Efecto de la superficie libre en el desempeño global de una turbina fluvial

dc.contributor.advisorBenavides Morán, Aldo Germán
dc.contributor.advisorLaín Beatove, Santiago
dc.contributor.authorRodríguez Jaime, Luis Eduardo
dc.date.accessioned2021-05-27T14:27:15Z
dc.date.available2021-05-27T14:27:15Z
dc.date.issued2021
dc.descriptiondiagramas, ilustraciones a color, tablasspa
dc.description.abstractLas turbinas hidrocinéticas son un importante campo de estudio en energías renovables. Uno de los aspectos menos estudiados computacionalmente hasta la fecha es el efecto de la superficie libre en el desempeño del rotor. En este trabajo se presenta el estudio numérico por medio de CFD de una turbina hidrocinética considerando la superficie libre. Se presentan simulaciones considerando dos profundidades de inmersión, definidas por la inmersión de la punta del aspa denominadas 0.19D y 0.55D (con D=diámetro). Los modelos de turbulencia k −w SST y SST Transition son implementados sin superficie libre, definiendo SST Transition para todas las simulaciones transitorias con superficie libre debido a su mejor predicción del coeficiente de potencia. Las variaciones en el coeficiente de potencia y de empuje son estudiadas en ambas inmersiones, así como la deformación de la superficie libre y el desarrollo de la estela. El comportamiento a distintas velocidades de rotación, bajo las dos condiciones de inmersión, es comparado con datos experimentales describiendo una curva similar a la experimental. Se presentan simulaciones cambiando la longitud del dominio y el coeficiente de bloqueo, evidenciando la validez del dominio computacional empleado. Finalmente, se estudia el comportamiento incluyendo el soporte que sostiene el rotor, lo que incrementa principalmente el coeficiente de empuje reportado. La mayor inmersión reporta coeficientes de potencia superiores, lo cual está de acuerdo con los datos experimentales y con estudios computacionales previos.spa
dc.description.abstractHydrokinetic turbines are an important field of study in renewable energy. Computationally, one of the least aspects studied is the effect of free surface on rotor performance. In this work, numerical study of a hydrokinetic turbine is presented by means of CFD considering the free surface. Simulations are presented considering two immersion depths, defined by the immersion of the blade tip, called 0.19D and 0.55D (with D = diameter). The k −w SST and SST transition turbulence models are implemented without free surface, defining SST Transition for all free surface transient simulations due to its better prediction of the power coefficient. The variations in the power and thrust coefficients are evaluated in both dives, as well as the deformation of the free surface and the development of the wake. The behavior at different rotation speeds, under both immersion conditions, is compared with experimental data describing a similar curve related to the experimental data. Simulations are presented by changing the length of the domain and the blocking coefficient, evidencing the validity of the computational domain used. Finally, the behavior is studied including the structure that supports the rotor, which mainly increases the reported thrust coefficient. The greater immersion reports higher power coefficients, which is in agreement with the experimental data and with previous computational studies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería- Ingeniería Mecánicaspa
dc.format.extent1 recurso en línea (93 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79569
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesAbbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications.spa
dc.relation.referencesAbuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351.spa
dc.relation.referencesAdamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington.spa
dc.relation.referencesAlbernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276.spa
dc.relation.referencesAlmohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158.spa
dc.relation.referencesANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317.spa
dc.relation.referencesAnyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116.spa
dc.relation.referencesArab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311.spa
dc.relation.referencesAsén, P. (2014). The Volume of Fluid Method. Kul, 34.4551.spa
dc.relation.referencesAutodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1spa
dc.relation.referencesBahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8.spa
dc.relation.referencesBahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490.spa
dc.relation.referencesBahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426.spa
dc.relation.referencesBai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723.spa
dc.relation.referencesBangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73.spa
dc.relation.referencesBatten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020.spa
dc.relation.referencesBenchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901.spa
dc.relation.referencesBetz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309.spa
dc.relation.referencesConsul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16.spa
dc.relation.referencesContreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151.spa
dc.relation.referencesCrecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88spa
dc.relation.referencesDanao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016.spa
dc.relation.referencesDaskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition.spa
dc.relation.referencesDreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.htmlspa
dc.relation.referencesESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2spa
dc.relation.referencesFacritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440.spa
dc.relation.referencesFerziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer.spa
dc.relation.referencesFranzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934.spa
dc.relation.referencesGaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba.spa
dc.relation.referencesGhasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100.spa
dc.relation.referencesHoughton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd.spa
dc.relation.referencesKatopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods.spa
dc.relation.referencesKetabdari, M. (2016). Free Surface Flow Simulation Using VOF Method.spa
dc.relation.referencesKolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133.spa
dc.relation.referencesKolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325.spa
dc.relation.referencesKoshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46.spa
dc.relation.referencesLaín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297.spa
dc.relation.referencesLangtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria.spa
dc.relation.referencesLanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 .spa
dc.relation.referencesLopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348.spa
dc.relation.referencesLópez-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265.spa
dc.relation.referencesLuo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556).spa
dc.relation.referencesManwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.htmlspa
dc.relation.referencesMcNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269.spa
dc.relation.referencesMenter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 .spa
dc.relation.referencesMenter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer.spa
dc.relation.referencesMenter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria.spa
dc.relation.referencesMenter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics.spa
dc.relation.referencesMorales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657.spa
dc.relation.referencesMukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology.spa
dc.relation.referencesMuzaferija, S., Peric, M., Sames, P., & Schelin, T. (1998). A two-fluid Navier-Stokes solver to simulate water entry. Twenty-Second Symposium on Naval Hydrodynamics.spa
dc.relation.referencesMyers, L. E., & Bahaj, A. S. (2010). Experimental analysis of the flow fiel around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocena Engineering, 37: 218-227.spa
dc.relation.referencesMyers, L., & Bahaj, A. (2009). Near wake properties of horizontal axis marine current turbines. University of Southampton.: School of Civil Engineering and the Environment.spa
dc.relation.referencesNichols, C. H. (1981). Volume of Fluid (VOF) Method for the dynamics of Free boundaries. Journal of Computational Physics 39, 201-225.spa
dc.relation.referencesNishi, Y., Sato, G. S., Inagaki, T., & Kikuchi, N. (2019). A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel. Renewable Energy, 130: 1036-1048.spa
dc.relation.referencesNishi, Y., Sato, G., Shiohara, D., Inagaki, T., & Kikuchi, N. (2017). Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field. Renew. Energy, 112: 53-62.spa
dc.relation.referencesPinilla, A. (2011). Notas del curso electivo en energia eólica. Bogotá: Departamento de Ingeniería Mecánica, Universidad de los Andes.spa
dc.relation.referencesPolagye, B. (2009). Hydrodynamic Effects of Kinetic Power Extraction by In-Stream Tidal Turbines (Tesis de Doctorado). Washington: University of Washington.spa
dc.relation.referencesRezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 838-857.spa
dc.relation.referencesRiglin, J., Schleicher, W., Liu, I., & Oztekin, A. (2015). Characterization of a micro-hydrokinetic turbine in close proximity to the free surface. Ocean Engineering, 110: 2270-280.spa
dc.relation.referencesSatrio, D., Aria, K., & Mukhtasor. (2018). The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12: 3399-3409.spa
dc.relation.referencesSchleicher, W. C., & Ringlin, J. D. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy, 234-241.spa
dc.relation.referencesSeitz, A., Moerlein, K., Evans, M., & Rosenberger, A. (2011). Ecology of fishes in a high-latitude, turbid river with implications for the impacts of hydrokinetic devices. Rev Fish Biol Fisheries , 21:481–496.spa
dc.relation.referencesSornes, K. (2010). Small-scale Water Current Turbines for River Applications. ZERO.spa
dc.relation.referencesSun, X. (2008). Numerical and Experimental Investigation of Tidal Current Energy Extraction. Tesis Doctoral. Edimburgo: University of Edinburgh.spa
dc.relation.referencesSun, X., Chick, J., & Bryden, I. (2008). Laboratory-scale simulation of energy extraction from tidal currents. Renewable Energy, 33: 1267–1274.spa
dc.relation.referencesTanbhir, M., Nawshad, U., & Islam, N. (2011). Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, 2: 2229-5518.spa
dc.relation.referencesTian, W., Mao, Z., & Ding, H. (2018). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, 10, 10: 782-793.spa
dc.relation.referencesUbbink, O., & Issa, R. (1999). Method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys., 153, 26-50.spa
dc.relation.referencesUPME, PUJ, & Colciencias. (2015). Atlas. Potencial Hidroenergético de Colombia.spa
dc.relation.referencesVermaak, H., Kusakana, K., & Koko, S. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, 29: 625-633.spa
dc.relation.referencesVersteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics- The Finite Volume Method. Glasgow: Pearson Education Limited,.spa
dc.relation.referencesWaclawczyk, T., & Koronowicz, T. (2006). Modelling of free surface flow with high resolution schemes. Chemical and process engeneering, 27: 783-802.spa
dc.relation.referencesWacławczyk, T., & Koronowicz, T. (2008). Comparison of CICSAM and HRIC high-resolution schemes for interface capturing. Journa of Theorical and applied mechanics., 46(2): 325-345.spa
dc.relation.referencesWang, W., Yin, R., & Yan, Y. (2019). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, 133: 91-102.spa
dc.relation.referencesWhelan, J. I., Graham, J., & Peiro, J. (2009). A free-surface and blockage correction for tidal turbines. J. Fluid Mech, 624: 281–291.spa
dc.relation.referencesWhite, F. (1998). Fluid Mechanics, 4th Edition. Rhode Island: McGraw-Hill.spa
dc.relation.referencesWilcox, D. (1988). Reassessment of the Scale-determining Equation for Advanced Turbulence Models. AIAA J, 26: 1299-1310.spa
dc.relation.referencesWilcox, D. (1993). Comparison of Two-equation Turbulence Models for Boundary Layers with Pressure Gradients. AIAA J, 1414-1421.spa
dc.relation.referencesWilcox, D. (1994). Simulating Transition with a Two-equation Turbulence Model. AIAA J., 32: 247-255.spa
dc.relation.referencesYan, J., Deng, X., Korobenko, A., & Bazilevs, Y. (2018). Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Computers and Fluids, 158: 157-166.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalTurbina hidrocinéticaspa
dc.subject.proposalDinámica de Fluidos Computacional (CFD)spa
dc.subject.proposalCoeficiente de potenciaspa
dc.subject.proposalSuperficie librespa
dc.subject.proposalHydrokinetic turbinespa
dc.subject.proposalComputational Fluid Dynamics (CFD)eng
dc.subject.proposalPower coefficienteng
dc.subject.proposalFree surfaceeng
dc.subject.unescoTurbina hidráulica
dc.subject.unescoDinámica de fluidos
dc.subject.unescoFluid dynamics
dc.subject.unescoWater turbines
dc.titleEfecto de la superficie libre en el desempeño global de una turbina fluvialspa
dc.title.translatedFree surface effect on the overall performance of a river turbineeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DocumentoTesis_LuisRodriguez_VersionFinal.pdf
Tamaño:
5.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: