Modelo de coordinación para la actividad autorregulada en redes definidas por software
dc.contributor.advisor | Toro García, Nicolás | |
dc.contributor.author | Aristizábal Quintero, Luz Angela | |
dc.contributor.cvlac | Aristizábal Quintero, Luz Angela [0000219169] | spa |
dc.contributor.orcid | Aristizábal Quintero, Luz Angela [0000-0003-4510-9029] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Recursos Energéticos Gire | spa |
dc.date.accessioned | 2023-02-13T14:42:53Z | |
dc.date.available | 2023-02-13T14:42:53Z | |
dc.date.issued | 2022 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | En esta tesis se estudian, adaptan y aplican dos prometedoras áreas de investigación influyentes en la automatización de Redes de Datos: las Redes definidas por software (Software Definid Network - SDN) y Procesamiento de señales en grafos (Graph Signal Processing -GSP). Este documento presenta un conjunto de estrategias, soportadas por la teoría de procesamiento de señales en grafos, para la autorregulación del comportamiento ante eventos de anormalidad en una red definida por software (SDN) y para la coordinación entre el conjunto de procesos que interactúan en la reprogramación de la Red Definida por Software para lograr un estado funcional acorde a parámetros de normalidad para la red. Las contribuciones y hallazgos más relevantes de esta tesis son los siguientes: 0) Se establece un puente referencial de aplicación entre las áreas de investigación SDN y GSP; 1) se propone e implementa un monitor multicapa, basado en la teoría de procesamiento de señales en grafos que explota las características inherentes a las Redes Definidas por Software (SDN); 2) se propone e implementa una estrategia de autorregulación del direccionamiento de tráfico en una SDN ante la presencia de anomalías, basado en la técnica de aprendizaje por refuerzo (Reinforcement Learning – RL) y en el procesamiento de señales en grafos (GSP); 3) Se propone e implementa una técnica de coordinación de las actividades inherentes a los procesos de adaptación sobre las SDN; 4) se presenta un esquema de conectividad de las herramientas de desarrollo de software que actualmente son utilizadas en procesos de automatización de redes de datos. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this thesis, two promising research areas that are influential in the automation of Data Networks are studied, adapted and applied: Software Defined Networks (SDN) and Graph Signal Processing (GSP). This document presents a set of strategies, supported by the theory of signal processing in graphs, for the self-regulation of behavior in presence of abnormality events in a network and for the coordination between the set of processes that interact in the reprogramming of the Software Defined Network to achieve a functional state according to normality parameters for the network. The most relevant contributions and findings of this thesis are the following: 0) A referential application bridge is established between the SDN and GSP research areas 1) A multilayer monitor is proposed and implemented, based on the theory of signal processing in graphs that it exploits the characteristics inherent to Software Defined Networks (SDN); 2) a self-regulation strategy for traffic routing in an SDN in the presence of anomalies is proposed and implemented, based on the reinforcement learning technique (Reinforcement Learning - RL) and on graph signal processing (GSP). 3) A coordination technique for the activities inherent to the adaptation processes on SDN is proposed and implemented. 4) a connectivity scheme of the software development tools that are currently used in data network automation processes is presented. | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.degreename | Auto | spa |
dc.description.researcharea | Redes de Datos y Redes Industriales | spa |
dc.format.extent | 90 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83450 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática | spa |
dc.relation.references | ACI. (s.f.). ACI policy Model.Recuperado de https://sandboxapicdc.cisco.com/help/content/index.html#c_about-cisco-aci.html. | spa |
dc.relation.references | Adami, D. (2015). A Network Control Application enabling Software-defined Quality of Service. IEEE Xplore. | spa |
dc.relation.references | Adrichem, N.V. Doerr, C.(2014) OpenNetMon: Network Monitoring in Openflow Software-Defined Networks. IEEE Network Operations and Management Symposium (NOMS), IEEE Xplore, 1-8. | spa |
dc.relation.references | Akash, S., Varalakshmi, P., & Somasundaram, V. (2018). Congestion Control Mechanism in Software Defined Networking by Traffic Rerouting. IEEE Xplore. | spa |
dc.relation.references | Ryan, G., & Tischer, J. (2017). Programming Automatic Cisco Networks. Cisco Press. | spa |
dc.relation.references | ACI. (n.d.). ACI policy Model. https://sandboxapicdc.cisco.com/help/content/index.html#c_about-cisco-aci.html. | spa |
dc.relation.references | Adami, D., & Donatini, L. (2015). A Network Control Application enabling Software-defined Quality of Service. IEEE Xplore. | spa |
dc.relation.references | Astuto, B., Mendonca, M., & Nguy, X. (2014). A Survey of Software-Defined Networking: Past, Present. and Future of Programmable Networks. IEEE Communications Surveys and Tutorials 16 (3)., 1617 - 1634. | spa |
dc.relation.references | Bailey, S., Balsal, D., & Dunbar, L. (2014). SDN Architecture Overview. Open Network Foundation. https://opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf. | spa |
dc.relation.references | Balasubramaniam, S., & Botvich, D. (2006). Applying Blood Glucose Homeostatic Model Towards Self-management of IP QoS Provisioned Networks. Autonomic Principles of IP Operations and Management. Springer, pp 84–95. | spa |
dc.relation.references | Bocaletti, S., Bianconi, G., Criado, R., & Del Genio, C. (2014). The structure and dynamics of multilayer networks. Elsevier. Volume 544, Issue 1, 1-122. | spa |
dc.relation.references | Ciancarini, P. (1996). Coordination models and languages as software integrators. ACM Computing Surveys, vol. 28, no. 2, 300–. | spa |
dc.relation.references | CISCO. (2018). Indice de redes Visuales. https://newsroom.cisco.com/press-release-content?articleId=1955935. | spa |
dc.relation.references | Hammond, D., Vandergheynst, P., & Gribonw, R. (2019). The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation of Graph Signals. Springer International Publishing, 141-175. | spa |
dc.relation.references | Hommond, D., Vandergheynst, P., & Gribonw, R. (2011). Wavelets on Graphs via Spectral Graph Theory. Applied and Computational Harmonic Analysis, Elsevier 30 (2), 129–150. | spa |
dc.relation.references | Irion, J. (2015). Multiescale Transforms for signal on graph: Method and applications. University of California, Davis. | spa |
dc.relation.references | James, R. K. (2017). Computer Networking: A Top-Down Approach . Pearson. | spa |
dc.relation.references | Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software defined networking: State of the art and research challenges. Computer Networks, vol. 72, 74-98. | spa |
dc.relation.references | Kathiravelu, P. (2016). Software-Defined Networking-Based Enhancements to Data Quality and QoS in Multi-Tenanted Data Center Clouds. IEEE Xplore. | spa |
dc.relation.references | Kobayashi, M., Seetharaman, S., & Parulka, G. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks. 61, 151–175. | spa |
dc.relation.references | Kurose, J. F. (2020). Computer Networking . Pearson. | spa |
dc.relation.references | Lara, A., & Kolasani , A. (2014). Network Innovation using OpenFlow: A Survey. IEEE Communications Surveys & Tutorials, Vol. 16, No. 3. | spa |
dc.relation.references | Latif, Z., Sharif, K., Li, F., & Monjurul, K. (2020). A comprehensive survey of interface protocols for software defined networks. Journal of Network and Computer Applications. | spa |
dc.relation.references | Laurençon, H., Ségerie, C.-R., & Lu, J. (2021). Continuous Homeostatic Reinforcement Learning for Self-Regulated Autonomous Agents. Cornell University, https://arxiv.org/abs/2109.06580. | spa |
dc.relation.references | Luong, D., Outtagarts, A., & Hebbar, A. (2016). Traffic Monitoring in Software Defined Netwoks Using Opendaylight Controller. Lecture Notes in Computer Science, LNCS, Vol. 10026, Springer., pp 38-48. | spa |
dc.relation.references | Ma , J., Huang, W., & Segarra, S. (2016). Difusión Filtering of Graph Signal and its Use in Recomendation Systems. IEEExplore. | spa |
dc.relation.references | Manar, J., Taranpreet, S., & Abdallah, S. (2014). Software defined networking: State of the art and research challenges. Computer Network. | spa |
dc.relation.references | Martolia, K. A. (2016). Congestion Control Techniques. International Conference on Communication and Signal Processing (ICCSP). IEEE Xplore. | spa |
dc.relation.references | Mckeown, N., Balakrishnan , G., Parulkar, L., & Peterson, J. (2008). Openflow: Enabling innovation in campus networks. SIGCOMM CCR, Vol. 38, Nro. 2., 69-74. | spa |
dc.relation.references | Mizuki, O., & Ikegami, A. (2014). Dynamic homeostasis in packet switching networks. International. Society for Adaptive Behavior. | spa |
dc.relation.references | N.L.M. van Adrichem, C. D., van Adriechem , N., Doerr, C., & Kuiper, F. (2014). OpenNetMon: Network Monitoring in Openflow Software-Defined Networks. IEEE Network Operations and Management Symposium (NOMS), IEEE Xplore, 1-8. | spa |
dc.relation.references | Omicini, A. (2013). Nature-Inspired Coordination Models: Current Status and future trends. ISRN Software Engineering. | spa |
dc.relation.references | ON-LINE. (2014). Open Flow. https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf. | spa |
dc.relation.references | openflex. (n.d.). OpenFlex vs Openflow. https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html. | spa |
dc.relation.references | Pérez, D. M. (2018). Administración y seguridad en redes de computadoras. . Alfa-Omega . | spa |
dc.relation.references | Perumal, S., & Varalakshmi, S. (2017). Research Confront in Software Defined Networking Environment: A Survey. Springer Communications in Computer and Information Science. | spa |
dc.relation.references | Przemysław Ignaciuk, A. B. (2013). Congestion Control in Data Transmission Networks. Springer. | spa |
dc.relation.references | Qiang, H., Min, H., Xiangyi, C., & Wang, X. (2020). Prediction for Energy Efficiency Optimization in Software-Defined Networking. IEEE Xplore. | spa |
dc.relation.references | Ren, C. W., & Yongcan. (2011). Distributed Coordination of multiagent networks. Springer-Verlag. | spa |
dc.relation.references | Sandryhaila, A., & Moura, J. (2013). Discrete Signal Processing on Graphs. IEEE TRANSACTIONS ON SIGNAL PROCESSING. | spa |
dc.relation.references | SevOne. (n.d.). Software Defined Network Monitoring. https://www.sevone.com/wp-content/uploads/2021/04/SDN_Solutions_Guide-1.pdf. | spa |
dc.relation.references | Shumman, D., Narang, S., Frossard, P., & Ortega, A. (2013). The Emerging Field of Signal Processing On Graphs: Extending High- Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal processing Magazine, 83 – 98. | spa |
dc.relation.references | Sifakis, J. (2019). Autonomous Systems – An Architectural. In F. C. Michele Loreti, Models, Languages, and Tools (p. 393). Springer Nature . | spa |
dc.relation.references | Tom De Wolf, T. H. (2006). A Catalogue of Decentralised Coordination Mechanisms for Designing Self-Organising Emergent Applications. Department of Computer Science, K.U.Leuven. | spa |
dc.relation.references | Vyacheslav Koryachko, D. P. (2017). Analysis of QoS Metrics in Software Defined. IEEE Xplore. | spa |
dc.relation.references | Wendong, W., Qinglei, Q., Xiangyang, G., & Yanna, H. (2014). Autonomic QoS Management Mechanism in Software Defined Network. IEEE Xplore. | spa |
dc.relation.references | Wu, J., Yunfeng, P., Meng , S., & Manman , C. (2019). Link Congestion Prediction using Machine Learning. IEEE Xplore. | spa |
dc.relation.references | Zhang, Y. (2013). An adaptive flow counting method for anomaly detection. proc ACM CoNEXT, pp. 25–30. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.proposal | Redes definidas por software | spa |
dc.subject.proposal | Procesamiento de señales gráficas | spa |
dc.subject.proposal | Aprendizaje por refuerzo | spa |
dc.subject.proposal | Autorregulación | spa |
dc.subject.proposal | Software defined networks | eng |
dc.subject.proposal | Graphical signal processing | eng |
dc.subject.proposal | Self-regulated. | eng |
dc.subject.proposal | Reinforcement learning | eng |
dc.subject.unesco | Análisis de redes | spa |
dc.subject.unesco | Network analysis | eng |
dc.title | Modelo de coordinación para la actividad autorregulada en redes definidas por software | spa |
dc.title.translated | Coordination model for the self-regulated activity of software-defined networks | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Modelo Ecosistémico de Mejoramiento Rural y Construcción de Paz: Instalación de Capacidades Locales | spa |
oaire.fundername | Financiado en el marco de la convocatoria Colombia Científica | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 24625353.2022.pdf
- Tamaño:
- 2.25 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Automática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: