Estimación de la oferta hídrica para la planificación de cultivos en una cuenca hidrográfica de la Orinoquía colombiana

dc.contributor.advisorLoaiza Usuga, Juan Carlos
dc.contributor.advisorBernal Riobo, Jaime Humberto
dc.contributor.authorGallo Gordillo, Oscar Javier
dc.date.accessioned2022-08-22T21:45:00Z
dc.date.available2022-08-22T21:45:00Z
dc.date.issued2022-08-20
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractLas variaciones de rendimiento en los sistemas agrícolas para la región Orinoquia asociados a eventos extremos de precipitación, hacen necesario el estudio de la oferta hídrica para los cultivos. Para lo cual se instrumentó una cuenca hidrográfica con equipos para la medición de humedad de suelo, caudales, precipitación y evapotranspiración, e identifico propiedades fisicoquímicas del suelo que determinan de dinámica del agua. La cuenca se identifica como caño Quenane, ubicada en el piedemonte de la cordillera oriental colombiana. Adicionalmente se analizó las condiciones de variabilidad climática en la oferta hídrica. Con la información generada en la instrumentación se calibro el modelo hidrológico HBV. Los resultados identifican poca cantidad de agua aprovechable dadas en el suelo, generando que la humedad del suelo se aproxime frecuentemente a valores de punto de marchitez permanente. Se evidencio un cambio en la distribución de las precipitaciones con una disminución del número de días lluviosos al año, especialmente en el segundo semestre, que junto con relieves bien drenados estaría favoreciendo condiciones de suelos secos, identificados como Usticos, indicando limitaciones agrícolas. El modelo hidrológico HBV, tuvo un desempeño no satisfactorio para estimar caudal, puesto que subestima los datos medidos en la temporada lluviosa y sobreestima en la temporada seca. Sin embargo, los contenidos de agua en el suelo simulados presentan una aproximación a los valores medidos en el horizonte superficial, lo que indica una alternativa de aplicación en el monitoreo de la oferta hídrica disponible para las plantas. (Texto tomado de la fuente)spa
dc.description.abstractYield variations in agricultural systems for the Orinoquia region associated with extreme precipitation events make it necessary to study the water supply for crops. For which a hydrographic basin was instrumented with equipment for the measurement of soil humidity, flows, precipitation, and evapotranspiration, and identified physicochemical properties of the soil that determine water dynamics. The basin is identified as Caño Quenane, located in the foothills of the Colombian Eastern Cordillera. Additionally, the conditions of climatic variability in the water supply were analyzed. With the information generated in the instrumentation, the HBV hydrological model was calibrated. The results identify little amount of usable water given in the soil, causing soil moisture to frequently approach permanent wilting point values. A change in the distribution of rainfall was evidenced with a decrease in the number of rainy days per year, especially in the second semester, which together with well-drained reliefs would be favoring dry soil conditions, identified as Ustic, indicating agricultural limitations. The HBV hydrological model had an unsatisfactory performance to estimate flow, since it underestimates the data measured in the rainy season and overestimates in the dry season. However, the simulated soil water contents present an approximation to the values measured in the Ap horizon, which indicates an alternative application in monitoring the available water supply for plants.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaSuelos y Aguasspa
dc.description.sponsorshipCorporación colombiana de Investigación Agropecuaria - Agrosaviaspa
dc.format.extentxv, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82003
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdAllah, A. M., Mashaheet, A. M. and Burkey, K. O. (2021). Super absorbent polymers mitigate drought stress in corn (Zea mays L.) grown under rainfed conditions. Agricultural Water Management, 254(December 2020), 106946. https://doi.org/10.1016/j.agwat.2021.106946spa
dc.relation.referencesAlan, A. T. M., Rahman, M. S. and Sadaat, A. H. M. (2014). Markov Chain Analysis of Weekly Rainfall Data for Predicting Agricultural Drought. In Computational Intelligence Techniques in Earth and Environmental Sciences (pp. 109–128).spa
dc.relation.referencesAllen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Evapotranspiración del cultivo, Guías para la determinación de los requerimientos de agua de los cultivos. FAO - Food and Agriculture Organization of the United Nations, 56spa
dc.relation.referencesAlmansa, E. F. (2006a). Manejo del recurso hídrico para el cultivo de la soya en la Orinoquia Colombiana. In Soya (Glycine max (L.) Merril) Alternativa para los sistemas de produccion para los sistemas de produccion de la Orinoquia colombiana. (p. 224).spa
dc.relation.referencesAlmansa, E. F. (2006b). Requerimientos hídricos del cultivo de soya en la Altillanura (p. 2). https://repository.agrosavia.co/handle/20.500.12324/13777spa
dc.relation.referencesAmézquita, E. (1999). Propiedades físicas de los suelos de los Llanos Orientales y sus requerimientos de labranza. PALMAS, 20(1), 145–174. http://hdl.handle.net/20.500.12324/15962spa
dc.relation.referencesAmézquita, E., Indupalapati, R. I. M., Hoyos, P., Diego, M., Luis Fernando, C. and Jaime, B. (2007). Development of an arable layer: A key concept for better management of infertile tropical savanna soils.spa
dc.relation.referencesAmézquita, E., Rao, I. M., Rivera, M., Corrales, I. I. and Jaime H. Bernal. (2013). Sistemas Agropastoriles: Un Enfoque Integrado para el Manejo Sostenible de Oxisoles de los Llanos Orientales de Colombia.spa
dc.relation.referencesArango, C., Dorado, J., Guzmán, D. and Ruíz, J. (2015). Variabilidad climática de la precipitación en Colombia asociada al ciclo el niño, la niña – oscilación del sur (ENSO) [Archivo PDF]. In IDEAM (pp. 103–111)spa
dc.relation.referencesArmenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K. and Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347spa
dc.relation.referencesAttanasio, A., Pasini, A. and Triacca, U. (2013). Granger Causality Analyses for Climatic Attribution. Atmospheric and Climate Sciences, 03(04), 515–522. https://doi.org/10.4236/acs.2013.34054spa
dc.relation.referencesBarrios-Perez, C., Okada, K., Varón, G. G., Ramirez-Villegas, J., Rebolledo, M. C. and Prager, S. D. (2021). How does El Niño Southern Oscillation affect rice-producing environments in central Colombia? Agricultural and Forest Meteorology, 306(April). https://doi.org/10.1016/j.agrformet.2021.108443spa
dc.relation.referencesBera, B., Shit, P. K., Sengupta, N., Saha, S. and Bhattacharjee, S. (2021). Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environmental Challenges, 5(September), 100310. https://doi.org/10.1016/j.envc.2021.100310spa
dc.relation.referencesBergstrom, S., Lindstrom, G., Johansson, B., Persson, M. and Gardelin, M. (1997). hydrological model. Journal of Hydrology, 201, 272–288.spa
dc.relation.referencesBeven, K. (2012). Rainfall-runoff modelling. In Fluid Mechanics, Hydraulics, Hydrology and Water Resources for Civil Engineers. https://doi.org/10.1201/9780429423116-33spa
dc.relation.referencesBlöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., … Zhang, Y. (2019). Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrological Sciences Journal, 64(10), 1141–1158. https://doi.org/10.1080/02626667.2019.1620507spa
dc.relation.referencesBradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., Palmquist, K. A., Chambers, J. C., Maestas, J. D. and Campbell, S. B. (2019). Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance. Frontiers in Ecology and Evolution, 7(SEP), 1–16. https://doi.org/10.3389/fevo.2019.00358spa
dc.relation.referencesBreuer, L., Huisman, J. A., Willems, P., Bormann, H., Bronstert, A., Croke, B. F. W., Frede, H. G., Gräff, T., Hubrechts, L., Jakeman, A. J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D. P., Lindström, G., Seibert, J., Sivapalan, M. and Viney, N. R. (2009). Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water Resources, 32(2), 129–146. https://doi.org/10.1016/j.advwatres.2008.10.003spa
dc.relation.referencesBustamante, C. (2019). Gran Libro de la Orinoquia Colombiana. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. http://repository.humboldt.org.co/handle/20.500.11761/35408spa
dc.relation.referencesCaicedo, S., Campuzano, L. F., Hernández, A. C., Alfonso, H., Olarte, T. P., Pulido, S. X. and Jaramillo, C. A. (2012). Modelo productivo para el cultivo de maíz y soya en la Altillanura colombiana (Paquete Tecnológico). Siembra, 1–37. http://www.siembra.gov.co/siembra/GestionInnovacion2.aspxspa
dc.relation.referencesCaicedo, S. and Tibocha, Y. (2020). Corpoica Iraca 10: variedad de soya para suelos mejorados de altillanura plana, y vegas y vegones del piedemonte llanero. Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). In Editorial AGROSAVIA (p. 20 paginas).spa
dc.relation.referencesCaplan, J. S., Giménez, D., Hirmas, D. R., Brunsell, N. A., Blair, J. M. and Knapp, A. K. (2019). Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation. Science Advances, 5(9), 1–10. https://doi.org/10.1126/sciadv.aau6635spa
dc.relation.referencesCEPAL, DNP and BID. (2012). Valoración de daños y pérdidas. Ola invernal en Colombia, 2010-2011. [Archivo PDF] (p. 240). http://hdl.handle.net/11362/37958spa
dc.relation.referencesChapagain, R., Remenyi, T. A., Harris, R. M. B., Mohammed, C. L., Huth, N., Wallach, D., Rezaei, E. E. and Ojeda, J. J. (2022). Decomposing crop model uncertainty: A systematic review. Field Crops Research, 279(November 2021), 108448. https://doi.org/10.1016/j.fcr.2022.108448spa
dc.relation.referencesChen, Z. and Grasby, S. E. (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrology, 365(1–2), 122–133. https://doi.org/10.1016/j.jhydrol.2008.11.031spa
dc.relation.referencesChica, H., Peña Quiñones, A. J., Giraldo Jiménez, J. F., Obando Bonilla, D. and Riaño Herrera, N. M. (2014). SueMulador: Herramienta para la Simulación de Datos Faltantes en Series Climáticas Diarias de Zonas Ecuatoriales. Revista Facultad Nacional de Agronomía Medellín, 67(2), 7365–7373. https://doi.org/10.15446/rfnam.v67n2.44179spa
dc.relation.referencesChica Ramirez, H. A., Gómez Gil, L. F., Bravo Bastidas, J. J., Carbonell González, J. A. and Peña Quiñones, A. J. (2021). Site-specific intra-annual rainfall patterns: a tool for agricultural planning in the Colombian sugarcane production zone. Theoretical and Applied Climatology, 146(1–2), 543–554. https://doi.org/10.1007/s00704-021-03755-1spa
dc.relation.referencesChoquet, P., Gabrielle, B., Chalhoub, M., Michelin, J., Sauzet, O., Scammacca, O., Garnier, P., Baveye, P. C. and Montagne, D. (2021). Comparison of empirical and process-based modelling to quantify soil-supported ecosystem services on the Saclay plateau (France). Ecosystem Services, 50(June). https://doi.org/10.1016/j.ecoser.2021.101332spa
dc.relation.referencesChow, V., Maidment, D. and Mays, L. (1994). Hidrología aplicada. In Hidrologia aplicada (p. 575 pp). http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=REPIDISCA&lang=p&nextAction=lnk&exprSearch=158911&indexSearch=ID%5Cnhttp://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=BINAI.xis&method=post&formato=2&cantidad=spa
dc.relation.referencesCIAT and CORMACARENA. (2017). Plan Regional Integral de Cambio Climático para la Orinoquía. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia., No. 438.spa
dc.relation.references438. CIAT, CORMACARENA, Corporinoquia and Ecopetrol. (2027). Plan Regional Integral de Cambio Climático para la Orinoquía - Resumen ejecutivo Cartilla. In Centro Internacional de Agricultura Tropical (CIAT) (Vol. 53, Issue 9). https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_partspa
dc.relation.referencesCook, B. G. and Schultze-Kraft, R. (2015). Botanical name changes - Nuisance or a quest for precision? Tropical Grasslands-Forrajes Tropicales, 3(1), 34–40. https://doi.org/10.17138/TGFT(3)34-40spa
dc.relation.referencesCórdoba-Machado, S., Palomino-Lemus, R., Gámiz-Fortis, S. R., Castro-Díez, Y. and Esteban-Parra, M. J. (2015). Assessing the impact of El Niño Modoki on seasonal precipitation in Colombia. Global and Planetary Change, 124, 41–61. https://doi.org/10.1016/j.gloplacha.2014.11.003spa
dc.relation.referencesCORMACARENA. (2018). Plan de ordenamiento y manejo de la cuenca hidrografica Rio Negro. In Corporación Para El Desarrollo Sostenible del Área Manejo Especial la Macarena. Consorcio POMCA Río Negro 2018 (Vol. 10, Issue 1, pp. 279–288). http://dx.doi.org/10.1053/j.gastro.2014.05.023%0Ahttps://doi.org/10.1016/j.gie.2018.04.013%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/29451164%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5838726%250Ahttp://dx.doi.org/10.1016/j.gie.2013.07.022spa
dc.relation.referencesCornelissen, T., Diekkrüger, B. and Giertz, S. (2013). A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. Journal of Hydrology, 498, 221–236. https://doi.org/10.1016/j.jhydrol.2013.06.016spa
dc.relation.referencesCrow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., De Rosnay, P., Ryu, D. and Walker, J. P. (2012). Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Reviews of Geophysics, 50(2), 1–20. https://doi.org/10.1029/2011RG000372spa
dc.relation.referencesCui, X. (2020). Climate change and adaptation in agriculture: Evidence from US cropping patterns. Journal of Environmental Economics and Management, 101, 102306. https://doi.org/10.1016/j.jeem.2020.102306spa
dc.relation.referencesda Silva, E. H. F. M., Gonçalves, A. O., Pereira, R. A., Fattori Júnior, I. M., Sobenko, L. R. and Marin, F. R. (2019). Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil. Agricultural Water Management, 218(October 2018), 1–7. https://doi.org/10.1016/j.agwat.2019.03.003spa
dc.relation.referencesDastane, N. G. (1978). Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Engineering, 4(1), 25.spa
dc.relation.referencesde la Casa, A. C., Ovando, G. G. and Díaz, G. J. (2021). ENSO influence on corn and soybean yields as a base of an early warning system for agriculture in Córdoba, Argentina. European Journal of Agronomy, 129(June). https://doi.org/10.1016/j.eja.2021.126340spa
dc.relation.referencesde Oliveira-Júnior, J. F., Mendes, D., Washington Luiz, F. C. F., da Silva Junior, C. A., de Gois, G., da Rosa Ferraz Jardim, A. M., Vinícius da Silva, M., Bastos Lyra, G., Teodoro, P. E., Gomes Pimentel, L. C., Lima, M., de Barros Sant, D. and Pereira Rogelio, J. (2021). Fire foci in South America: Impact and causes, fire hazard and future scenarios José. Journal of South American Earth Sciences, 1446(89), 2669. https://doi.org/10.1016/j.jsames.2021.103623spa
dc.relation.referencesDelerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H., Varón, G. G. and Jiménez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161620spa
dc.relation.referencesDevia, G. K., Ganasri, B. P. and Dwarakish, G. S. (2015). A Review on Hydrological Models. Aquatic Procedia, 4(Icwrcoe), 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126spa
dc.relation.referencesDoeffinger, T. and Hall, J. W. (2021). Assessing water security across scales: A case study of the United States. Applied Geography, 134(June), 102500. https://doi.org/10.1016/j.apgeog.2021.102500spa
dc.relation.referencesDogan, E. (2019). Effect of supplemental irrigation on vetch yield components. Agricultural Water Management, 213(August 2018), 978–982. https://doi.org/10.1016/j.agwat.2018.12.013spa
dc.relation.referencesDunkerley, D. (2010). Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Okt 2005 Abrufbar Uber Httpwww Tldp OrgLDPabsabsguide Pdf Zugriff 1112 2005, 2274(November 2008), 2267–2274. https://doi.org/10.1002/hypspa
dc.relation.referencesDunkerley, D. (2015). Intra-event intermittency of rainfall: an analysis of the metrics of rain and no-rain periods. Hydrological Processes, 29(15), 3294–3305. https://doi.org/10.1002/hyp.10454spa
dc.relation.referencesDutta, P. and Sarma, A. K. (2021). Hydrological modeling as a tool for water resources management of the data-scarce brahmaputra basin. Journal of Water and Climate Change, 12(1), 152–165. https://doi.org/10.2166/wcc.2020.186spa
dc.relation.referencesEasterbrook, D. J. (2011). Evidence-Based Climate Science. In New York.spa
dc.relation.referencesEasterbrook, D. J. (2016). Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global Warming: Second Edition. In Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global Warming: Second Edition.spa
dc.relation.referencesEgerer, S., Cotera, R. V., Celliers, L. and Costa, M. M. (2021). A leverage points analysis of a qualitative system dynamics model for climate change adaptation in agriculture. Agricultural Systems, 189(February 2020). https://doi.org/10.1016/j.agsy.2021.103052spa
dc.relation.referencesEspinel, C., Rios, H., Palacino, J. and Arevalo, E. (2020). INFORME LANGOSTA LLANERA ( Rhammatocerus schistocercoides ) EN EL Contexto En Colombia se reporta la langosta llanera Rhammatocerus schistocercoides ( Rehn , 1906 ) es “ autóctona de la Orinoquía colombo-venezolana . Desde junio estados no voladores ( nin. ICA.spa
dc.relation.referencesEsquivel, A., Llanos-Herrera, L., Agudelo, D., Prager, S. D., Fernandes, K., Rojas, A., Valencia, J. J. and Ramirez-Villegas, J. (2018). Predictability of seasonal precipitation across major crop growing areas in Colombia. Climate Services, 12(September), 36–47. https://doi.org/10.1016/j.cliser.2018.09.001spa
dc.relation.referencesFAO. (2015). AQUASTAT - Sistema mundial de información de la FAO sobre el agua en la agricultura. https://www.fao.org/aquastat/statistics/query/results.html%0Aspa
dc.relation.referencesFAO. (2018). Progresos en el nivel de estrés hídrico: valores de referencia mundiales para el indicador 6.4.2 de los ODS. Roma. FAO y ONU-Agua. 58 pp. Licencia: CC BY-NC-SA 3.0 IGOspa
dc.relation.referencesFebruary, E. C. and Higgins, S. I. (2010). The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African Journal of Botany, 76(3), 517–523. https://doi.org/10.1016/j.sajb.2010.04.001spa
dc.relation.referencesFelipe, A. and Montoya, H. (2016). Cambio Climático Y Variabilidad Espacio – Temporal De La Precipitación En Colombia Climate Change and Space-Time Variability of the Precipitation in Colombia As Alterações Climáticas E a Variabilidade Espaço – Temporal Da Chuva Tempo Na Colômbia. Revista EIA, 12(574), 131–150.spa
dc.relation.referencesFeng, S., Hao, Z., Zhang, X. and Hao, F. (2021). Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 304–305(19), 108401. https://doi.org/10.1016/j.agrformet.2021.108401spa
dc.relation.referencesFontanilla-Díaz, C. A., Preckel, P. V., Lowenberg-DeBoer, J., Sanders, J. and Peña-Lévano, L. M. (2021). Identifying profitable activities on the frontier: The Altillanura of Colombia. Agricultural Systems, 192(May). https://doi.org/10.1016/j.agsy.2021.103199spa
dc.relation.referencesGallo, O., Bernal, J., Baquero, J., Botero, R. and Gómez, J. (2013). Effect of Three Systems of Incorporation of Dolomite Limestone in the Colombian Flat Plains. Suelos Ecuatoriales Sociedad Colombiana de La Ciencia Del Suelo, 43(1), 24–28.spa
dc.relation.referencesGalvis, J. H., Amézquita Collazos, E. and Madero M., E. (2007). Evaluación del efecto de la intensidad de labranza en la formación de costra superficial de un oxisol de sabana en los Llanos Orientales de Colombia : II. Caracterización física en superficie = Evaluation of harrowing intensity on surface crusting on an o. Acta Agronómica (Colombia), 57(2008), 56(4):191-194. http://www.revistas.unal.edu.co/index.php/acta_agronomica/article/viewFile/1030/1504spa
dc.relation.referencesGalvis Quintero, J. H., Anaya, O. C., Bernal Riobo, J. H. and Baquero, J. E. (2018). Evaluación de la estabilidad estructural y espacio poroso en un Oxisol de sabana de los Llanos Orientales de Colombia. Journal of Physical Therapy Science, 9(1), 1–11. http://dx.doi.org/10.1016/j.neuropsychologia.2015.07.010%0Ahttp://dx.doi.org/10.1016/j.visres.2014.07.001%0Ahttps://doi.org/10.1016/j.humov.2018.08.006%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/24582474%0Ahttps://doi.org/10.1016/j.gaitpost.2018.12.007%0Ahttps:spa
dc.relation.referencesGao, F., Wang, Y., Chen, X. and Yang, W. (2020). Trend analysis of rainfall time series in Shanxi province, Northern China (1957-2019). Water (Switzerland), 12(9), 1–22. https://doi.org/10.3390/W12092335spa
dc.relation.referencesGuo, D., Thomas, J., Lazaro, A. B., Matwewe, F. and Johnson, F. (2021). Modelling the influence of short-term climate variability on drinking water quality in tropical developing countries: A case study in Tanzania. Science of the Total Environment, 763, 142932. https://doi.org/10.1016/j.scitotenv.2020.142932spa
dc.relation.referencesGupta, V. and Jain, M. K. (2021). Unravelling the teleconnections between ENSO and dry/wet conditions over India using nonlinear Granger causality. Atmospheric Research, 247(July 2020), 105168. https://doi.org/10.1016/j.atmosres.2020.105168spa
dc.relation.referencesGuzman, C. D., Hoyos-Villada, F., Da Silva, M., Zimale, F. A., Chirinda, N., Botero, C., Morales Vargas, A., Rivera, B., Moreno, P. and Steenhuis, T. S. (2019). Variability of soil surface characteristics in a mountainous watershed in Valle del Cauca, Colombia: Implications for runoff, erosion, and conservation. Journal of Hydrology, 576(June), 273–286. https://doi.org/10.1016/j.jhydrol.2019.06.002spa
dc.relation.referencesHajimirzajan, A., Vahdat, M., Sadegheih, A., Shadkam, E. and Bilali, H. El. (2021). An integrated strategic framework for large-scale crop planning: sustainable climate-smart crop planning and agri-food supply chain management. Sustainable Production and Consumption, 26, 709–732. https://doi.org/10.1016/j.spc.2020.12.016spa
dc.relation.referencesHamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009spa
dc.relation.referencesHao, Y., Hao, Z., Feng, S., Zhang, X. and Hao, F. (2020). Response of vegetation to El Niño-Southern Oscillation (ENSO) via compound dry and hot events in southern Africa. Global and Planetary Change, 195(19), 103358. https://doi.org/10.1016/j.gloplacha.2020.103358spa
dc.relation.referencesHe, Z., Zhao, W., Liu, H. and Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern China’s Qilian Mountains. Journal of Hydrology, 420–421, 183–190. https://doi.org/10.1016/j.jhydrol.2011.11.056spa
dc.relation.referencesHébert-Dufresne, L., Pellegrini, A. F. A., Bhat, U., Redner, S., Pacala, S. W. and Berdahl, A. M. (2018). Edge fires drive the shape and stability of tropical forests. Ecology Letters, 21(6), 794–803. https://doi.org/10.1111/ele.12942spa
dc.relation.referencesHillel, D. (1998). Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, Waltham.spa
dc.relation.referencesHoyos, N., Escobar, J., Restrepo, J. C., Arango, A. M. and Ortiz, J. C. (2013). Impact of the 2010-2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Applied Geography, 39(September 2011), 16–25. https://doi.org/10.1016/j.apgeog.2012.11.018spa
dc.relation.referencesHuertas, H. D., Rangel, J. A. and Parra, A. S. (2018). Chemical characterization of soil fertility in production systems of a flat High Plateau, Meta, Colombia. Revista Luna Azul, 46(46), 54–69. https://doi.org/10.17151/luaz.2018.46.5spa
dc.relation.referencesIbrahim, M. A. and Johansson, M. (2021). Attitudes to climate change adaptation in agriculture – A case study of Öland, Sweden. Journal of Rural Studies, 86(March), 1–15. https://doi.org/10.1016/j.jrurstud.2021.05.024spa
dc.relation.referencesICA. (2011). Resolucion 2705.pdf (p. 2). https://www.ica.gov.co/getattachment/513310fc-449e-4330-a0bc-5e226eb1e9a1/Cultivo-del-Arroz.aspxspa
dc.relation.referencesIDEAM. (2005). Atlas Climatológico de Colombia. Instituto De Hidrología, Meteorología Y Estudios Ambientales - Ideam, 78.spa
dc.relation.referencesIDEAM. (2012). Sequía meteorológica y sequía agícola en Colombia: incidencia y tendencias. 49. http://www.ideam.gov.co/documents/21021/21138/Sequias+Incidencias+y+Tendencias.pdf/3e72c86c-cf4a-42f9-95f1-07e7cf88861aspa
dc.relation.referencesIDEAM. (2013). Zonificación y codificación de uniades hidrográficas e hidrogeológicas de Colombia. Publicación Aprobada Por El Comité de Comunicaciones y Publicaciones Del IDEAM, 47. http://documentacion.ideam.gov.co/openbiblio/bvirtual/022655/MEMORIASMAPAZONIFICACIONHIDROGRAFICA.pdfspa
dc.relation.referencesIDEAM. (2015). Mapa de Coberturas de la Tierra Metodología Corine Land Cover Adaptada para Colombia Escala 1:100.000 (Período 2010 - 2012) (p. 117). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023236/IEARN_segunda_parte_ecosistemas_2014.pdfspa
dc.relation.referencesIDEAM. (2016). Conocer: El primer paso para adaptarse. Guía básica de conceptos sobre el cambio climático. In Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023631/ABC.pdfspa
dc.relation.referencesIDEAM. (2017a). Atlas climatologico de Colombia [PDF]. Instituto de Hidrología, Meteorología y Estudios Ambientales. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023777/CLIMA.pdfspa
dc.relation.referencesIDEAM. (2017b). Diseñode la Red Hidrometeorológica Nacional. 1–16. http://sgi.ideam.gov.co/documents/412030/561097/M-GDI-H-G001+GUÍA+DISEÑO+DE+LA+RED+HIDROMETEOROLÓGICA+NACIONAL.pdf/9da0e118-58cc-43eb-87e0-8c6316dc691c?version=1.0#:~:text=El IDEAM opera una red,satelital o vía celular%2C GPRS.spa
dc.relation.referencesIDEAM. (2018). Protocolo de Modelacion Hidrológica e Hidráulica. In Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023833/Protocolo_Modelacion_HH.pdfcspa
dc.relation.referencesIDEAM. (2019a). DHIME - Manual de Usuario Consulta y Descarga de datos hidrometeorológicos - IDEAM. Manual, 53.spa
dc.relation.referencesIDEAM. (2019b). Estudio Nacional del Agua 2018. Bogotá: Ideam: 452 pp. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdfspa
dc.relation.referencesIDEAM and UNAL. (2018). Variabilidad climática y el cambio climático en Colombia [Archivo PDF]. In Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM Universidad Nacional de Colombia – UNAL (p. 28). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdfspa
dc.relation.referencesIGAC. (1973). Reconocimiento semidetallado de suelos del C.I La Libertad (Departamento del Meta) Intituto Geografico Agustin Codazzi.spa
dc.relation.referencesIGAC. (2004). Estudio general de suelos y zonificación de tierras del departamento de Meta. Instituto Geografico Agustin Codazzi, 9067.spa
dc.relation.referencesIGAC. (2017). Instructivo: Etapa de campo para leventamiento de suelos, Grupo interno de trabajo de levantamiento de suelos y aplicaciones agrologicas [PDF]. http://igacnet2.igac.gov.co/intranet/UserFiles/File/DOCUMENTOS SGI 2021/GAG/PC-GAG-05/IN-GAG-PC05-09 Etapa de campo para levantamientos de suelos.pdfspa
dc.relation.referencesIGAC. (2018). Sistema de clasificacion geomorfologica aplicado a los levantamientos de suelos, Instituto Geográfico Agustín Codazzi. Subdirección de Agrología.spa
dc.relation.referencesIPCC. (2007). Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri, R.K. y Reisinger, A. In Proceedings of the Mediterranean Electrotechnical Conference - MELECON. https://doi.org/10.1109/MELCON.2008.4618473spa
dc.relation.referencesIPCC. (2014). Cambio climático 2014: Informe de Síntesis. In Contribución de los Grupos de trabajo I,II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo principal de redacción, R.K. Pachauri y L.A. Meyer (eds.)]. IPCC, Ginebra, Suiza. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdfspa
dc.relation.referencesIPCC. (2018). Glosario [Matthews J.B.R. (ed.)]. En: Calentamiento global de 1,5 °C, Informe especial del IPCC sobre los impactos del calentamiento global de 1,5 oC con respecto a los niveles preindustriales y las trayectorias correspondientes que deberían seguir las em. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/10/SR15_Glossary_spanish.pdfspa
dc.relation.referencesIPCC. (2020). El cambio climático y la tierra. In Grupo Intergubernamental de Expertos sobre el Cambio Climático. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/06/SRCCL_SPM_es.pdfspa
dc.relation.referencesJia, Y. (2011). Coupling crop growth and hydrologic models to predict crop yield with spatial analysis technologies. Journal of Applied Remote Sensing, 5(1), 053537. https://doi.org/10.1117/1.3609844spa
dc.relation.referencesKamble, P. S., Maniyar, V. G. and Jadhav, J. D. (2010). Crop coefficients (Kc) of soybean [Glycine max (L.) Merrill]. Asian Journal of Environmental Science, 5(2), 131–135.spa
dc.relation.referencesKrinitskiy, M., Grashchenkov, K., Tilinina, N. and Gulev, S. (2021). Tracking of atmospheric phenomena with artificial neural networks: A supervised approach. Procedia Computer Science, 186, 403–410. https://doi.org/10.1016/j.procs.2021.04.209spa
dc.relation.referencesKundzewicz, Z. W., Huang, J., Pinskwar, I., Su, B., Szwed, M. and Jiang, T. (2020). Climate variability and floods in China - A review. Earth-Science Reviews, 211(February), 103434. https://doi.org/10.1016/j.earscirev.2020.103434spa
dc.relation.referencesLafitte, H. R. (1994). Guia de campo: Identificación de problemas en la producción de maíz tropical [PDF]. CIMMYT, 122. https://repository.cimmyt.org/bitstream/handle/10883/727/43157.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesLal, R. and Shukla, M. K. (2005). Principles of soil physics, The Ohio State University Columbus, Ohio, U.S.A. In Mercel Dekker, INC. New York, Basel (Vol. 4, Issue March). https://dewagumay.files.wordpress.com/2011/12/principles-of-soil-physics.pdfspa
dc.relation.referencesLeon, G., Arcila, A., Pulido, L. A. and Kondo, T. (2018). Capítulo 25 Contenido Cambio climático y control biológico de insectos : visión y perspectiva de la situación Chapter 25 Climate change and biological control of insects : current situation and perspectives. In Control biológico de fitopatógenos, insectos y ácaros (Issue October, p. 572).spa
dc.relation.referencesLesk, C., Rowhani, P. and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. https://doi.org/10.1038/nature16467spa
dc.relation.referencesLi, F., Li, W., Li, F., Long, Y., Guo, S., Li, X., Lin, C. and Li, J. (2022). Global projections of future wilderness decline under multiple IPCC Special Report on Emissions Scenarios. Resources, Conservation and Recycling, 177(June 2021), 105983. https://doi.org/10.1016/j.resconrec.2021.105983spa
dc.relation.referencesLi, X., Zhang, K., Gu, P., Feng, H., Yin, Y., Chen, W. and Cheng, B. (2021). Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Science of the Total Environment, 760, 144244. https://doi.org/10.1016/j.scitotenv.2020.144244spa
dc.relation.referencesLimami, A. M., Diab, H. and Lothier, J. (2014). Nitrogen metabolism in plants under low oxygen stress. Planta, 239(3), 531–541. https://doi.org/10.1007/s00425-013-2015-9spa
dc.relation.referencesLiu, J., Liang, Y., Gao, G., Dunkerley, D. and Fu, B. (2022). Quantifying the effects of rainfall intensity fluctuation on runoff and soil loss: From indicators to models. Journal of Hydrology, 607(February 2021), 127494. https://doi.org/10.1016/j.jhydrol.2022.127494spa
dc.relation.referencesLoaiza, J. and Pauwels, V. (2008). Utilizacion de sensores de humedad para la determinacion del contenido de humedad del suelo (Ecuaciones de Calibración). Suelos Ecuatoriales Sociedad Colombiana de La Ciencia Del Suelo, 38(1), 24–33.spa
dc.relation.referencesLoaiza, J., Poch, R. and Pauwels, V. (2010). Evaluation of soil water moisture regime prediction methods in the mountain region of Catalan Pre-Pyrenees. Suelos Ecuatoriales Sociedad Colombiana de La Ciencia Del Suelo, 40(1), 38–50.spa
dc.relation.referencesLópez, J. J., Goñi, M., San Martín, I. and Erro, J. (2019). Análisis regional de frecuencias de las precipitaciones diarias extremas en Navarra. Elaboración de los mapas de cuantiles. Ingeniería Del Agua, 23(1), 33. https://doi.org/10.4995/ia.2019.10058spa
dc.relation.referencesLozano, E. (2014). Compilación de la cuenca de los Llanos Orientales. Servicio Geológico Colombiano, 1(Diciembre), 5–9.spa
dc.relation.referencesLu, B., Li, H., Wu, J., Zhang, T., Liu, J., Liu, B., Chen, Y. and Baishan, J. (2019). Impact of El Niño and Southern Oscillation on the summer precipitation over Northwest China. Atmospheric Science Letters, 20(8), 1–8. https://doi.org/10.1002/asl.928spa
dc.relation.referencesMa, Y. jun, Li, X. yan, Guo, L. and Lin, H. (2017). Hydropedology: Interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth-Science Reviews, 171(19), 181–195. https://doi.org/10.1016/j.earscirev.2017.05.014spa
dc.relation.referencesManfreda, S. and Rodríguez-Iturbe, I. (2006). On the spatial and temporal sampling of soil moisture fields. Water Resources Research, 42(5), 2757–2760. https://doi.org/10.1029/2005WR004548spa
dc.relation.referencesMartineli, A., Leonel, P., Fabíola, N. and Giarola, B. (2020). Rhizosphere Evaluation of the soil aggregation induced by the plant roots in an Oxisol by turbidimetry and water percolation. Rhizosphere, 16(October), 100265. https://doi.org/10.1016/j.rhisph.2020.100265spa
dc.relation.referencesMcGraw, M. C. and Barnes, E. A. (2018). Memory matters: A case for granger causality in climate variability studies. Journal of Climate, 31(8), 3289–3300. https://doi.org/10.1175/JCLI-D-17-0334.1spa
dc.relation.referencesMeran, G., Siehlow, M. and Hirschhausen, C. von. (2021). The Economics of War. In New Perspectives Quarterly (Vol. 18, Issue 4, pp. 48–50). https://doi.org/10.1111/0893-7850.00441spa
dc.relation.referencesMeshesha, T. W. and Khare, D. (2019). Towards integrated water resources management considering hydro-climatological scenarios: an option for sustainable development. Environmental Systems Research, 8(1). https://doi.org/10.1186/s40068-019-0134-4spa
dc.relation.referencesMesri, M., Ghilane, A. and Bachari, N. E. I. (2013). An approach to spatio-temporal analysis for climatic data. Revue Des Energies Renouvelables, 16, 413–424.spa
dc.relation.referencesMilella, P., Bisantino, T., Gentile, F., Iacobellis, V. and Trisorio Liuzzi, G. (2012). Diagnostic analysis of distributed input and parameter datasets in Mediterranean basin streamflow modeling. Journal of Hydrology, 472–473, 262–276. https://doi.org/10.1016/j.jhydrol.2012.09.039spa
dc.relation.referencesMINAMBIENTE. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, D.C.: Colombia [PDF]. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 124. https://www.minambiente.gov.co/wp-content/uploads/2021/10/Politica-nacional-Gestion-integral-de-recurso-Hidrico-web.pdfspa
dc.relation.referencesMINAMBIENTE. (2014). Guía Técnica para la formulación de los Planes de Ordenamiento y Manejo de Cuencas Hidrograficas POMCAS [PDF]. Ministerio de Medio Ambiente y Desarrollo Sostenible, 104. https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/22585/1-Guia_Tecnica_pomcas-MinAmbiente-2014.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesMunar, A. M., Cavalcanti, J. R., Bravo, J. M., Fan, F. M., Motta-Marques, D. da and Fragoso, C. R. (2018). Coupling large-scale hydrological and hydrodynamic modeling: Toward a better comprehension of watershed-shallow lake processes. Journal of Hydrology, 564(March), 424–441. https://doi.org/10.1016/j.jhydrol.2018.07.045spa
dc.relation.referencesNorel, M., Kałczyński, M., Pińskwar, I., Krawiec, K. and Kundzewicz, Z. W. (2021). Climate variability indices—a guided tour. Geosciences (Switzerland), 11(3), 1–27. https://doi.org/10.3390/geosciences11030128spa
dc.relation.referencesOMM. (2008). Guía de prácticas hidrológicas. Volumen II. Gestión de recursos hídricos y aplicación de prácticas hidrológicas. https://library.wmo.int/index.php?lvl=notice_display&id=9404#.X10SsWgzbDcspa
dc.relation.referencesOMM. (2011). Guía de Prácticas Hidrológicas Volumen I. In World Meteorological Organization, No. 168. http://www.wmo.int/pages/prog/hwrp/publications/guide/spanish/168_Vol_I_es.pdfspa
dc.relation.referencesOMM. (2014). El Niño/Oscilación del Sur. Organización Meteorológica Mundial Tiempo-Clima-Agua, N°1145, 12. https://library.wmo.int/doc_num.php?explnum_id=7889spa
dc.relation.referencesOrduz, J. and Fischer, G. (2007). Balance hídrico e influencia del estrés hídrico en la inducción y desarrollo floral de la mandarina ‘Arrayana’ en el piedemonte llanero de Colombia. Agronomía Colombiana, 25(2), 255–263.spa
dc.relation.referencesOrozco Jamioy, D. D., Menjivar Flores, J. C. and Rubiano Sanabria, Y. (2015). Indicadores químicos de calidad de suelos en sistemas productivos del Piedemonte de los Llanos Orientales de. Acta Agronomica, 64, 302–307.spa
dc.relation.referencesPanagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L. and Bosello, F. (2018). Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation and Development, 29(3), 471–484. https://doi.org/10.1002/ldr.2879spa
dc.relation.referencesPaoletti, J. M. and Shortridge, J. E. (2020). Improved representation of uncertainty in farm-level financial cost-benefit analyses of supplemental irrigation in humid regions. Agricultural Water Management, 239(June 2019), 106245. https://doi.org/10.1016/j.agwat.2020.106245spa
dc.relation.referencesPardo, O., Torres, H., Trujillo, G. and Trujillo, J. (2020). Impactos del cambio climatico sobre los rendiemientos del Arroz (Oryza sativa L) en la zona llanos, Colombia [PDF]. AGLALA ISSN 2215-7360, 11(2), 94–106. https://revistas.curn.edu.co/index.php/aglala/article/view/1698spa
dc.relation.referencesPeña, A., Jaramillo R, Á. and Paternina Q, M. J. (2011). Detecting low frequency cycles in rainfall series from Colombian coffee-growing area by using descriptive methods. Earth Sciences Research Journal, 15(2), 109–114.spa
dc.relation.referencesPerez, R. A. (1992). Pasto Humidicola. Bolétin Técnico, 181, 14. http://ciat-library.ciat.cgiar.org/Articulos_Ciat/Digital/ICA_000041C.2_Pasto_humidicola_Brachiaria_humidicola_Rendle_Schweickt.pdfspa
dc.relation.referencesPla Sentis, I. (2016). Nuevos enfoques para el manejo y conservacion de suelos y agua en sistemas agricolas y medio ambientales. Suelos Ecuatoriales Sociedad Colombiana de La Ciencia Del Suelo, 46(1 y 2), 101–111.spa
dc.relation.referencesPoveda, G., Álvarez, D. M. and Rueda, Ó. A. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11–12), 2233–2249. https://doi.org/10.1007/s00382-010-0931-yspa
dc.relation.referencesPoveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R. and van Oevelen, P. J. (2020). High Impact Weather Events in the Andes. Frontiers in Earth Science, 8(May), 1–32. https://doi.org/10.3389/feart.2020.00162spa
dc.relation.referencesPraveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma, P., Islam, A. R. M. T. and Rahman, A. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 1–21. https://doi.org/10.1038/s41598-020-67228-7spa
dc.relation.referencesPringle, G. (2017). Maize production: Managing critical plant growth stages. https://www.farmersweekly.co.za/crops/field-crops/maize-production-managing-critical-plant-growth-stages/spa
dc.relation.referencesRahman, A., Kuddus, M. A., Ip, R. H. L. and Bewong, M. (2021). A review of covid‐19 modelling strategies in three countries to develop a research framework for regional areas. Viruses, 13(11), 1–23. https://doi.org/10.3390/v13112185spa
dc.relation.referencesRamirez C., C., Vélez U., J. J. and Peña Q., A. J. (2018). Analizando índices climáticos para predecir la lluvia mensual en una región agrícola de los andes del norte (Caldas, Colombia). Investigaciones Geográficas, 55, 111. https://doi.org/10.5354/0719-5370.2018.48460spa
dc.relation.referencesRamírez, N. E., Munar, D., van der Hilst, F., Espinosa, J. C., Ocampo-Duran, Á., Ruíz-Delgado, J., Molina-López, D. L., Wicke, B., Garcia-Nunez, J. A. and Faaij, A. P. C. (2021). Ghg balance of agricultural intensification & bioenergy production in the orinoquia region, colombia. Land, 10(3), 1–30. https://doi.org/10.3390/land10030289spa
dc.relation.referencesRandall, M., Montgomery, J. and Lewis, A. (2022). Robust temporal optimisation for a crop planning problem under climate change uncertainty. Operations Research Perspectives, 9(October 2021), 100219. https://doi.org/10.1016/j.orp.2021.100219spa
dc.relation.referencesRay, D. K., Gerber, J. S., Macdonald, G. K. and West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1–9. https://doi.org/10.1038/ncomms6989spa
dc.relation.referencesRefsgaard, J. C. and Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189–2202. https://doi.org/10.1029/96WR00896spa
dc.relation.referencesRial, A., Lasso, C. A. and Colonnello, G. (2016). Clasificación de los paisajes de la Orinoquia. Colombia y Venezuela. XI. Humedales de La Orinoquia (Colombia- Venezuela). Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia, January 2014, 35–49.spa
dc.relation.referencesRicaurte, J., Idupalapati, R. and Menjivar, J. C. (2007). Estrategias de enraizamiento de genotipos Brachiaria en suelos acidos y de baja fertilidad en Colombia. Acta Agronomica, 56(3), 107–115.spa
dc.relation.referencesRincón, Á., Flórez, H., Ballesteros, H. and León, L. M. (2018). Effects of fertilization of Brachiaria humidicola cv. Llanero on pasture productivity in the foothills region of the Llanos Orientales, Colombia. Tropical Grasslands-Forrajes Tropicales, 6(3), 158–168. https://doi.org/10.17138/TGFT(6)158-168spa
dc.relation.referencesRobinson, D. A., Jones, S. B., Lebron, I., Reinsch, S., Domínguez, M. T., Smith, A. R., Jones, D. L., Marshall, M. R. and Emmett, B. A. (2016). Experimental evidence for drought induced alternative stable states of soil moisture. Scientific Reports, 6(September 2015), 1–6. https://doi.org/10.1038/srep20018spa
dc.relation.referencesRodriguez, N. S., Lavelle, P., Pulido, S. X., Gutierrez, A., Bernal, J. H., Arguello, O., Botero, C., Gomez, Y., Hurtado, M. del P., Loaiza, S. P. and Rodriguez, E. (2013). Construcción de indicadores de ecoeficiencia para la altillanura plana en los municipios de Puerto López y Puerto Gaitán, departamento del Meta. Villavicencio (Colombia). CORPOICA, 40.spa
dc.relation.referencesSánchez Ortega, J. M. (2021). Evaluación del transporte de humedad atmosférica desde el océano Atlántico hacia las cuencas del Orinoco y el norte del Amazonas durante el año 2010 mediante el modelo WRF-Tracers [Tesis de Ingenieria Ambiental]. In Universidad de Antioquia. https://bibliotecadigital.udea.edu.co/bitstream/10495/19697/1/SanchezJuan_2021_EvalucionTransporteHumedad.pdfspa
dc.relation.referencesSarkar, S., Zhu, X., Melnykov, V. and Ingrassia, S. (2020). On parsimonious models for modeling matrix data. Computational Statistics and Data Analysis, 142, 106822. https://doi.org/10.1016/j.csda.2019.106822spa
dc.relation.referencesSeibert, J. and Vis, M. J. P. (2012). Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. 3315–3325. https://doi.org/10.5194/hess-16-3315-2012spa
dc.relation.referencesSen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934spa
dc.relation.referencesSeneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B. and Teuling, A. J. (2010). Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004spa
dc.relation.referencesSharifi, A., Mirabbasi, R., Ali Nasr-Esfahani, M., Torabi Haghighi, A. and Fatahi Nafchi, R. (2021). Quantify the impacts of anthropogenic changes and climate variability on runoff changes in central plateau of Iran using nine methods. Journal of Hydrology, 603(PC), 127045. https://doi.org/10.1016/j.jhydrol.2021.127045spa
dc.relation.referencesSheikh Goodarzi, M., Jabbarian Amiri, B., Azarnivand, H. and Waltner, I. (2021). Watershed hydrological modelling in data scarce regions; integrating ecohydrology and regionalization for the southern Caspian Sea basin, Iran. Heliyon, 7(4), e06833. https://doi.org/10.1016/j.heliyon.2021.e06833spa
dc.relation.referencesShiklomanov, I. A. (2000). Appraisal and Assessment of world water resources. Water International, 25(1), 11–32. https://doi.org/10.1080/02508060008686794spa
dc.relation.referencesShiklomanov, I. A. and Rodda, J. C. (2004). World water resources at the beginning of the twenty-first century. Choice Reviews Online, 41(07), 41-4063-41–4063. https://doi.org/10.5860/choice.41-4063spa
dc.relation.referencesSolomatine, D. P. and Wagener, T. (2011). Hydrological Modeling. Treatise on Water Science, 2, 435–457. https://doi.org/10.1016/B978-0-444-53199-5.00044-0spa
dc.relation.referencesStephens, E. C., Jones, A. D. and Parsons, D. (2018). Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities. Agricultural Systems, 163, 1–6. https://doi.org/10.1016/j.agsy.2017.01.011spa
dc.relation.referencesSun, H., Shen, Y., Yu, Q., Flerchinger, G. N., Zhang, Y., Liu, C. and Zhang, X. (2010). Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agricultural Water Management, 97(8), 1139–1145. https://doi.org/10.1016/j.agwat.2009.06.004spa
dc.relation.referencesSun, X., Renard, B., Thyer, M., Westra, S. and Lang, M. (2015). A global analysis of the asymmetric effect of ENSO on extreme precipitation. Journal of Hydrology, 530, 51–65. https://doi.org/10.1016/j.jhydrol.2015.09.016spa
dc.relation.referencesTao, F., Rötterb, R., Palosuo, T., Díaz, C. G. H., -Ambrona, C, Mínguez, M. I., C, Mikhail, Semenov, A., D, Kersebaum, K. C., E, Nendel, C., E, Specka, X., E, Hoffmann, H., F, … A, J. (2016). Contribution of crop model structure, parameters and climate projections to uncertaint y in climate change impact assessments. In International Journal of Laboratory Hematology (Vol. 38, Issue 1). https://doi.org/10.1111/ijlh.12426spa
dc.relation.referencesTapiero, A., Caicedo, S., Baquero, J., Ospina, Y., Guimaraes, E. and Chatel, M. (2012). Arroz Corpoica Llanura 11.spa
dc.relation.referencesTardieu, F., Draye, X. and Javaux, M. (2017). Root Water Uptake and Ideotypes of the Root System: Whole-Plant Controls Matter. Vadose Zone Journal, 16(9), vzj2017.05.0107. https://doi.org/10.2136/vzj2017.05.0107spa
dc.relation.referencesThomas, W., Angarita, H. and Delgado, J. (2015). Hacia una gestión integral de la Cuenca y planicies inundables del Magdalena-Cauca. Foro Público: Para Dónde va El Río Magdalena -Foro Nacional Ambiental, 22.spa
dc.relation.referencesTian, Q., Lu, J. and Chen, X. (2022). A novel comprehensive agricultural drought index reflecting time lag of soil moisture to meteorology: A case study in the Yangtze River basin, China. Catena, 209(P1), 105804. https://doi.org/10.1016/j.catena.2021.105804spa
dc.relation.referencesTrnka, M., Vizina, A., Hanel, M., Balek, J., Fischer, M., St, P., Hlavinka, P., Semer, D., Zahradní, P., Skal, P., Monika, B., Eitzinger, J., Dubrovský, M. and Petr, M. (2022). Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions. 264(August 2020).spa
dc.relation.referencesUrrea, V., Ochoa, A. and Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55(5), 4149–4162. https://doi.org/10.1029/2018WR023316spa
dc.relation.referencesUSDA. (2014). Keys to soil taxonomy. United States Department of Agriculture Natural Resources Conservation Service, 12, 410. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdfspa
dc.relation.referencesVan Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085spa
dc.relation.referencesVan Nguyen, L., Takahashi, R., Githiri, S. M., Rodriguez, T. O., Tsutsumi, N., Kajihara, S., Sayama, T., Ishimoto, M., Harada, K., Suematsu, K., Abiko, T. and Mochizuki, T. (2017). Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 130(4), 743–755. https://doi.org/10.1007/s00122-016-2847-3spa
dc.relation.referencesVelasco, H., Silva, A., Veenhuizen, R., Pérez, S., Prieto, M., Anaya, M., León, B., Cabas, N., Porto, E. and Morales, R. (2000). Manual de captacion y aprobechamiento de agua lluvia experiencias en America Latina serie: Zonas Áridas y Semiáridas. Organización de Las Naciones Unidas Para La Agricultura y La Alimentación FAO, No13, 194spa
dc.relation.referencesVelásquez F, S. and Jaramillo R, A. (2009). Redistribución de la lluvia en diferentes coberturas vegetales de la zona cafetera central de Colombia. Cenicafé, 60(2), 148–160. http://www.cenicafe.org/es/publications/arc060(02)148-160.pdfspa
dc.relation.referencesVon der Heydt, A. S., Ashwin, P., Camp, C. D., Crucifix, M., Dijkstra, H. A., Ditlevsen, P. and Lenton, T. M. (2021). Quantification and interpretation of the climate variability record. Global and Planetary Change, 197(May 2020), 103399. https://doi.org/10.1016/j.gloplacha.2020.103399spa
dc.relation.referencesWallach, D., Thorburn, P., Asseng, S., Challinor, A. J., Ewert, F., Jones, J. W., Rotter, R. and Ruane, A. (2016). Estimating model prediction error: Should you treat predictions as fixed or random? Environmental Modelling and Software, 84, 529–539. https://doi.org/10.1016/j.envsoft.2016.07.010spa
dc.relation.referencesWang, C. (2018). A review of ENSO theories. National Science Review, 5(6), 813–825. https://doi.org/10.1093/nsr/nwy104spa
dc.relation.referencesWang, C. and Fiedler, P. C. (2006). ENSO variability and the eastern tropical Pacific: A review. Progress in Oceanography, 69(2–4), 239–266. https://doi.org/10.1016/j.pocean.2006.03.004spa
dc.relation.referencesWang, Y., You, W., Fan, J., Jin, M., Wei, X. and Wang, Q. (2018). Effects of subsequent rainfall events with different intensities on runoff and erosion in a coarse soil. Catena, 170(June), 100–107. https://doi.org/10.1016/j.catena.2018.06.008spa
dc.relation.referencesYan, Y., Mao, K., Shen, X., Cao, M., Xu, T., Guo, Z. and Bao, Q. (2021). Evaluation of the influence of ENSO on tropical vegetation in long time series using a new indicator. Ecological Indicators, 129, 107872. https://doi.org/10.1016/j.ecolind.2021.107872spa
dc.relation.referencesYang, X., Magnusson, J., Huang, S., Beldring, S. and Xu, C. Y. (2020). Dependence of regionalization methods on the complexity of hydrological models in multiple climatic regions. Journal of Hydrology, 582, 124357. https://doi.org/10.1016/j.jhydrol.2019.124357spa
dc.relation.referencesYeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S. Il, Yim, B. Y. and Kug, J. S. (2018). ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 56(1), 185–206. https://doi.org/10.1002/2017RG000568spa
dc.relation.referencesYue, S. and Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6), 4-1-4–7. https://doi.org/10.1029/2001wr000861spa
dc.relation.referencesZhao, C., Jia, X., Shao, M. and Zhu, Y. (2021). Regional variations in plant-available soil water storage and related driving factors in the middle reaches of the Yellow River Basin, China. Agricultural Water Management, 257(June), 107131. https://doi.org/10.1016/j.agwat.2021.107131spa
dc.relation.referencesZounemat, M., Batelaan, O., Fadaee, M. and Hinkelmann, R. (2021). Ensemble machine learning paradigms in hydrology: A review. Journal of Hydrology, 598(March), 126266. https://doi.org/10.1016/j.jhydrol.2021.126266spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalPrecipitaciónspa
dc.subject.proposalOrinoquiaspa
dc.subject.proposalUso del suelospa
dc.subject.proposalSoil moistureeng
dc.subject.proposalPrecipitationspa
dc.subject.proposalOrinoquiaeng
dc.subject.proposalLand useseng
dc.subject.unescoHumedad del suelospa
dc.subject.unescoSoil moistureeng
dc.subject.unescoRecursos hídricosspa
dc.subject.unescoWater resourceseng
dc.subject.unescoUso de la tierraspa
dc.subject.unescoLand useeng
dc.titleEstimación de la oferta hídrica para la planificación de cultivos en una cuenca hidrográfica de la Orinoquía colombianaspa
dc.title.translatedEstimation of water supply for crop planning in a hydrographic basin of the Colombian Orinoquíaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameAGROSAVIAspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121837331.2022.pdf
Tamaño:
4.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias agrarias, Linea de investigación en Suelos y Aguas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: