Modelado y simulación del transporte de masa, momentum y energía en una extrusora de plástico mono husillo

dc.contributor.advisorMaya López, Juan Carlos
dc.contributor.advisorChejne Janna, Farid
dc.contributor.authorLuna Camacho, Fabian Alirio
dc.contributor.cvlacLuna, Fabian [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0002074666]spa
dc.contributor.orcidLuna, Fabian [0009-0008-7157-6652]spa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativas - TAYEAspa
dc.date.accessioned2025-07-25T16:20:47Z
dc.date.available2025-07-25T16:20:47Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractCon el objetivo de estudiar y mejorar la predicción de modelos aplicados al proceso de extrusión mono husillo, el proyecto inició con un estudio del estado del arte acerca de modelos utilizados para representar el proceso de extrusión en extrusoras mono husillo, destacando dos grandes enfoques: los modelos de base fenomenológica y los modelos basados en técnicas de soft computing, como redes neuronales artificiales (ANN), lógica difusa, algoritmos genéticos y sistemas expertos. En este proyecto se desarrollaron y validaron dos metodologías complementarias: un modelo Semifísico de base fenomenológica, y otro basado en redes neuronales artificiales (ANN). Se desarrolló un modelo fenomenológico que contempla los balances dinámicos unidimensionales de masa, momentum y energía. El modelo mostró alta precisión en la predicción de la temperatura del fundido y la predicción del perfil de fundición, así como algunas leves desviaciones en los perfiles intermedios de presión sin perder precisión a la salida. Seguido de esto se desarrolló un modelo basado en ANN para capturar la naturaleza altamente no lineal del proceso de extrusión, enfocándose en la predicción dinámica del perfil de presión en diferentes ubicaciones de la extrusora. Los resultados obtenidos mostraron una alta precisión obteniendo un coeficiente de determinación (R2) de 0.9889. Este modelo supera en ciertos aspectos al modelo fenomenológico, particularmente en términos de flexibilidad y rapidez ante variaciones operativas. Finalmente, se recomienda integrar ambos enfoques creando una estrategia hibrida donde se contemplan las fortalezas de cada modelo, empleando el modelo de base fenomenológica para la predicción de la temperatura del fundido para usarla como entrada a la ANN y mejorar la estimación del perfil de presión cuando no se cuenta con sensores para medir esta variable. (Tomado de la fuente)spa
dc.description.abstractWith the objective of studying and improving the prediction capabilities of models applied to the single-screw extrusion process, the project began with a state-of-the-art review of modeling approaches used to represent extrusion in single-screw extruders. Two main strategies were identified: phenomenological-based models and models based on soft computing techniques, such as artificial neural networks (ANNs), fuzzy logic, genetic algorithms, and expert systems. In this project, two complementary methodologies were developed and validated: a semi-physical model with a phenomenological basis and another based on artificial neural networks (ANNs). A phenomenological model was developed that incorporates the one-dimensional dynamic balances of mass, momentum, and energy. This model demonstrated high accuracy in predicting melt temperature and the melting profile, with some deviations in intermediate pressure profiles, but without compromising precision at the extruder outlet. Following this, an ANN-based model was developed to capture the highly nonlinear nature of the extrusion process, focusing on the dynamic prediction of the pressure profile at various points along the extruder. The results showed high accuracy, achieving a coefficient of determination (R2) of 0.9889. This model outperforms the phenomenological model in certain aspects, particularly in terms of flexibility and responsiveness to operational changes. Finally, it is recommended to integrate both approaches by creating a hybrid strategy that leverages the strengths of each model. The phenomenological model can be used to predict melt temperature, which can then serve as an input to the ANN to improve pressure profile estimation in scenarios where direct temperature sensors are unavailable.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaModelamiento y simulación de procesosspa
dc.format.extent116 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88381
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdel-Ghany, W. E., Ebeid, S. J., & Fikry, I. (2015). Effect of Geometry and Rotational Speed on the Axial Pressure Profile of a Single Screw Extrusion. IJISET-International Journal of Innovative Science, Engineering & Technology, 2, 82–88.spa
dc.relation.referencesAbdi, H., & Williams, L. J. (2010). Principal component analysis. In Wiley Interdisciplinary Reviews: Computational Statistics (Vol. 2, Issue 4, pp. 433–459). https://doi.org/10.1002/wics.101spa
dc.relation.referencesAbeykoon, C. (2014). A novel model-based controller for polymer extrusion. IEEE Transactions on Fuzzy Systems, 22(6), 1413–1430. https://doi.org/10.1109/TFUZZ.2013.2293348spa
dc.relation.referencesAbeykoon, C. (2016). Single screw extrusion control: A comprehensive review and directions for improvements. Control Engineering Practice, 51, 69–80. https://doi.org/10.1016/j.conengprac.2016.03.008spa
dc.relation.referencesAbeykoon, C., Li, K., Martin, P. J., & Kelly, A. L. (2011). Modelling of melt pressure development in polymer extrusion: Effects of process settings and screw geometry. Proceedings of 2011 International Conference on Modelling, Identification and Control, ICMIC 2011, 197–202. https://doi.org/10.1109/icmic.2011.5973700spa
dc.relation.referencesAbeykoon, C., Li, K., McAfee, M., Martin, P. J., & Irwin, G. W. (2011). Extruder melt temperature control with fuzzy logic. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1 PART 1), 8577–8582. https://doi.org/10.3182/20110828-6-IT-1002.01576spa
dc.relation.referencesAbeykoon, C., Li, K., McAfee, M., Martin, P. J., Niu, Q., Kelly, A. L., & Deng, J. (2011). A new model based approach for the prediction and optimisation of thermal homogeneity in single screw extrusion. Control Engineering Practice, 19(8), 862–874. https://doi.org/10.1016/j.conengprac.2011.04.015spa
dc.relation.referencesAbeykoon, C., McAfee, M., Li, K., Martin, P. J., Deng, J., & Kelly, A. L. (2010). Modelling the Effects of Operating Conditions on Motor Power Consumption in Single Screw Extrusion (pp. 9–20). https://doi.org/10.1007/978-3-642-15597-0_57spa
dc.relation.referencesAbeykoon, C., McMillan, A., & Nguyen, B. K. (2021). Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. In Renewable and Sustainable Energy Reviews (Vol. 147). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111219spa
dc.relation.referencesAbeykoon, C., Pérez, P., & Kelly, A. L. (2020). The effect of materials’ rheology on process energy consumption and melt thermal quality in polymer extrusion. Polymer Engineering and Science, 60(6), 1244–1265. https://doi.org/10.1002/pen.25377spa
dc.relation.referencesAdesanya, A., Abdulkareem, A., & Adesina, L. M. (2020). Predicting extrusion process parameters in Nigeria cable manufacturing industry using artificial neural network. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04289spa
dc.relation.referencesAlvarez, H., Lamanna, R., Vega, P., & Revollar, S. (2009). Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una sulfitadora de jugo de caña de azúcar. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 6(3), 10–20. https://doi.org/10.1016/S1697-7912(09)70260-2spa
dc.relation.referencesASTM. (2021). Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry (ASTM D3418-21). American Society for Testing and Materials. https://store.astm.org/d3418-21.htmlspa
dc.relation.referencesBenardos, P. G., & Vosniakos, G. C. (2007). Optimizing feedforward artificial neural network architecture. Engineering Applications of Artificial Intelligence, 20(3), 365–382. https://doi.org/10.1016/j.engappai.2006.06.005spa
dc.relation.referencesBilski, J., & Wilamowski, B. M. (2017). Parallel Levenberg-Marquardt Algorithm Without Error Backpropagation. Springer International Publishing ICAISC 2017, Part I, LNAI, 10245, 25–39. https://doi.org/10.1007/978-3-319-59063-9spa
dc.relation.referencesBuchaniec, S., Gnatowski, M., & Brus, G. (2021). Integration of classical mathematical modeling with an artificial neural network for the problems with limited dataset. Energies, 14(16). https://doi.org/10.3390/en14165127spa
dc.relation.referencesBurbidge, A., & Bridgwater, J. (1995). The single screw extrusion of pastes. Chemical Engineering Science, 50, 2531–2543.spa
dc.relation.referencesCai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6). https://doi.org/10.1115/1.4050542spa
dc.relation.referencesCampbell, G. A., Wetzel, M. D., & Spalding, M. A. (2022). A proposed mechanism for solid bed encapsulation: Based on comparing three dimensional and one-dimensional screw melting models. Polymer Engineering and Science, 62(10), 3377–3389. https://doi.org/10.1002/pen.26110spa
dc.relation.referencesCarson, J. S. (2005). Introduction to modeling and simulation. Proceedings of the Winter Simulation Conference, 2005., 8 pp.-. https://doi.org/10.1109/WSC.2005.1574235spa
dc.relation.referencesChiu, S.-H., & Pong, S.-H. (2000). In-line Viscosity Fuzzy Control. Journal of Applied Polymer Science, 9(7), 1249–1255. https://doi.org/10.1002/1097-4628(20010214)79:7<1249::AID-APP120>3.0.CO;2-9spa
dc.relation.referencesCostin, M. H., Taylor, P. A., & Wright, J. D. (1982). On the Dynamics and Control of a Plasticating Extruder. POLYMER ENGINEERING AND SCIENCE, 22(17).spa
dc.relation.referencesCubeta, U., Bhattacharya, D., & Sadtchenko, V. (2017). Melting of superheated molecular crystals. Journal of Chemical Physics, 147(1). https://doi.org/10.1063/1.4985663spa
dc.relation.referencesCunha, A. G., Covas, J. A., & Ohveira, P. (1998). Optimization of polymer extrusion with genetic algorithms. IMA Journal of Mathematics Applied in Business & Industry, 9, 267–277. https://doi.org/10.1093/imaman/9.3.267spa
dc.relation.referencesDavid, M., Alvarez, H., Ocampo-Martinez, C., & Sánchez-Peña, R. (2020). Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach. International Journal of Hydrogen Energy, 45(43), 22394–22407. https://doi.org/10.1016/j.ijhydene.2020.06.038spa
dc.relation.referencesDe Tommaso, J., Rossi, F., Moradi, N., Pirola, C., Patience, G. S., & Galli, F. (2020). Experimental methods in chemical engineering: Process simulation. In Canadian Journal of Chemical Engineering (Vol. 98, Issue 11, pp. 2301–2320). Wiley-Liss Inc. https://doi.org/10.1002/cjce.23857spa
dc.relation.referencesDenysiuk, R., Recio, G., Covas, J. A., & Gaspar-Cunha, A. (2018). Using multiobjective optimization algorithms and decision making support to solve polymer extrusion problems. Polymer Engineering and Science, 58(4), 493–502. https://doi.org/10.1002/pen.24732spa
dc.relation.referencesDiagne, M., Shang, P., & Wang, Z. (2016a). Feedback Stabilization for the Mass Balance Equations of an Extrusion Process. IEEE Transactions on Automatic Control, 61(3), 760–765. https://doi.org/10.1109/TAC.2015.2444232spa
dc.relation.referencesDiagne, M., Shang, P., & Wang, Z. (2016b). Well-posedness and exact controllability of the mass balance equations for an extrusion process. Mathematical Methods in the Applied Sciences, 39(10), 2659–2670. https://doi.org/10.1002/mma.3719spa
dc.relation.referencesDrabek, J., Zatloukal, M., & Martyn, M. (2018). Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. Journal of Non-Newtonian Fluid Mechanics, 251, 107–118. https://doi.org/10.1016/j.jnnfm.2017.11.009spa
dc.relation.referencesDyadichev, V. V., Kolesnikov, A. V., Menyuk, S. G., & Dyadichev, A. V. (2019). Improvement of extrusion equipment and technologies for processing secondary combined polymer materials and mixtures. Journal of Physics: Conference Series, 1210(1). https://doi.org/10.1088/1742-6596/1210/1/012035spa
dc.relation.referencesEL, M. Tency., & M, H. (2024). Applications of Fuzzy Logics in Modern Systems: A Simple Survey. International Journal of Research Publication and Reviews, 5(5), 7598–7600. https://doi.org/10.55248/gengpi.5.0524.1316spa
dc.relation.referencesEsenttia. (2021). 05H82-AV - Esenttia S.A. https://www.esenttia.co/zp/api/webroot/productos/BT_Espanol/BT_ES_05H82-AV.pdfspa
dc.relation.referencesEstrada, O., & Janna, F. C. (2022). A novel melting model for polymer extrusion: Mechanically induced transition layer removal. Polymer Engineering and Science, 62(10), 3290–3309. https://doi.org/10.1002/pen.26104spa
dc.relation.referencesEstrada, O., Ortiz, J. C., Hernández, A., López, I., Chejne, F., & del Pilar Noriega, M. (2020). Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency. Energy, 194. https://doi.org/10.1016/j.energy.2019.116879spa
dc.relation.referencesFaegh, M., Ghungrad, S., Oliveira, J. P., Rao, P., & Haghighi, A. (2025). A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing. Journal of Manufacturing Processes, 133, 524–555. https://doi.org/10.1016/j.jmapro.2024.11.066spa
dc.relation.referencesFayose, F. T., & Huan, Z. (2014). Specific mechanical energy requirement of a locally developed extruder for selected starchy crops. Food Science and Technology Research, 20(4), 793–798. https://doi.org/10.3136/fstr.20.793spa
dc.relation.referencesFeng, S., Zhou, H., & Dong, H. (2019). Using deep neural network with small dataset to predict material defects. Materials and Design, 162, 300–310. https://doi.org/10.1016/j.matdes.2018.11.060spa
dc.relation.referencesFlumerfelt, R. W., Pierick, M. W., Cooper, S. L., & Bird, R. B. (1969). Generalized Plane Couette Flow of a Non-Newtonian Fluid. Industrial & Engineering Chemistry Fundamentals, 8(2). https://doi.org/10.1021/i160030a028spa
dc.relation.referencesGaspar-Cunha, A., & Covas, J. A. (2004). Reduced Pareto Set Genetic Algorithm: Application to Polymer Extrusion. Metaheuristics for Multiobjective Optimisation, 221–249. https://doi.org/10.1007/978-3-642-17144-4_spa
dc.relation.referencesGolpour Kandeh, S., Ramazani Khorshid Doost, R., Doost, K., & Kabaranzadeh Ghadim, M. (2022). Design of a fault detection expert system to diagnose errors in the Polypropylene production process. Journal of Industrial and Systems Engineering, 14(3), 237–258.spa
dc.relation.referencesGreene, J. P. (2021). 3 - Microstructures of Polymers. In J. P. Greene (Ed.), Automotive Plastics and Composites (pp. 27–37). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-818008-2.00009-Xspa
dc.relation.referencesGrimard, J., Dewasme, L., & Wouwer, A. Vande. (2016). A review of dynamic models of Hot-melt extrusion. In Processes (Vol. 4, Issue 2). MDPI AG. https://doi.org/10.3390/pr4020019spa
dc.relation.referencesGuerrero, C., & Carreau, P. J. (1993). A MATHEMATICAL MODEL FOR PREDICTING THE DYNAMIC TEMPERATURE BEHAVIOR OF A SINGLE-SCREW PLASTICATING EXTRUDER. Journal of Polymer Engineerin, 12(3), 155–177.spa
dc.relation.referencesGuo, P., Ni, X., & Zheng, J. (1993). Polymer Extrusion Production Control Using Active Recognition and Adaptive Control System. [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, 779–784. https://doi.org/10.1109/FUZZY.1993.327541spa
dc.relation.referencesHerzog, D., Roland, W., Marschik, C., & Berger-Weber, G. R. (2024). Generalized predictions of the pumping characteristics and viscous dissipation of single-screw extruders including three-dimensional curvature effects. Polymer Engineering & Science, 64(11), 5566–5587. https://doi.org/10.1002/pen.26934spa
dc.relation.referencesHosain, M. L., & Fdhila, R. B. (2015). Literature Review of Accelerated CFD Simulation Methods towards Online Application. Energy Procedia, 75, 3307–3314. https://doi.org/10.1016/j.egypro.2015.07.714spa
dc.relation.referencesHyvärinen, M., Jabeen, R., & Kärki, T. (2020). The modelling of extrusion processes for polymers-A review. In Polymers (Vol. 12, Issue 6). MDPI AG. https://doi.org/10.3390/polym12061306spa
dc.relation.referencesIbrahim, D. (2016). An Overview of Soft Computing. Procedia Computer Science, 102, 34–38. https://doi.org/10.1016/j.procs.2016.09.366spa
dc.relation.referencesISO. (2019). Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pycnometer method and titration method (ISO 1183-1:2019). In International Organization for Standardization (Vol. 3). 3. https://www.iso.org/standard/74990.htmlspa
dc.relation.referencesJaniesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2spa
dc.relation.referencesJanjanam, D., Ganesh, B., & Manjunatha, L. (2021). Design of an expert system architecture: An overview. Journal of Physics: Conference Series, 1767(1). https://doi.org/10.1088/1742-6596/1767/1/012036spa
dc.relation.referencesJiang, Z., Yang, Y., Mo, S., Yao, K., & Gao, F. (2012). Polymer extrusion: From control system design to product quality. Industrial and Engineering Chemistry Research, 51(45), 14759–14770. https://doi.org/10.1021/ie301036cspa
dc.relation.referencesJollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 374, Issue 2065). Royal Society of London. https://doi.org/10.1098/rsta.2015.0202spa
dc.relation.referencesKacir, L., & Tadmor, Z. (1972). Solids Conveying in Screw Extruders Part 111: The Delay Zone". Polymer Engineering and Science, 12, 387–395. https://doi.org/https://doi.org/10.1002/pen.760120511spa
dc.relation.referencesKadyirov, A., Gataullin, R., & Karaeva, J. (2019). Numerical simulation of polymer solutions in a single-screw extruder. Applied Sciences (Switzerland), 9(24). https://doi.org/10.3390/app9245423spa
dc.relation.referencesKamble, A. J., & Rewaskar, R. P. (2020). Soft computing - Fuzzy Logic: An overview. International Journal of Fuzzy Mathematical Archive, 18(01), 45–52. https://doi.org/10.22457/ijfma.v18n1a06214spa
dc.relation.referencesKelly, A. L., Brown, E. G., & Coates, P. D. (2006). The effect of screw geometry on melt temperature profile in single screw extrusion. Polymer Engineering and Science, 46(12), 1706–1714. https://doi.org/10.1002/pen.20657spa
dc.relation.referencesKent, R. (2018). Targeting and controlling energy costs. In Energy Management in Plastics Processing (Third Edition) (Third Edition, pp. 79–104). Elsevier. https://doi.org/10.1016/B978-0-08-102507-9.50003-9spa
dc.relation.referencesKim, D. J., Kim, S. Il, & Kim, H. S. (2022). Thermal simulation trained deep neural networks for fast and accurate prediction of thermal distribution and heat losses of building structures. Applied Thermal Engineering, 202. https://doi.org/10.1016/j.applthermaleng.2021.117908spa
dc.relation.referencesKroesser, F. W., & Middleman, S. (1965). The Calculation of Screw Characteristics for the Extrusion of non-Newtonian Melts. Polymer Engineering and Science, 5(4), 230–234. https://doi.org/10.1002/pen.760050405spa
dc.relation.referencesLai, E., & Wen, D. (2000). Modeling of the Plasticating Process in a Single-Screw Extruder: A Fast-Track Approach. POLYMER ENGINEERING AND SCIENCE, 40(5), 1074–1084.spa
dc.relation.referencesLambora, A., Gupta, K., & Chop, K. (2019). Genetic Algorithm- A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 380–384. https://doi.org/0.1109/COMITCon.2019.8862255spa
dc.relation.referencesLanyi, F. J., Wenzke, N., Kaschta, J., & Schubert, D. W. (2020). On the Determination of the Enthalpy of Fusion of α-Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X-Ray Diffraction, and Fourier-Transform Infrared Spectroscopy: An Old Story Revisited. Advanced Engineering Materials, 22(9). https://doi.org/10.1002/adem.201900796spa
dc.relation.referencesLema, L., Garcia-Tirado, J., Builes-Montaño, C., & Alvarez, H. (2019). Phenomenological-Based model of human stomach and its role in glucose metabolism. Journal of Theoretical Biology, 460, 88–100. https://doi.org/10.1016/j.jtbi.2018.10.024spa
dc.relation.referencesLiao, S. H. (2005). Expert system methodologies and applications-a decade review from 1995 to 2004. Expert Systems with Applications, 28(1), 93–103. https://doi.org/10.1016/j.eswa.2004.08.003spa
dc.relation.referencesLippits, D. R., Rastogi, S., & Höhne, G. W. H. (2006). Melting kinetics in polymers. Physical Review Letters, 96(21). https://doi.org/10.1103/PhysRevLett.96.218303spa
dc.relation.referencesLong, Z., Lu, Y., Ma, X., & Dong, B. (2018). PDE-Net: Learning PDEs from Data. In International conference on machine learning (pp. 3208–3216). PMLR.spa
dc.relation.referencesLovegrove, J. G. A., & Williams, J. G. (1973). SOLIDS CONVEYING IN A SINGLE EXTRUDER; THE ROLE OF GRAVITY SCREW FORCES. Journal Mechanical Engineering Science, 15(2), 114–122. https://doi.org/10.1243/JMES_JOUR_1973_015_021_02spa
dc.relation.referencesMaffezzoli, A. M., Kenny, J. M., Nicolais, L., & others. (1989). Welding of PEEK/carbon fiber composite laminates. SAMPe Journal, 25, 35–39.spa
dc.relation.referencesMarschik, C., Roland, W., & Osswald, T. A. (2022). Melt Conveying in Single-Screw Extruders: Modeling and Simulation. In Polymers (Vol. 14, Issue 5). MDPI. https://doi.org/10.3390/polym14050875spa
dc.relation.referencesMcAfee, M., & Thompson, S. (2007). A novel approach to dynamic modelling of polymer extrusion for improved process control. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 221(4), 617–628. https://doi.org/10.1243/09596518JSCE357spa
dc.relation.referencesMckay, B., Lennox, B., Willis, M., Barton, G. W., & Montage, G. (1996). Extruder modelling: a comparison of two paradigms. UKACC International Conference on Control ’96, 2, 734–739. https://doi.org/10.1049/cp:19960643spa
dc.relation.referencesMekras, N., & Artemakis, I. (2012). Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes. IOP Conference Series: Materials Science and Engineering, 40(1). https://doi.org/10.1088/1757-899X/40/1/012041spa
dc.relation.referencesMendel, J. M. (1995). Fuzzy Logic Systems for Engineering: A tutorial. Proceedings of the IEEE, 83(3), 345–377. https://doi.org/10.1109/5.364485spa
dc.relation.referencesMills, N., Jenkins, M., & Kukureka, S. (2020a). Chapter 3 - Amorphous polymers and the glass transition. In N. Mills, M. Jenkins, & S. Kukureka (Eds.), Plastics (Fourth Edition) (pp. 33–48). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-102499-7.00003-5spa
dc.relation.referencesMills, N., Jenkins, M., & Kukureka, S. (2020b). Semi-crystalline polymers. In Plastics (pp. 49–66). Elsevier. https://doi.org/10.1016/B978-0-08-102499-7.00004-7spa
dc.relation.referencesNabhan, B. J., Mohammed, T. W., Al-Moameri, H. H., & Ghalib, L. (2024). The Effect of Chain Tacticity on the Thermal Energy Parameters of Isotactic and Syndiotactic Polypropylene. Tikrit Journal of Engineering Sciences, 31(2), 117–127. https://doi.org/10.25130/tjes.31.2.11spa
dc.relation.referencesNădăban, S. (2022). Fuzzy Logic and Soft Computing—Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921–2017). In Mathematics (Vol. 10, Issue 17). MDPI. https://doi.org/10.3390/math10173216spa
dc.relation.referencesNaghipour, A., Salehpour, A., & Iranag, B. S. (2024). Optimizing UPVC profile production using adaptive neuro-fuzzy inference system. International Journal of Information Technology (Singapore). https://doi.org/10.1007/s41870-024-02198-xspa
dc.relation.referencesNastaj, A., & Wilczyński, K. (2020). Optimization for starve fed/flood fed single screw extrusion of polymeric materials. Polymers, 12(1). https://doi.org/10.3390/polym12010149spa
dc.relation.referencesNastaj, A., & Wilczyński, K. (2022). Computational Scale-Up for Flood Fed/Starve Fed Single Screw Extrusion of Polymers. Polymers, 14(2). https://doi.org/10.3390/polym14020240spa
dc.relation.referencesNelson, R. W., Chan, D., Yang, B., & Lee, L. J. (1986). Dynamic Behavior of a Single Screw Plasticating Extruder Part I: Experimental Study. POLYMER ENGINEERING AND SCIENCE, 26(2).spa
dc.relation.referencesOng, P., Ho, C. S., Chin, D. D. V. S., Sia, C. K., Ng, C. H., Wahab, M. S., & Bala, A. S. (2019). Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques. Journal of Intelligent Manufacturing, 30(4), 1957–1972. https://doi.org/10.1007/s10845-017-1365-8spa
dc.relation.referencesOnwulata, C. I., Mulvaney, S. J., Hsieh, F., & Heymann, H. (1992). Step Changes in Screw Speed Affect Extrusion Temperature and Pressure and Extrudate Characteristics. JOURNAL OF FOOD SCIENCE, 57(2).spa
dc.relation.referencesPachner, S., Löw-Baselli, B., Affenzeller, M., & Miethlinger, J. (2017). A Generalized 2D Output Model of Polymer Melt Flow in Single-Screw Extrusion. International Polymer Processing, 32(2), 209–216. https://doi.org/doi:10.3139/217.3326spa
dc.relation.referencesPatel, H., Thakkar, A., Pandya, M., & Makwana, K. (2018). Neural network with deep learning architectures. Journal of Information and Optimization Sciences, 39(1), 31–38. https://doi.org/10.1080/02522667.2017.1372908spa
dc.relation.referencesPerera, Y. S., Li, J., & Abeykoon, C. (2024). Adaptive Neuro-Fuzzy Controller for Real-Time Melt Pressure Control in Polymer Extrusion Processes. 2024 European Control Conference (ECC), 2023–2028. https://doi.org/10.23919/ECC64448.2024.10590713spa
dc.relation.referencesPerera, Y. S., Li, J., Kelly, A. L., & Abeykoon, C. (2023). Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learning. IEEE.spa
dc.relation.referencesPlastics Europe. (2023). Plastics - the fast Facts 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/spa
dc.relation.referencesPrecup, R. E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control. Computers in Industry, 62(3), 213–226. https://doi.org/10.1016/j.compind.2010.10.001spa
dc.relation.referencesPresiga, N., Alvarez, H., & Hormaza, A. (2023). Phenomenological-based model of direct blue 2 adsorption on corncob in a fixed-bed. Canadian Journal of Chemical Engineering, 102(3), 1302–1321. https://doi.org/10.1002/cjce.25137spa
dc.relation.referencesPricci, A., de Tullio, M. D., & Percoco, G. (2023). Modeling of extrusion-based additive manufacturing for pelletized thermoplastics: Analytical relationships between process parameters and extrusion outcomes. CIRP Journal of Manufacturing Science and Technology, 41, 239–258. https://doi.org/10.1016/j.cirpj.2022.11.020spa
dc.relation.referencesRaissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045spa
dc.relation.referencesRauwendaal, C. (2014). Polymer extrusion. Carl Hanser Verlag GmbH Co KG.spa
dc.relation.referencesRauwendaal, C. (2016). Heat transfer in twin screw compounding extruders. AIP Conference Proceedings, 1779. https://doi.org/10.1063/1.4965484spa
dc.relation.referencesRauwendaal, C. (2018). Understanding Extrusion. https://doi.org/10.3139/9781569906996spa
dc.relation.referencesRawal, A., & Davies, P. J. (2005). Expert system for the optimisation of melt extruded net structures. Plastics, Rubber and Composites, 34(2), 47–53. https://doi.org/10.1179/174328905X48513spa
dc.relation.referencesResonnek, V., & Schöppner, V. (2019). Self-optimizing barrel temperature setting control of single screw extruders for improving the melt quality. AIP Conference Proceedings, 2065. https://doi.org/10.1063/1.5088268spa
dc.relation.referencesRoland, W., Marschik, C., Kommenda, M., Haghofer, A., Dorl, S., & Winkler, S. (2021). Predicting the Non-Linear Conveying Behavior in Single-Screw Extrusion: A Comparison of Various Data-Based Modeling Approaches used with CFD Simulations. International Polymer Processing, 36(5), 529–544.spa
dc.relation.referencesRoland, W., & Miethlinger, J. (2018). Heuristic analysis of viscous dissipation in single-screw extrusion. Polymer Engineering and Science, 58(11), 2055–2070. https://doi.org/10.1002/pen.24817spa
dc.relation.referencesSantamaría, A. (2020). Rheology and Polymers: Born to Be Friends. In F. J. Galindo-Rosales, L. Campo-Deaño, A. M. Afonso, M. A. Alves, & F. T. Pinho (Eds.), Proceedings of the Iberian Meeting on Rheology (IBEREO 2019) (pp. 96–99). Springer International Publishing.spa
dc.relation.referencesSavytskyi, O., Tymoshenko, M., Hramm, O., & Romanov, S. (2020). Application of soft sensors in the automated process control of different industries. E3S Web of Conferences, 166. https://doi.org/10.1051/e3sconf/202016605003spa
dc.relation.referencesSchmitt, L. M. (2001). Theory of genetic algorithms. Theoretical Computer Science, 259(1–2), 1–61. www.elsevier.com/locate/tcsFundamentalStudyspa
dc.relation.referencesShaalan, A. S., El-Nagar, A. M., El-Bardini, M., & Sharaf, M. (2020). Embedded fuzzy sliding mode control for polymer extrusion process. ISA Transactions, 103, 237–251. https://doi.org/10.1016/j.isatra.2020.03.026spa
dc.relation.referencesShakeri, F., & Dehghan, M. (2008). The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition. Computers and Mathematics with Applications, 56(9), 2175–2188. https://doi.org/10.1016/j.camwa.2008.03.055spa
dc.relation.referencesSingh, M. K., & Singh, A. (2022). Chapter 9 - Thermal characterization of materials using differential scanning calorimeter. In M. K. Singh & A. Singh (Eds.), Characterization of Polymers and Fibres (pp. 201–222). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823986-5.00006-3spa
dc.relation.referencesSperanza, V., Salomone, R., & Pantani, R. (2023). Effects of Pressure and Cooling Rates on Crystallization Behavior and Morphology of Isotactic Polypropylene. Crystals, 13(6). https://doi.org/10.3390/cryst13060922spa
dc.relation.referencesStokes, V. K. (2020). Concepts from Polymer Physics. In Introduction to Plastics Engineering (pp. 229–245). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119536550.ch10spa
dc.relation.referencesTadmor, Z., & Gogos, C. G. (2013). Principles of polymer processing. John Wiley & Sons.spa
dc.relation.referencesTadmor, Z., Lipshitz, S. D., & Lavie, R. (1974). Dynamic Model of a Plasticating Extruder. POLYMER ENGINEERING AND SCIENCE, 14(2), 112–119. https://doi.org/10.1002/pen.760140206spa
dc.relation.referencesTagashira, K., Maruyama, M., Mizutani, Y., Kajioka, H., Sakai, K., Okada, K. N., & Hikosaka, M. (2019). Melting behavior and structural and morphological changes of isotactic polypropylene from heat treatment. Polymer Journal, 51(2), 227–235. https://doi.org/10.1038/s41428-018-0145-4spa
dc.relation.referencesTan, C. F., Wahidin, L. S., Khalil, S. N., Tamaldin, N., Hu, J., & Rauterberg, G. W. M. (2016). The application of expert system: a review of research and applications. ARPN Journal of Engineering and Applied Sciences, 11(4), 2448–2453. www.arpnjournals.comspa
dc.relation.referencesTan, L. P., Lotfi, A., Lai, E., & Hull, J. B. (2004). Soft computing applications in dynamic model identification of polymer extrusion process. Applied Soft Computing Journal, 4(4), 345–355. https://doi.org/10.1016/j.asoc.2003.10.004spa
dc.relation.referencesTaur, J. S., Tao, C. W., & Tsai, C. C. (1995). Temperature Control of a Plastic Extrusion Barrel Using PID Fuzzy Controllers. Proceedings IEEE Conference on Industrial Automation and Control Emerging Technology Applications, 370–375. https://doi.org/10.1109/iacet.1995.527590spa
dc.relation.referencesTsai, C. C., & Lu, C. H. (1998). Fuzzy supervisory predictive PID control of a plastics extruder barrel. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-Kuo Kung Ch’eng Hsuch K’an, 21(5), 619–624. https://doi.org/10.1080/02533839.1998.9670423spa
dc.relation.referencesUdoewa, V., & Kumar, V. (2012). Computational Fluid Dynamics. In Applied Computational Fluid Dynamics. InTech. https://doi.org/10.5772/28614spa
dc.relation.referencesvan Puyvelde, P., & Grizzuti, N. (2020). Special issue: Polymer engineering rheology. In Journal of Polymer Engineering (Vol. 40, Issue 9, p. 713). De Gruyter Open Ltd. https://doi.org/10.1515/polyeng-2020-0223spa
dc.relation.referencesVirtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2spa
dc.relation.referencesVyazovkin, S. (2020). Activation energies and temperature dependencies of the rates of crystallization and melting of polymers. In Polymers (Vol. 12, Issue 5). MDPI AG. https://doi.org/10.3390/POLYM12051070spa
dc.relation.referencesWang, S., Sankaran, S., Wang, H., & Perdikaris, P. (2023). AN EXPERT’S GUIDE TO TRAINING PHYSICS-INFORMED NEURAL NETWORKS. ArXiv, abs/2308.08468.spa
dc.relation.referencesWang, Z. H., Li, Y. T., & Wen, F. C. (2023). A Novel In-Line Polymer Melt Viscosity Sensing System of Integrated Soft Sensor and Machine Learning. IEEE Sensors Journal, 23(11), 12181–12189. https://doi.org/10.1109/JSEN.2023.3267682spa
dc.relation.referencesWilczyńsk, K. J., Nastaj, A., Lewandowski, A., & Wilczyński, K. (2014). A composite model for starve fed single screw extrusion of thermoplastics. Polymer Engineering and Science, 54(10), 2362–2374. https://doi.org/10.1002/pen.23797spa
dc.relation.referencesWilczyńsk, K., Nastaj, A., & Wilczyńsk, K. J. (2013). Melting Model for Starve Fed Single Screw Extrusion of Thermoplastics. International Polymer Processing, 28, 34–42. https://doi.org/https://doi.org/10.3139/217.2640spa
dc.relation.referencesWilczyński, K. (1996). A computer model for single-screw plasticating extrusion. Polymer - Plastics Technology and Engineering, 35(3), 449–477. https://doi.org/10.1080/03602559608000931spa
dc.relation.referencesWilczyński, K., Nastaj, A., Lewandowski, A., Krzysztof Wilczyński, K., & Buziak, K. (2019). Fundamentals of global modeling for polymer extrusion. In Polymers (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/polym11122106spa
dc.relation.referencesWitt, J., & Gish, J. (1996). Intelligent Advisor to Assist Extruder Operators: A Case Study. Journal of Plastic Film & Sheeting, 12(3), 180–194. https://doi.org/10.1177/87560879960120030spa
dc.relation.referencesWorth, R. A., Parnaby, J., & Helmy, H. A. A. (1977). Wall Slip and Its Implications in the Design of Single Screw Melt-Fed Extruders*. Polymer Engineering and Science, 17(4). https://doi.org/10.1002/pen.760170409spa
dc.relation.referencesXie, H., Li, C., & Wang, Q. (2023). Thermosetting Polymer Modified Asphalts: Current Status and Challenges. Polymer Reviews, 64(2), 690–759. https://doi.org/10.1080/15583724.2023.2286706spa
dc.relation.referencesYue, L., Guo, H., Kennedy, A., Patel, A., Gong, X., Ju, T., Gray, T., & Manas-Zloczower, I. (2020). Vitrimerization: Converting Thermoset Polymers into Vitrimers. ACS Macro Letters, 9(6), 836–842. https://doi.org/10.1021/acsmacrolett.0c00299spa
dc.relation.referencesYusuf, I., Iksan, N., & Herman, N. S. (2010). A Temperature Control for Plastic Extruder Used Fuzzy Genetic Algorithms (Vol. 2). Proceedings of the International MultiConference of Engineers and Computer scientists.spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZhou, K., He, Z., Yin, S., & Chen, W. (2014). Numerical simulation for exploring the effect of viscosity on singlescrew extrusion process of propellant. Procedia Engineering, 84, 933–939. https://doi.org/10.1016/j.proeng.2014.10.518spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.ddc680 - Manufactura para usos específicos::688 - Otros productos acabados y empaquesspa
dc.subject.ddc660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadasspa
dc.subject.lembExtrusión
dc.subject.lembProcesos de manufactura
dc.subject.lembRedes neurales (Computadores)
dc.subject.lembComputación flexible
dc.subject.lembPolímeros
dc.subject.lembPolipropileno
dc.subject.proposalextrusiónspa
dc.subject.proposalextrusora mono husillospa
dc.subject.proposalmodelamientospa
dc.subject.proposalperfil de presiónspa
dc.subject.proposalpolímerosspa
dc.subject.proposalpolipropilenospa
dc.subject.proposalpredicciónspa
dc.subject.proposalredes neuronales artificialesspa
dc.subject.proposalartificial neural networkseng
dc.subject.proposalextrusioneng
dc.subject.proposalmodelingeng
dc.subject.proposalpolymerseng
dc.subject.proposalpolypropyleneeng
dc.subject.proposalpredictioneng
dc.subject.proposalpressure profileeng
dc.subject.proposalsingle-screw extrudereng
dc.titleModelado y simulación del transporte de masa, momentum y energía en una extrusora de plástico mono husillospa
dc.title.translatedModeling and simulation of mass, momentum, and energy transport in a single-screw plastic extrudereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de nuevas tecnologías avanzadas de la industria 4.0 para PyMES y MiPyMES de procesamiento de polímeros para el incremento de la eficiencia energética y productiva a través del contrato 127-2022spa
oaire.fundernameMINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1122132193.2025.pdf
Tamaño:
5.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: