Modelado y simulación del transporte de masa, momentum y energía en una extrusora de plástico mono husillo
dc.contributor.advisor | Maya López, Juan Carlos | |
dc.contributor.advisor | Chejne Janna, Farid | |
dc.contributor.author | Luna Camacho, Fabian Alirio | |
dc.contributor.cvlac | Luna, Fabian [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0002074666] | spa |
dc.contributor.orcid | Luna, Fabian [0009-0008-7157-6652] | spa |
dc.contributor.researchgroup | Termodinámica Aplicada y Energías Alternativas - TAYEA | spa |
dc.date.accessioned | 2025-07-25T16:20:47Z | |
dc.date.available | 2025-07-25T16:20:47Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficas | spa |
dc.description.abstract | Con el objetivo de estudiar y mejorar la predicción de modelos aplicados al proceso de extrusión mono husillo, el proyecto inició con un estudio del estado del arte acerca de modelos utilizados para representar el proceso de extrusión en extrusoras mono husillo, destacando dos grandes enfoques: los modelos de base fenomenológica y los modelos basados en técnicas de soft computing, como redes neuronales artificiales (ANN), lógica difusa, algoritmos genéticos y sistemas expertos. En este proyecto se desarrollaron y validaron dos metodologías complementarias: un modelo Semifísico de base fenomenológica, y otro basado en redes neuronales artificiales (ANN). Se desarrolló un modelo fenomenológico que contempla los balances dinámicos unidimensionales de masa, momentum y energía. El modelo mostró alta precisión en la predicción de la temperatura del fundido y la predicción del perfil de fundición, así como algunas leves desviaciones en los perfiles intermedios de presión sin perder precisión a la salida. Seguido de esto se desarrolló un modelo basado en ANN para capturar la naturaleza altamente no lineal del proceso de extrusión, enfocándose en la predicción dinámica del perfil de presión en diferentes ubicaciones de la extrusora. Los resultados obtenidos mostraron una alta precisión obteniendo un coeficiente de determinación (R2) de 0.9889. Este modelo supera en ciertos aspectos al modelo fenomenológico, particularmente en términos de flexibilidad y rapidez ante variaciones operativas. Finalmente, se recomienda integrar ambos enfoques creando una estrategia hibrida donde se contemplan las fortalezas de cada modelo, empleando el modelo de base fenomenológica para la predicción de la temperatura del fundido para usarla como entrada a la ANN y mejorar la estimación del perfil de presión cuando no se cuenta con sensores para medir esta variable. (Tomado de la fuente) | spa |
dc.description.abstract | With the objective of studying and improving the prediction capabilities of models applied to the single-screw extrusion process, the project began with a state-of-the-art review of modeling approaches used to represent extrusion in single-screw extruders. Two main strategies were identified: phenomenological-based models and models based on soft computing techniques, such as artificial neural networks (ANNs), fuzzy logic, genetic algorithms, and expert systems. In this project, two complementary methodologies were developed and validated: a semi-physical model with a phenomenological basis and another based on artificial neural networks (ANNs). A phenomenological model was developed that incorporates the one-dimensional dynamic balances of mass, momentum, and energy. This model demonstrated high accuracy in predicting melt temperature and the melting profile, with some deviations in intermediate pressure profiles, but without compromising precision at the extruder outlet. Following this, an ANN-based model was developed to capture the highly nonlinear nature of the extrusion process, focusing on the dynamic prediction of the pressure profile at various points along the extruder. The results showed high accuracy, achieving a coefficient of determination (R2) of 0.9889. This model outperforms the phenomenological model in certain aspects, particularly in terms of flexibility and responsiveness to operational changes. Finally, it is recommended to integrate both approaches by creating a hybrid strategy that leverages the strengths of each model. The phenomenological model can be used to predict melt temperature, which can then serve as an input to the ANN to improve pressure profile estimation in scenarios where direct temperature sensors are unavailable. | eng |
dc.description.curriculararea | Ingeniería Química E Ingeniería De Petróleos.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Modelamiento y simulación de procesos | spa |
dc.format.extent | 116 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88381 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdel-Ghany, W. E., Ebeid, S. J., & Fikry, I. (2015). Effect of Geometry and Rotational Speed on the Axial Pressure Profile of a Single Screw Extrusion. IJISET-International Journal of Innovative Science, Engineering & Technology, 2, 82–88. | spa |
dc.relation.references | Abdi, H., & Williams, L. J. (2010). Principal component analysis. In Wiley Interdisciplinary Reviews: Computational Statistics (Vol. 2, Issue 4, pp. 433–459). https://doi.org/10.1002/wics.101 | spa |
dc.relation.references | Abeykoon, C. (2014). A novel model-based controller for polymer extrusion. IEEE Transactions on Fuzzy Systems, 22(6), 1413–1430. https://doi.org/10.1109/TFUZZ.2013.2293348 | spa |
dc.relation.references | Abeykoon, C. (2016). Single screw extrusion control: A comprehensive review and directions for improvements. Control Engineering Practice, 51, 69–80. https://doi.org/10.1016/j.conengprac.2016.03.008 | spa |
dc.relation.references | Abeykoon, C., Li, K., Martin, P. J., & Kelly, A. L. (2011). Modelling of melt pressure development in polymer extrusion: Effects of process settings and screw geometry. Proceedings of 2011 International Conference on Modelling, Identification and Control, ICMIC 2011, 197–202. https://doi.org/10.1109/icmic.2011.5973700 | spa |
dc.relation.references | Abeykoon, C., Li, K., McAfee, M., Martin, P. J., & Irwin, G. W. (2011). Extruder melt temperature control with fuzzy logic. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1 PART 1), 8577–8582. https://doi.org/10.3182/20110828-6-IT-1002.01576 | spa |
dc.relation.references | Abeykoon, C., Li, K., McAfee, M., Martin, P. J., Niu, Q., Kelly, A. L., & Deng, J. (2011). A new model based approach for the prediction and optimisation of thermal homogeneity in single screw extrusion. Control Engineering Practice, 19(8), 862–874. https://doi.org/10.1016/j.conengprac.2011.04.015 | spa |
dc.relation.references | Abeykoon, C., McAfee, M., Li, K., Martin, P. J., Deng, J., & Kelly, A. L. (2010). Modelling the Effects of Operating Conditions on Motor Power Consumption in Single Screw Extrusion (pp. 9–20). https://doi.org/10.1007/978-3-642-15597-0_57 | spa |
dc.relation.references | Abeykoon, C., McMillan, A., & Nguyen, B. K. (2021). Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. In Renewable and Sustainable Energy Reviews (Vol. 147). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111219 | spa |
dc.relation.references | Abeykoon, C., Pérez, P., & Kelly, A. L. (2020). The effect of materials’ rheology on process energy consumption and melt thermal quality in polymer extrusion. Polymer Engineering and Science, 60(6), 1244–1265. https://doi.org/10.1002/pen.25377 | spa |
dc.relation.references | Adesanya, A., Abdulkareem, A., & Adesina, L. M. (2020). Predicting extrusion process parameters in Nigeria cable manufacturing industry using artificial neural network. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04289 | spa |
dc.relation.references | Alvarez, H., Lamanna, R., Vega, P., & Revollar, S. (2009). Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una sulfitadora de jugo de caña de azúcar. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 6(3), 10–20. https://doi.org/10.1016/S1697-7912(09)70260-2 | spa |
dc.relation.references | ASTM. (2021). Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry (ASTM D3418-21). American Society for Testing and Materials. https://store.astm.org/d3418-21.html | spa |
dc.relation.references | Benardos, P. G., & Vosniakos, G. C. (2007). Optimizing feedforward artificial neural network architecture. Engineering Applications of Artificial Intelligence, 20(3), 365–382. https://doi.org/10.1016/j.engappai.2006.06.005 | spa |
dc.relation.references | Bilski, J., & Wilamowski, B. M. (2017). Parallel Levenberg-Marquardt Algorithm Without Error Backpropagation. Springer International Publishing ICAISC 2017, Part I, LNAI, 10245, 25–39. https://doi.org/10.1007/978-3-319-59063-9 | spa |
dc.relation.references | Buchaniec, S., Gnatowski, M., & Brus, G. (2021). Integration of classical mathematical modeling with an artificial neural network for the problems with limited dataset. Energies, 14(16). https://doi.org/10.3390/en14165127 | spa |
dc.relation.references | Burbidge, A., & Bridgwater, J. (1995). The single screw extrusion of pastes. Chemical Engineering Science, 50, 2531–2543. | spa |
dc.relation.references | Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6). https://doi.org/10.1115/1.4050542 | spa |
dc.relation.references | Campbell, G. A., Wetzel, M. D., & Spalding, M. A. (2022). A proposed mechanism for solid bed encapsulation: Based on comparing three dimensional and one-dimensional screw melting models. Polymer Engineering and Science, 62(10), 3377–3389. https://doi.org/10.1002/pen.26110 | spa |
dc.relation.references | Carson, J. S. (2005). Introduction to modeling and simulation. Proceedings of the Winter Simulation Conference, 2005., 8 pp.-. https://doi.org/10.1109/WSC.2005.1574235 | spa |
dc.relation.references | Chiu, S.-H., & Pong, S.-H. (2000). In-line Viscosity Fuzzy Control. Journal of Applied Polymer Science, 9(7), 1249–1255. https://doi.org/10.1002/1097-4628(20010214)79:7<1249::AID-APP120>3.0.CO;2-9 | spa |
dc.relation.references | Costin, M. H., Taylor, P. A., & Wright, J. D. (1982). On the Dynamics and Control of a Plasticating Extruder. POLYMER ENGINEERING AND SCIENCE, 22(17). | spa |
dc.relation.references | Cubeta, U., Bhattacharya, D., & Sadtchenko, V. (2017). Melting of superheated molecular crystals. Journal of Chemical Physics, 147(1). https://doi.org/10.1063/1.4985663 | spa |
dc.relation.references | Cunha, A. G., Covas, J. A., & Ohveira, P. (1998). Optimization of polymer extrusion with genetic algorithms. IMA Journal of Mathematics Applied in Business & Industry, 9, 267–277. https://doi.org/10.1093/imaman/9.3.267 | spa |
dc.relation.references | David, M., Alvarez, H., Ocampo-Martinez, C., & Sánchez-Peña, R. (2020). Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach. International Journal of Hydrogen Energy, 45(43), 22394–22407. https://doi.org/10.1016/j.ijhydene.2020.06.038 | spa |
dc.relation.references | De Tommaso, J., Rossi, F., Moradi, N., Pirola, C., Patience, G. S., & Galli, F. (2020). Experimental methods in chemical engineering: Process simulation. In Canadian Journal of Chemical Engineering (Vol. 98, Issue 11, pp. 2301–2320). Wiley-Liss Inc. https://doi.org/10.1002/cjce.23857 | spa |
dc.relation.references | Denysiuk, R., Recio, G., Covas, J. A., & Gaspar-Cunha, A. (2018). Using multiobjective optimization algorithms and decision making support to solve polymer extrusion problems. Polymer Engineering and Science, 58(4), 493–502. https://doi.org/10.1002/pen.24732 | spa |
dc.relation.references | Diagne, M., Shang, P., & Wang, Z. (2016a). Feedback Stabilization for the Mass Balance Equations of an Extrusion Process. IEEE Transactions on Automatic Control, 61(3), 760–765. https://doi.org/10.1109/TAC.2015.2444232 | spa |
dc.relation.references | Diagne, M., Shang, P., & Wang, Z. (2016b). Well-posedness and exact controllability of the mass balance equations for an extrusion process. Mathematical Methods in the Applied Sciences, 39(10), 2659–2670. https://doi.org/10.1002/mma.3719 | spa |
dc.relation.references | Drabek, J., Zatloukal, M., & Martyn, M. (2018). Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. Journal of Non-Newtonian Fluid Mechanics, 251, 107–118. https://doi.org/10.1016/j.jnnfm.2017.11.009 | spa |
dc.relation.references | Dyadichev, V. V., Kolesnikov, A. V., Menyuk, S. G., & Dyadichev, A. V. (2019). Improvement of extrusion equipment and technologies for processing secondary combined polymer materials and mixtures. Journal of Physics: Conference Series, 1210(1). https://doi.org/10.1088/1742-6596/1210/1/012035 | spa |
dc.relation.references | EL, M. Tency., & M, H. (2024). Applications of Fuzzy Logics in Modern Systems: A Simple Survey. International Journal of Research Publication and Reviews, 5(5), 7598–7600. https://doi.org/10.55248/gengpi.5.0524.1316 | spa |
dc.relation.references | Esenttia. (2021). 05H82-AV - Esenttia S.A. https://www.esenttia.co/zp/api/webroot/productos/BT_Espanol/BT_ES_05H82-AV.pdf | spa |
dc.relation.references | Estrada, O., & Janna, F. C. (2022). A novel melting model for polymer extrusion: Mechanically induced transition layer removal. Polymer Engineering and Science, 62(10), 3290–3309. https://doi.org/10.1002/pen.26104 | spa |
dc.relation.references | Estrada, O., Ortiz, J. C., Hernández, A., López, I., Chejne, F., & del Pilar Noriega, M. (2020). Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency. Energy, 194. https://doi.org/10.1016/j.energy.2019.116879 | spa |
dc.relation.references | Faegh, M., Ghungrad, S., Oliveira, J. P., Rao, P., & Haghighi, A. (2025). A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing. Journal of Manufacturing Processes, 133, 524–555. https://doi.org/10.1016/j.jmapro.2024.11.066 | spa |
dc.relation.references | Fayose, F. T., & Huan, Z. (2014). Specific mechanical energy requirement of a locally developed extruder for selected starchy crops. Food Science and Technology Research, 20(4), 793–798. https://doi.org/10.3136/fstr.20.793 | spa |
dc.relation.references | Feng, S., Zhou, H., & Dong, H. (2019). Using deep neural network with small dataset to predict material defects. Materials and Design, 162, 300–310. https://doi.org/10.1016/j.matdes.2018.11.060 | spa |
dc.relation.references | Flumerfelt, R. W., Pierick, M. W., Cooper, S. L., & Bird, R. B. (1969). Generalized Plane Couette Flow of a Non-Newtonian Fluid. Industrial & Engineering Chemistry Fundamentals, 8(2). https://doi.org/10.1021/i160030a028 | spa |
dc.relation.references | Gaspar-Cunha, A., & Covas, J. A. (2004). Reduced Pareto Set Genetic Algorithm: Application to Polymer Extrusion. Metaheuristics for Multiobjective Optimisation, 221–249. https://doi.org/10.1007/978-3-642-17144-4_ | spa |
dc.relation.references | Golpour Kandeh, S., Ramazani Khorshid Doost, R., Doost, K., & Kabaranzadeh Ghadim, M. (2022). Design of a fault detection expert system to diagnose errors in the Polypropylene production process. Journal of Industrial and Systems Engineering, 14(3), 237–258. | spa |
dc.relation.references | Greene, J. P. (2021). 3 - Microstructures of Polymers. In J. P. Greene (Ed.), Automotive Plastics and Composites (pp. 27–37). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-818008-2.00009-X | spa |
dc.relation.references | Grimard, J., Dewasme, L., & Wouwer, A. Vande. (2016). A review of dynamic models of Hot-melt extrusion. In Processes (Vol. 4, Issue 2). MDPI AG. https://doi.org/10.3390/pr4020019 | spa |
dc.relation.references | Guerrero, C., & Carreau, P. J. (1993). A MATHEMATICAL MODEL FOR PREDICTING THE DYNAMIC TEMPERATURE BEHAVIOR OF A SINGLE-SCREW PLASTICATING EXTRUDER. Journal of Polymer Engineerin, 12(3), 155–177. | spa |
dc.relation.references | Guo, P., Ni, X., & Zheng, J. (1993). Polymer Extrusion Production Control Using Active Recognition and Adaptive Control System. [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, 779–784. https://doi.org/10.1109/FUZZY.1993.327541 | spa |
dc.relation.references | Herzog, D., Roland, W., Marschik, C., & Berger-Weber, G. R. (2024). Generalized predictions of the pumping characteristics and viscous dissipation of single-screw extruders including three-dimensional curvature effects. Polymer Engineering & Science, 64(11), 5566–5587. https://doi.org/10.1002/pen.26934 | spa |
dc.relation.references | Hosain, M. L., & Fdhila, R. B. (2015). Literature Review of Accelerated CFD Simulation Methods towards Online Application. Energy Procedia, 75, 3307–3314. https://doi.org/10.1016/j.egypro.2015.07.714 | spa |
dc.relation.references | Hyvärinen, M., Jabeen, R., & Kärki, T. (2020). The modelling of extrusion processes for polymers-A review. In Polymers (Vol. 12, Issue 6). MDPI AG. https://doi.org/10.3390/polym12061306 | spa |
dc.relation.references | Ibrahim, D. (2016). An Overview of Soft Computing. Procedia Computer Science, 102, 34–38. https://doi.org/10.1016/j.procs.2016.09.366 | spa |
dc.relation.references | ISO. (2019). Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pycnometer method and titration method (ISO 1183-1:2019). In International Organization for Standardization (Vol. 3). 3. https://www.iso.org/standard/74990.html | spa |
dc.relation.references | Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2 | spa |
dc.relation.references | Janjanam, D., Ganesh, B., & Manjunatha, L. (2021). Design of an expert system architecture: An overview. Journal of Physics: Conference Series, 1767(1). https://doi.org/10.1088/1742-6596/1767/1/012036 | spa |
dc.relation.references | Jiang, Z., Yang, Y., Mo, S., Yao, K., & Gao, F. (2012). Polymer extrusion: From control system design to product quality. Industrial and Engineering Chemistry Research, 51(45), 14759–14770. https://doi.org/10.1021/ie301036c | spa |
dc.relation.references | Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 374, Issue 2065). Royal Society of London. https://doi.org/10.1098/rsta.2015.0202 | spa |
dc.relation.references | Kacir, L., & Tadmor, Z. (1972). Solids Conveying in Screw Extruders Part 111: The Delay Zone". Polymer Engineering and Science, 12, 387–395. https://doi.org/https://doi.org/10.1002/pen.760120511 | spa |
dc.relation.references | Kadyirov, A., Gataullin, R., & Karaeva, J. (2019). Numerical simulation of polymer solutions in a single-screw extruder. Applied Sciences (Switzerland), 9(24). https://doi.org/10.3390/app9245423 | spa |
dc.relation.references | Kamble, A. J., & Rewaskar, R. P. (2020). Soft computing - Fuzzy Logic: An overview. International Journal of Fuzzy Mathematical Archive, 18(01), 45–52. https://doi.org/10.22457/ijfma.v18n1a06214 | spa |
dc.relation.references | Kelly, A. L., Brown, E. G., & Coates, P. D. (2006). The effect of screw geometry on melt temperature profile in single screw extrusion. Polymer Engineering and Science, 46(12), 1706–1714. https://doi.org/10.1002/pen.20657 | spa |
dc.relation.references | Kent, R. (2018). Targeting and controlling energy costs. In Energy Management in Plastics Processing (Third Edition) (Third Edition, pp. 79–104). Elsevier. https://doi.org/10.1016/B978-0-08-102507-9.50003-9 | spa |
dc.relation.references | Kim, D. J., Kim, S. Il, & Kim, H. S. (2022). Thermal simulation trained deep neural networks for fast and accurate prediction of thermal distribution and heat losses of building structures. Applied Thermal Engineering, 202. https://doi.org/10.1016/j.applthermaleng.2021.117908 | spa |
dc.relation.references | Kroesser, F. W., & Middleman, S. (1965). The Calculation of Screw Characteristics for the Extrusion of non-Newtonian Melts. Polymer Engineering and Science, 5(4), 230–234. https://doi.org/10.1002/pen.760050405 | spa |
dc.relation.references | Lai, E., & Wen, D. (2000). Modeling of the Plasticating Process in a Single-Screw Extruder: A Fast-Track Approach. POLYMER ENGINEERING AND SCIENCE, 40(5), 1074–1084. | spa |
dc.relation.references | Lambora, A., Gupta, K., & Chop, K. (2019). Genetic Algorithm- A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 380–384. https://doi.org/0.1109/COMITCon.2019.8862255 | spa |
dc.relation.references | Lanyi, F. J., Wenzke, N., Kaschta, J., & Schubert, D. W. (2020). On the Determination of the Enthalpy of Fusion of α-Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X-Ray Diffraction, and Fourier-Transform Infrared Spectroscopy: An Old Story Revisited. Advanced Engineering Materials, 22(9). https://doi.org/10.1002/adem.201900796 | spa |
dc.relation.references | Lema, L., Garcia-Tirado, J., Builes-Montaño, C., & Alvarez, H. (2019). Phenomenological-Based model of human stomach and its role in glucose metabolism. Journal of Theoretical Biology, 460, 88–100. https://doi.org/10.1016/j.jtbi.2018.10.024 | spa |
dc.relation.references | Liao, S. H. (2005). Expert system methodologies and applications-a decade review from 1995 to 2004. Expert Systems with Applications, 28(1), 93–103. https://doi.org/10.1016/j.eswa.2004.08.003 | spa |
dc.relation.references | Lippits, D. R., Rastogi, S., & Höhne, G. W. H. (2006). Melting kinetics in polymers. Physical Review Letters, 96(21). https://doi.org/10.1103/PhysRevLett.96.218303 | spa |
dc.relation.references | Long, Z., Lu, Y., Ma, X., & Dong, B. (2018). PDE-Net: Learning PDEs from Data. In International conference on machine learning (pp. 3208–3216). PMLR. | spa |
dc.relation.references | Lovegrove, J. G. A., & Williams, J. G. (1973). SOLIDS CONVEYING IN A SINGLE EXTRUDER; THE ROLE OF GRAVITY SCREW FORCES. Journal Mechanical Engineering Science, 15(2), 114–122. https://doi.org/10.1243/JMES_JOUR_1973_015_021_02 | spa |
dc.relation.references | Maffezzoli, A. M., Kenny, J. M., Nicolais, L., & others. (1989). Welding of PEEK/carbon fiber composite laminates. SAMPe Journal, 25, 35–39. | spa |
dc.relation.references | Marschik, C., Roland, W., & Osswald, T. A. (2022). Melt Conveying in Single-Screw Extruders: Modeling and Simulation. In Polymers (Vol. 14, Issue 5). MDPI. https://doi.org/10.3390/polym14050875 | spa |
dc.relation.references | McAfee, M., & Thompson, S. (2007). A novel approach to dynamic modelling of polymer extrusion for improved process control. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 221(4), 617–628. https://doi.org/10.1243/09596518JSCE357 | spa |
dc.relation.references | Mckay, B., Lennox, B., Willis, M., Barton, G. W., & Montage, G. (1996). Extruder modelling: a comparison of two paradigms. UKACC International Conference on Control ’96, 2, 734–739. https://doi.org/10.1049/cp:19960643 | spa |
dc.relation.references | Mekras, N., & Artemakis, I. (2012). Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes. IOP Conference Series: Materials Science and Engineering, 40(1). https://doi.org/10.1088/1757-899X/40/1/012041 | spa |
dc.relation.references | Mendel, J. M. (1995). Fuzzy Logic Systems for Engineering: A tutorial. Proceedings of the IEEE, 83(3), 345–377. https://doi.org/10.1109/5.364485 | spa |
dc.relation.references | Mills, N., Jenkins, M., & Kukureka, S. (2020a). Chapter 3 - Amorphous polymers and the glass transition. In N. Mills, M. Jenkins, & S. Kukureka (Eds.), Plastics (Fourth Edition) (pp. 33–48). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-102499-7.00003-5 | spa |
dc.relation.references | Mills, N., Jenkins, M., & Kukureka, S. (2020b). Semi-crystalline polymers. In Plastics (pp. 49–66). Elsevier. https://doi.org/10.1016/B978-0-08-102499-7.00004-7 | spa |
dc.relation.references | Nabhan, B. J., Mohammed, T. W., Al-Moameri, H. H., & Ghalib, L. (2024). The Effect of Chain Tacticity on the Thermal Energy Parameters of Isotactic and Syndiotactic Polypropylene. Tikrit Journal of Engineering Sciences, 31(2), 117–127. https://doi.org/10.25130/tjes.31.2.11 | spa |
dc.relation.references | Nădăban, S. (2022). Fuzzy Logic and Soft Computing—Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921–2017). In Mathematics (Vol. 10, Issue 17). MDPI. https://doi.org/10.3390/math10173216 | spa |
dc.relation.references | Naghipour, A., Salehpour, A., & Iranag, B. S. (2024). Optimizing UPVC profile production using adaptive neuro-fuzzy inference system. International Journal of Information Technology (Singapore). https://doi.org/10.1007/s41870-024-02198-x | spa |
dc.relation.references | Nastaj, A., & Wilczyński, K. (2020). Optimization for starve fed/flood fed single screw extrusion of polymeric materials. Polymers, 12(1). https://doi.org/10.3390/polym12010149 | spa |
dc.relation.references | Nastaj, A., & Wilczyński, K. (2022). Computational Scale-Up for Flood Fed/Starve Fed Single Screw Extrusion of Polymers. Polymers, 14(2). https://doi.org/10.3390/polym14020240 | spa |
dc.relation.references | Nelson, R. W., Chan, D., Yang, B., & Lee, L. J. (1986). Dynamic Behavior of a Single Screw Plasticating Extruder Part I: Experimental Study. POLYMER ENGINEERING AND SCIENCE, 26(2). | spa |
dc.relation.references | Ong, P., Ho, C. S., Chin, D. D. V. S., Sia, C. K., Ng, C. H., Wahab, M. S., & Bala, A. S. (2019). Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques. Journal of Intelligent Manufacturing, 30(4), 1957–1972. https://doi.org/10.1007/s10845-017-1365-8 | spa |
dc.relation.references | Onwulata, C. I., Mulvaney, S. J., Hsieh, F., & Heymann, H. (1992). Step Changes in Screw Speed Affect Extrusion Temperature and Pressure and Extrudate Characteristics. JOURNAL OF FOOD SCIENCE, 57(2). | spa |
dc.relation.references | Pachner, S., Löw-Baselli, B., Affenzeller, M., & Miethlinger, J. (2017). A Generalized 2D Output Model of Polymer Melt Flow in Single-Screw Extrusion. International Polymer Processing, 32(2), 209–216. https://doi.org/doi:10.3139/217.3326 | spa |
dc.relation.references | Patel, H., Thakkar, A., Pandya, M., & Makwana, K. (2018). Neural network with deep learning architectures. Journal of Information and Optimization Sciences, 39(1), 31–38. https://doi.org/10.1080/02522667.2017.1372908 | spa |
dc.relation.references | Perera, Y. S., Li, J., & Abeykoon, C. (2024). Adaptive Neuro-Fuzzy Controller for Real-Time Melt Pressure Control in Polymer Extrusion Processes. 2024 European Control Conference (ECC), 2023–2028. https://doi.org/10.23919/ECC64448.2024.10590713 | spa |
dc.relation.references | Perera, Y. S., Li, J., Kelly, A. L., & Abeykoon, C. (2023). Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learning. IEEE. | spa |
dc.relation.references | Plastics Europe. (2023). Plastics - the fast Facts 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ | spa |
dc.relation.references | Precup, R. E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control. Computers in Industry, 62(3), 213–226. https://doi.org/10.1016/j.compind.2010.10.001 | spa |
dc.relation.references | Presiga, N., Alvarez, H., & Hormaza, A. (2023). Phenomenological-based model of direct blue 2 adsorption on corncob in a fixed-bed. Canadian Journal of Chemical Engineering, 102(3), 1302–1321. https://doi.org/10.1002/cjce.25137 | spa |
dc.relation.references | Pricci, A., de Tullio, M. D., & Percoco, G. (2023). Modeling of extrusion-based additive manufacturing for pelletized thermoplastics: Analytical relationships between process parameters and extrusion outcomes. CIRP Journal of Manufacturing Science and Technology, 41, 239–258. https://doi.org/10.1016/j.cirpj.2022.11.020 | spa |
dc.relation.references | Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 | spa |
dc.relation.references | Rauwendaal, C. (2014). Polymer extrusion. Carl Hanser Verlag GmbH Co KG. | spa |
dc.relation.references | Rauwendaal, C. (2016). Heat transfer in twin screw compounding extruders. AIP Conference Proceedings, 1779. https://doi.org/10.1063/1.4965484 | spa |
dc.relation.references | Rauwendaal, C. (2018). Understanding Extrusion. https://doi.org/10.3139/9781569906996 | spa |
dc.relation.references | Rawal, A., & Davies, P. J. (2005). Expert system for the optimisation of melt extruded net structures. Plastics, Rubber and Composites, 34(2), 47–53. https://doi.org/10.1179/174328905X48513 | spa |
dc.relation.references | Resonnek, V., & Schöppner, V. (2019). Self-optimizing barrel temperature setting control of single screw extruders for improving the melt quality. AIP Conference Proceedings, 2065. https://doi.org/10.1063/1.5088268 | spa |
dc.relation.references | Roland, W., Marschik, C., Kommenda, M., Haghofer, A., Dorl, S., & Winkler, S. (2021). Predicting the Non-Linear Conveying Behavior in Single-Screw Extrusion: A Comparison of Various Data-Based Modeling Approaches used with CFD Simulations. International Polymer Processing, 36(5), 529–544. | spa |
dc.relation.references | Roland, W., & Miethlinger, J. (2018). Heuristic analysis of viscous dissipation in single-screw extrusion. Polymer Engineering and Science, 58(11), 2055–2070. https://doi.org/10.1002/pen.24817 | spa |
dc.relation.references | Santamaría, A. (2020). Rheology and Polymers: Born to Be Friends. In F. J. Galindo-Rosales, L. Campo-Deaño, A. M. Afonso, M. A. Alves, & F. T. Pinho (Eds.), Proceedings of the Iberian Meeting on Rheology (IBEREO 2019) (pp. 96–99). Springer International Publishing. | spa |
dc.relation.references | Savytskyi, O., Tymoshenko, M., Hramm, O., & Romanov, S. (2020). Application of soft sensors in the automated process control of different industries. E3S Web of Conferences, 166. https://doi.org/10.1051/e3sconf/202016605003 | spa |
dc.relation.references | Schmitt, L. M. (2001). Theory of genetic algorithms. Theoretical Computer Science, 259(1–2), 1–61. www.elsevier.com/locate/tcsFundamentalStudy | spa |
dc.relation.references | Shaalan, A. S., El-Nagar, A. M., El-Bardini, M., & Sharaf, M. (2020). Embedded fuzzy sliding mode control for polymer extrusion process. ISA Transactions, 103, 237–251. https://doi.org/10.1016/j.isatra.2020.03.026 | spa |
dc.relation.references | Shakeri, F., & Dehghan, M. (2008). The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition. Computers and Mathematics with Applications, 56(9), 2175–2188. https://doi.org/10.1016/j.camwa.2008.03.055 | spa |
dc.relation.references | Singh, M. K., & Singh, A. (2022). Chapter 9 - Thermal characterization of materials using differential scanning calorimeter. In M. K. Singh & A. Singh (Eds.), Characterization of Polymers and Fibres (pp. 201–222). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823986-5.00006-3 | spa |
dc.relation.references | Speranza, V., Salomone, R., & Pantani, R. (2023). Effects of Pressure and Cooling Rates on Crystallization Behavior and Morphology of Isotactic Polypropylene. Crystals, 13(6). https://doi.org/10.3390/cryst13060922 | spa |
dc.relation.references | Stokes, V. K. (2020). Concepts from Polymer Physics. In Introduction to Plastics Engineering (pp. 229–245). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119536550.ch10 | spa |
dc.relation.references | Tadmor, Z., & Gogos, C. G. (2013). Principles of polymer processing. John Wiley & Sons. | spa |
dc.relation.references | Tadmor, Z., Lipshitz, S. D., & Lavie, R. (1974). Dynamic Model of a Plasticating Extruder. POLYMER ENGINEERING AND SCIENCE, 14(2), 112–119. https://doi.org/10.1002/pen.760140206 | spa |
dc.relation.references | Tagashira, K., Maruyama, M., Mizutani, Y., Kajioka, H., Sakai, K., Okada, K. N., & Hikosaka, M. (2019). Melting behavior and structural and morphological changes of isotactic polypropylene from heat treatment. Polymer Journal, 51(2), 227–235. https://doi.org/10.1038/s41428-018-0145-4 | spa |
dc.relation.references | Tan, C. F., Wahidin, L. S., Khalil, S. N., Tamaldin, N., Hu, J., & Rauterberg, G. W. M. (2016). The application of expert system: a review of research and applications. ARPN Journal of Engineering and Applied Sciences, 11(4), 2448–2453. www.arpnjournals.com | spa |
dc.relation.references | Tan, L. P., Lotfi, A., Lai, E., & Hull, J. B. (2004). Soft computing applications in dynamic model identification of polymer extrusion process. Applied Soft Computing Journal, 4(4), 345–355. https://doi.org/10.1016/j.asoc.2003.10.004 | spa |
dc.relation.references | Taur, J. S., Tao, C. W., & Tsai, C. C. (1995). Temperature Control of a Plastic Extrusion Barrel Using PID Fuzzy Controllers. Proceedings IEEE Conference on Industrial Automation and Control Emerging Technology Applications, 370–375. https://doi.org/10.1109/iacet.1995.527590 | spa |
dc.relation.references | Tsai, C. C., & Lu, C. H. (1998). Fuzzy supervisory predictive PID control of a plastics extruder barrel. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-Kuo Kung Ch’eng Hsuch K’an, 21(5), 619–624. https://doi.org/10.1080/02533839.1998.9670423 | spa |
dc.relation.references | Udoewa, V., & Kumar, V. (2012). Computational Fluid Dynamics. In Applied Computational Fluid Dynamics. InTech. https://doi.org/10.5772/28614 | spa |
dc.relation.references | van Puyvelde, P., & Grizzuti, N. (2020). Special issue: Polymer engineering rheology. In Journal of Polymer Engineering (Vol. 40, Issue 9, p. 713). De Gruyter Open Ltd. https://doi.org/10.1515/polyeng-2020-0223 | spa |
dc.relation.references | Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 | spa |
dc.relation.references | Vyazovkin, S. (2020). Activation energies and temperature dependencies of the rates of crystallization and melting of polymers. In Polymers (Vol. 12, Issue 5). MDPI AG. https://doi.org/10.3390/POLYM12051070 | spa |
dc.relation.references | Wang, S., Sankaran, S., Wang, H., & Perdikaris, P. (2023). AN EXPERT’S GUIDE TO TRAINING PHYSICS-INFORMED NEURAL NETWORKS. ArXiv, abs/2308.08468. | spa |
dc.relation.references | Wang, Z. H., Li, Y. T., & Wen, F. C. (2023). A Novel In-Line Polymer Melt Viscosity Sensing System of Integrated Soft Sensor and Machine Learning. IEEE Sensors Journal, 23(11), 12181–12189. https://doi.org/10.1109/JSEN.2023.3267682 | spa |
dc.relation.references | Wilczyńsk, K. J., Nastaj, A., Lewandowski, A., & Wilczyński, K. (2014). A composite model for starve fed single screw extrusion of thermoplastics. Polymer Engineering and Science, 54(10), 2362–2374. https://doi.org/10.1002/pen.23797 | spa |
dc.relation.references | Wilczyńsk, K., Nastaj, A., & Wilczyńsk, K. J. (2013). Melting Model for Starve Fed Single Screw Extrusion of Thermoplastics. International Polymer Processing, 28, 34–42. https://doi.org/https://doi.org/10.3139/217.2640 | spa |
dc.relation.references | Wilczyński, K. (1996). A computer model for single-screw plasticating extrusion. Polymer - Plastics Technology and Engineering, 35(3), 449–477. https://doi.org/10.1080/03602559608000931 | spa |
dc.relation.references | Wilczyński, K., Nastaj, A., Lewandowski, A., Krzysztof Wilczyński, K., & Buziak, K. (2019). Fundamentals of global modeling for polymer extrusion. In Polymers (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/polym11122106 | spa |
dc.relation.references | Witt, J., & Gish, J. (1996). Intelligent Advisor to Assist Extruder Operators: A Case Study. Journal of Plastic Film & Sheeting, 12(3), 180–194. https://doi.org/10.1177/87560879960120030 | spa |
dc.relation.references | Worth, R. A., Parnaby, J., & Helmy, H. A. A. (1977). Wall Slip and Its Implications in the Design of Single Screw Melt-Fed Extruders*. Polymer Engineering and Science, 17(4). https://doi.org/10.1002/pen.760170409 | spa |
dc.relation.references | Xie, H., Li, C., & Wang, Q. (2023). Thermosetting Polymer Modified Asphalts: Current Status and Challenges. Polymer Reviews, 64(2), 690–759. https://doi.org/10.1080/15583724.2023.2286706 | spa |
dc.relation.references | Yue, L., Guo, H., Kennedy, A., Patel, A., Gong, X., Ju, T., Gray, T., & Manas-Zloczower, I. (2020). Vitrimerization: Converting Thermoset Polymers into Vitrimers. ACS Macro Letters, 9(6), 836–842. https://doi.org/10.1021/acsmacrolett.0c00299 | spa |
dc.relation.references | Yusuf, I., Iksan, N., & Herman, N. S. (2010). A Temperature Control for Plastic Extruder Used Fuzzy Genetic Algorithms (Vol. 2). Proceedings of the International MultiConference of Engineers and Computer scientists. | spa |
dc.relation.references | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X | spa |
dc.relation.references | Zhou, K., He, Z., Yin, S., & Chen, W. (2014). Numerical simulation for exploring the effect of viscosity on singlescrew extrusion process of propellant. Procedia Engineering, 84, 933–939. https://doi.org/10.1016/j.proeng.2014.10.518 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 670 - Manufactura::679 -Otros productos de materiales específicos | spa |
dc.subject.ddc | 680 - Manufactura para usos específicos::688 - Otros productos acabados y empaques | spa |
dc.subject.ddc | 660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadas | spa |
dc.subject.lemb | Extrusión | |
dc.subject.lemb | Procesos de manufactura | |
dc.subject.lemb | Redes neurales (Computadores) | |
dc.subject.lemb | Computación flexible | |
dc.subject.lemb | Polímeros | |
dc.subject.lemb | Polipropileno | |
dc.subject.proposal | extrusión | spa |
dc.subject.proposal | extrusora mono husillo | spa |
dc.subject.proposal | modelamiento | spa |
dc.subject.proposal | perfil de presión | spa |
dc.subject.proposal | polímeros | spa |
dc.subject.proposal | polipropileno | spa |
dc.subject.proposal | predicción | spa |
dc.subject.proposal | redes neuronales artificiales | spa |
dc.subject.proposal | artificial neural networks | eng |
dc.subject.proposal | extrusion | eng |
dc.subject.proposal | modeling | eng |
dc.subject.proposal | polymers | eng |
dc.subject.proposal | polypropylene | eng |
dc.subject.proposal | prediction | eng |
dc.subject.proposal | pressure profile | eng |
dc.subject.proposal | single-screw extruder | eng |
dc.title | Modelado y simulación del transporte de masa, momentum y energía en una extrusora de plástico mono husillo | spa |
dc.title.translated | Modeling and simulation of mass, momentum, and energy transport in a single-screw plastic extruder | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Desarrollo de nuevas tecnologías avanzadas de la industria 4.0 para PyMES y MiPyMES de procesamiento de polímeros para el incremento de la eficiencia energética y productiva a través del contrato 127-2022 | spa |
oaire.fundername | MINCIENCIAS | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1122132193.2025.pdf
- Tamaño:
- 5.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: