions and findings of this thesis are the following: 0) A referential application bridge is established between the SDN and GSP research areas 1) A multilayer monitor is proposed and implemented, based on the theory of signal processing in graphs that it exploits the characteristics inherent to Software Defined Networks (SDN); 2) a self-regulation strategy for traffic routing in an SDN in the presence of anomalies is proposed and implemented, based on the reinforcement learning technique (Reinforcement Learning - RL) and on graph signal processing (GSP). 3) A coordination technique for the activities inherent to the adaptation processes on SDN is proposed and implemented. 4) a connectivity scheme of the software development tools that are currently used in data network automation processes is presented.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.degreenameAutospa
dc.description.researchareaRedes de Datos y Redes Industrialesspa
dc.format.extent90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83450
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesACI. (s.f.). ACI policy Model.Recuperado de https://sandboxapicdc.cisco.com/help/content/index.html#c_about-cisco-aci.html.spa
dc.relation.referencesAdami, D. (2015). A Network Control Application enabling Software-defined Quality of Service. IEEE Xplore.spa
dc.relation.referencesAdrichem, N.V. Doerr, C.(2014) OpenNetMon: Network Monitoring in Openflow Software-Defined Networks. IEEE Network Operations and Management Symposium (NOMS), IEEE Xplore, 1-8.spa
dc.relation.referencesAkash, S., Varalakshmi, P., & Somasundaram, V. (2018). Congestion Control Mechanism in Software Defined Networking by Traffic Rerouting. IEEE Xplore.spa
dc.relation.referencesRyan, G., & Tischer, J. (2017). Programming Automatic Cisco Networks. Cisco Press.spa
dc.relation.referencesACI. (n.d.). ACI policy Model. https://sandboxapicdc.cisco.com/help/content/index.html#c_about-cisco-aci.html.spa
dc.relation.referencesAdami, D., & Donatini, L. (2015). A Network Control Application enabling Software-defined Quality of Service. IEEE Xplore.spa
dc.relation.referencesAstuto, B., Mendonca, M., & Nguy, X. (2014). A Survey of Software-Defined Networking: Past, Present. and Future of Programmable Networks. IEEE Communications Surveys and Tutorials 16 (3)., 1617 - 1634.spa
dc.relation.referencesBailey, S., Balsal, D., & Dunbar, L. (2014). SDN Architecture Overview. Open Network Foundation. https://opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf.spa
dc.relation.referencesBalasubramaniam, S., & Botvich, D. (2006). Applying Blood Glucose Homeostatic Model Towards Self-management of IP QoS Provisioned Networks. Autonomic Principles of IP Operations and Management. Springer, pp 84–95.spa
dc.relation.referencesBocaletti, S., Bianconi, G., Criado, R., & Del Genio, C. (2014). The structure and dynamics of multilayer networks. Elsevier. Volume 544, Issue 1, 1-122.spa
dc.relation.referencesCiancarini, P. (1996). Coordination models and languages as software integrators. ACM Computing Surveys, vol. 28, no. 2, 300–.spa
dc.relation.referencesCISCO. (2018). Indice de redes Visuales. https://newsroom.cisco.com/press-release-content?articleId=1955935.spa
dc.relation.referencesHammond, D., Vandergheynst, P., & Gribonw, R. (2019). The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation of Graph Signals. Springer International Publishing, 141-175.spa
dc.relation.referencesHommond, D., Vandergheynst, P., & Gribonw, R. (2011). Wavelets on Graphs via Spectral Graph Theory. Applied and Computational Harmonic Analysis, Elsevier 30 (2), 129–150.spa
dc.relation.referencesIrion, J. (2015). Multiescale Transforms for signal on graph: Method and applications. University of California, Davis.spa
dc.relation.referencesJames, R. K. (2017). Computer Networking: A Top-Down Approach . Pearson.spa
dc.relation.referencesJammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software defined networking: State of the art and research challenges. Computer Networks, vol. 72, 74-98.spa
dc.relation.referencesKathiravelu, P. (2016). Software-Defined Networking-Based Enhancements to Data Quality and QoS in Multi-Tenanted Data Center Clouds. IEEE Xplore.spa
dc.relation.referencesKobayashi, M., Seetharaman, S., & Parulka, G. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks. 61, 151–175.spa
dc.relation.referencesKurose, J. F. (2020). Computer Networking . Pearson.spa
dc.relation.referencesLara, A., & Kolasani , A. (2014). Network Innovation using OpenFlow: A Survey. IEEE Communications Surveys & Tutorials, Vol. 16, No. 3.spa
dc.relation.referencesLatif, Z., Sharif, K., Li, F., & Monjurul, K. (2020). A comprehensive survey of interface protocols for software defined networks. Journal of Network and Computer Applications.spa
dc.relation.referencesLaurençon, H., Ségerie, C.-R., & Lu, J. (2021). Continuous Homeostatic Reinforcement Learning for Self-Regulated Autonomous Agents. Cornell University, https://arxiv.org/abs/2109.06580.spa
dc.relation.referencesLuong, D., Outtagarts, A., & Hebbar, A. (2016). Traffic Monitoring in Software Defined Netwoks Using Opendaylight Controller. Lecture Notes in Computer Science, LNCS, Vol. 10026, Springer., pp 38-48.spa
dc.relation.referencesMa , J., Huang, W., & Segarra, S. (2016). Difusión Filtering of Graph Signal and its Use in Recomendation Systems. IEEExplore.spa
dc.relation.referencesManar, J., Taranpreet, S., & Abdallah, S. (2014). Software defined networking: State of the art and research challenges. Computer Network.spa
dc.relation.referencesMartolia, K. A. (2016). Congestion Control Techniques. International Conference on Communication and Signal Processing (ICCSP). IEEE Xplore.spa
dc.relation.referencesMckeown, N., Balakrishnan , G., Parulkar, L., & Peterson, J. (2008). Openflow: Enabling innovation in campus networks. SIGCOMM CCR, Vol. 38, Nro. 2., 69-74.spa
dc.relation.referencesMizuki, O., & Ikegami, A. (2014). Dynamic homeostasis in packet switching networks. International. Society for Adaptive Behavior.spa
dc.relation.referencesN.L.M. van Adrichem, C. D., van Adriechem , N., Doerr, C., & Kuiper, F. (2014). OpenNetMon: Network Monitoring in Openflow Software-Defined Networks. IEEE Network Operations and Management Symposium (NOMS), IEEE Xplore, 1-8.spa
dc.relation.referencesOmicini, A. (2013). Nature-Inspired Coordination Models: Current Status and future trends. ISRN Software Engineering.spa
dc.relation.referencesON-LINE. (2014). Open Flow. https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf.spa
dc.relation.referencesopenflex. (n.d.). OpenFlex vs Openflow. https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html.spa
dc.relation.referencesPérez, D. M. (2018). Administración y seguridad en redes de computadoras. . Alfa-Omega .spa
dc.relation.referencesPerumal, S., & Varalakshmi, S. (2017). Research Confront in Software Defined Networking Environment: A Survey. Springer Communications in Computer and Information Science.spa
dc.relation.referencesPrzemysław Ignaciuk, A. B. (2013). Congestion Control in Data Transmission Networks. Springer.spa
dc.relation.referencesQiang, H., Min, H., Xiangyi, C., & Wang, X. (2020). Prediction for Energy Efficiency Optimization in Software-Defined Networking. IEEE Xplore.spa
dc.relation.referencesRen, C. W., & Yongcan. (2011). Distributed Coordination of multiagent networks. Springer-Verlag.spa
dc.relation.referencesSandryhaila, A., & Moura, J. (2013). Discrete Signal Processing on Graphs. IEEE TRANSACTIONS ON SIGNAL PROCESSING.spa
dc.relation.referencesSevOne. (n.d.). Software Defined Network Monitoring. https://www.sevone.com/wp-content/uploads/2021/04/SDN_Solutions_Guide-1.pdf.spa
dc.relation.referencesShumman, D., Narang, S., Frossard, P., & Ortega, A. (2013). The Emerging Field of Signal Processing On Graphs: Extending High- Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal processing Magazine, 83 – 98.spa
dc.relation.referencesSifakis, J. (2019). Autonomous Systems – An Architectural. In F. C. Michele Loreti, Models, Languages, and Tools (p. 393). Springer Nature .spa
dc.relation.referencesTom De Wolf, T. H. (2006). A Catalogue of Decentralised Coordination Mechanisms for Designing Self-Organising Emergent Applications. Department of Computer Science, K.U.Leuven.spa
dc.relation.referencesVyacheslav Koryachko, D. P. (2017). Analysis of QoS Metrics in Software Defined. IEEE Xplore.spa
dc.relation.referencesWendong, W., Qinglei, Q., Xiangyang, G., & Yanna, H. (2014). Autonomic QoS Management Mechanism in Software Defined Network. IEEE Xplore.spa
dc.relation.referencesWu, J., Yunfeng, P., Meng , S., & Manman , C. (2019). Link Congestion Prediction using Machine Learning. IEEE Xplore.spa
dc.relation.referencesZhang, Y. (2013). An adaptive flow counting method for anomaly detection. proc ACM CoNEXT, pp. 25–30.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.proposalRedes definidas por softwarespa
dc.subject.proposalProcesamiento de señales gráficasspa
dc.subject.proposalAprendizaje por refuerzospa
dc.subject.proposalAutorregulaciónspa
dc.subject.proposalSoftware defined networkseng
dc.subject.proposalGraphical signal processingeng
dc.subject.proposalSelf-regulated.eng
dc.subject.proposalReinforcement learningeng
dc.subject.unescoAnálisis de redesspa
dc.subject.unescoNetwork analysiseng
dc.titleModelo de coordinación para la actividad autorregulada en redes definidas por softwarespa
dc.title.translatedCoordination model for the self-regulated activity of software-defined networkseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleModelo Ecosistémico de Mejoramiento Rural y Construcción de Paz: Instalación de Capacidades Localesspa
oaire.fundernameFinanciado en el marco de la convocatoria Colombia Científicaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
24625353.2022.pdf
Tamaño:
2.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: