Análisis de los microbiomas bacterianos presentes en hojas y hojarasca de cultivos de cacao (Theobroma cacao L.) establecidos en suelos con cadmio natural en el municipio de Yacopí, Cundinamarca

dc.contributor.advisorTorres Rojas, Esperanzaspa
dc.contributor.advisorBarreto Hernández, Emilianospa
dc.contributor.authorTorres Parra, Sebastiánspa
dc.contributor.researchgroupAgrobiodiversidad y Biotecnologíaspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamaracaspa
dc.coverage.regionYacopíspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000583
dc.date.accessioned2025-11-05T20:59:09Z
dc.date.available2025-11-05T20:59:09Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos cultivos de cacao pueden verse afectados por su capacidad para acumular metales pesados tóxicos como el cadmio (Cd), presente de forma natural en los suelos. El microbioma bacteriano se ha caracterizado por su utilidad simbiótica para la planta y su capacidad para tolerar e inmovilizar Cd (CdtB), por lo que son de importancia para la biorremediación de Cd; sin embargo, su estructura en componentes clave de la filósfera del cacao, como las hojas y la hojarasca, sigue siendo poco conocida. Por ello, el presente trabajo tuvo como objetivo caracterizar la diversidad taxonómica del microbioma bacteriano presente en la hoja y hojarasca de cultivos de cacao establecidos en suelos con Cd natural, en el municipio de Yacopí, Cundinamarca. Para alcanzar este objetivo, se cuantificaron los niveles de Cd y otros nutrientes, y se recolectaron muestras de ADN de tres fincas con distintos niveles de Cd en el suelo (F1 > 5 mg kg⁻¹; F2 y F3 < 2 mg kg⁻¹), seguido de un análisis metataxonómico del microbioma bacteriano epífito y total a partir de la región V4 del gen 16S y un análisis bioinformático para determinar la estructura y composición de la comunidad mediante QIIME2 y los paquetes phyloseq y microeco de R. Los resultados revelaron una tendencia a menor diversidad alfa de las comunidades en la finca F1 con respecto a F2 y F3. La diversidad beta también evidenció una agrupación importante entre los grupos de hoja y hojarasca (p < 0.001), así como del microbioma total y epífito de la hojarasca (p = 0.013). Se identificaron como filos dominantes a Proteobacteria, Actinobacteria y Myxococcota. Además, se observó un efecto de autocorrelación entre el Cd y nutrientes como el calcio y el hierro (p < 0.05), que podrían influir en la estructura del microbioma junto con el Cd. Géneros como Verrucomicrobium, Gordonia y Arenimonas fueron significativamente enriquecidos a mayores concentraciones de Cd (p < 0.05) y rutas metabólicas como la biosíntesis de poliaminas, diterpenos y ácidos grasos se detectaron en mayor proporción en ambientes de alta contaminación por Cd. Estos hallazgos aportan indicios clave para comprender los mecanismos de tolerancia bacteriana al Cd en la filósfera del cacao, y podrían orientar el diseño de estrategias de manejo más eficientes y sostenibles. (Texto tomado de la fuente).spa
dc.description.abstractCacao crops can be affected by their ability to accumulate toxic heavy metals such as cadmium (Cd), which occurs naturally in soils. The bacterial microbiome has been characterized by its symbiotic utility to the plant and its ability to tolerate and immobilize Cd (CdtB), which makes it important for Cd bioremediation; however, its structure in key components of the cacao phyllosphere, such as leaves and litter, remains poorly understood. Therefore, the aim of this study was to characterize the taxonomic diversity of the bacterial microbiome present in the leaf and litter of cacao crops grown in soils with naturally occurring Cd, in the municipality of Yacopí, Cundinamarca. To achieve this, Cd and other nutrients were quantified, and DNA samples were collected from three farms with different soil Cd levels (F1 > 5 mg kg⁻¹; F2 and F3 < 2 mg kg⁻¹), followed by a metataxonomic analysis of the epiphytic and total bacterial microbiome based on the V4 region of the 16S gene and a bioinformatic analysis to determine the structure and composition of the community using QIIME2 and the R packages phyloseq and microeco. The results revealed a trend toward lower alpha diversity in the microbial communities of farm F1 compared to F2 and F3. Beta diversity also showed a significant clustering between leaf and litter groups (p < 0.001), as well as between the total and epiphytic microbiome of the litter (p = 0.013). Dominant phyla included Proteobacteria, Actinobacteria, and Myxococcota. An autocorrelation effect was observed between Cd and nutrients such as calcium and iron (p < 0.05), which may influence the microbiome structure alongside Cd. Genera such as Verrucomicrobium, Gordonia, and Arenimonas were significantly enriched at higher Cd concentrations (p < 0.05), and metabolic pathways such as polyamine, diterpene, and fatty acid biosynthesis were detected at higher proportions in Cd-contaminated environments. These findings provide key insights into the bacterial tolerance mechanisms to Cd in the cacao phyllosphere and could guide the development of more efficient and sustainable management strategies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.methodsSe cuantificaron los niveles de Cd y otros nutrientes, y se recolectaron muestras de ADN de tres fincas con distintos niveles de Cd en el suelo (F1 > 5 mg kg⁻¹; F2 y F3 < 2 mg kg⁻¹), seguido de un análisis metataxonómico del microbioma bacteriano epífito y total a partir de la región V4 del gen 16S y un análisis bioinformático para determinar la estructura y composición de la comunidad mediante QIIME2 y los paquetes phyloseq y microeco de R. Así como un análisis de predicción funcional con PiCRUST2.spa
dc.format.extentxviii, 120 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89108
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbbas, S. Z., Rafatullah, M., Hossain, K., Ismail, N., Tajarudin, H. A., y Abdul Khalil, H. P. S. (2018). A review on mechanism and future perspectives of cadmium-resistant bacteria. International Journal of Environmental Science and Technology, 15(1): 243–262. https://doi.org/10.1007/s13762-017-1400-5
dc.relation.referencesAbellan-Schneyder, I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. MSphere, 6(1). https://doi.org/10.1128/mSphere.01202-20
dc.relation.referencesAbt, E., & Robin, L. P. (2020). Perspective on Cadmium and Lead in Cocoa and Chocolate. Journal of Agricultural and Food Chemistry, 68(46), 13008–13015. https://doi.org/10.1021/acs.jafc.9b08295
dc.relation.referencesAgronet. (2024). Red de Información y Comunicación Estratégica del Sector Agropecuario de Colombia. Tomado de: www.agronet.gov.co. 23-04-2024.
dc.relation.referencesAgudelo-Castañeda, G. A., Cadena-Torres, J., Almanza-Merchán, P. J., & Pinzón-Sandoval, E. H. (2018). Desempeño fisiológico de nueve genotipos de cacao (&lt;i&gt;Theobroma cacao&lt;/i&gt; L.) bajo la sombra de tres especies forestales en Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(1), 223–232. https://doi.org/10.17584/rcch.2018v12i1.7341
dc.relation.referencesAime, M. C., & Phillips-Mora, W. (2005). The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao ) form a new lineage of Marasmiaceae. Mycologia, 97(5), 1012–1022. https://doi.org/10.1080/15572536.2006.11832751
dc.relation.referencesAkrofi, A. (2015). Phytophthora Megakarya: a review on its status as a pathogen on cacao in West Africa five major diseases of cocoa (T. cacao Lss.), Phytophthora pod rot (black pod), witches broom, swollen shoot virus, vascular streak dieback, and monilia pod. African Crop Sci. J. , 23, 67–87.
dc.relation.referencesAllen, M. J., & Wilson, W. H. (2008). Aquatic virus diversity accessed through omic techniques: A route map to function. Current Opinion in Microbiology, 11(3), 226–232. https://doi.org/10.1016/j.mib.2008.05.004
dc.relation.referencesAn, Q., Zheng, N., Pan, J., Ji, Y., Wang, S., Li, X., Chen, C., Peng, L., & Wang, B. (2024). Association between plant microbiota and cadmium uptake under the influence of microplastics with different particle sizes. Environment International, 190, 108938. https://doi.org/10.1016/j.envint.2024.108938
dc.relation.referencesAndermann, T., Antonelli, A., Barrett, R. L., & Silvestro, D. (2022). Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.839407
dc.relation.referencesAndrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
dc.relation.referencesAndrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2–3), 215–237. https://doi.org/10.1016/S0168-6445(03)00055-X
dc.relation.referencesAra, I., & Kudo, T. (2007). Krasilnikovia gen. nov., a new member of the family Micromonosporaceae and description of Krasilnikovia cinnamonea sp. nov. Actinomycetologica, 21(1), 1–10. https://doi.org/10.3209/saj.SAJ210101
dc.relation.referencesAraújo, W. L., Marcon, J., Maccheroni, W., van Elsas, J. D., van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants. Applied and Environmental Microbiology, 68(10), 4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002
dc.relation.referencesArévalo-Gardini, E., Canto, M., Alegre, J., Arévalo-Hernández, C. O., Loli, O., Julca, A., & Baligar, V. (2020). Cacao agroforestry management systems effects on soil fungi diversity in the Peruvian Amazon. Ecological Indicators, 115, 106404. https://doi.org/10.1016/j.ecolind.2020.106404
dc.relation.referencesArgout, X., Salse, J., Aury, J. M. et al. (2011). The genome of Theobroma cacao. Nat Genet, 43: 101–108. https://doi.org/10.1038/ng.736.
dc.relation.referencesArnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649–15654. https://doi.org/10.1073/pnas.2533483100
dc.relation.referencesAryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715–754. https://doi.org/10.1515/revce-2019-0016
dc.relation.referencesAryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715–754. https://doi.org/10.1515/revce-2019-0016
dc.relation.referencesAsgher, M., Per, T. S., Masood, A., Fatma, M., Freschi, L., Corpas, F. J., & Khan, N. A. (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research, 24(3), 2273–2285. https://doi.org/10.1007/s11356-016-7947-8
dc.relation.referencesBailey, B. A., Evans, H. C., Phillips‐Mora, W., Ali, S. S., & Meinhardt, L. W. (2018). Moniliophthora roreri , causal agent of cacao frosty pod rot. Molecular Plant Pathology, 19(7), 1580–1594. https://doi.org/10.1111/mpp.12648
dc.relation.referencesBaldotto, L. E. B., & Olivares, F. L. (2008). Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Canadian Journal of Microbiology, 54(11), 918–931. https://doi.org/10.1139/W08-087
dc.relation.referencesBalint-Kurti, P., Simmons, S. J., Blum, J. E., Ballaré, C. L., & Stapleton, A. E. (2010). Maize Leaf Epiphytic Bacteria Diversity Patterns Are Genetically Correlated with Resistance to Fungal Pathogen Infection. Molecular Plant-Microbe Interactions®, 23(4), 473–484. https://doi.org/10.1094/MPMI-23-4-0473
dc.relation.referencesBalvanera, P., Pfisterer, A. B., Buchmann, N., He, J., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x
dc.relation.referencesBao, L., Gu, L., Sun, B., Cai, W., Zhang, S., Zhuang, G., Bai, Z., & Zhuang, X. (2020). Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiology Ecology, 96(3). https://doi.org/10.1093/femsec/fiaa017
dc.relation.referencesBarbosa-Neto, J. F., Sabot, F., … Lanaud, C. (2011). The genome of Theobroma cacao. Nature Genetics, 43(2), 101–108. https://doi.org/10.1038/ng.736
dc.relation.referencesBarka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., y van Wezel, G. P. (2016). Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1): 1–43. https://doi.org/10.1128/MMBR.00019-15
dc.relation.referencesBashir, I., War, A. F., Rafiq, I., Reshi, Z. A., Rashid, I., & Shouche, Y. S. (2022). Phyllosphere microbiome: Diversity and functions. Microbiological Research, 254, 126888. https://doi.org/10.1016/j.micres.2021.126888
dc.relation.referencesBeattie, G. A., & Lindow, S. E. (1999). Bacterial Colonization of Leaves: A Spectrum of Strategies. Phytopathology®, 89(5), 353–359. https://doi.org/10.1094/PHYTO.1999.89.5.353
dc.relation.referencesBergmann, G. T., Bates, S. T., Eilers, K. G., Lauber, C. L., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43(7), 1450–1455. https://doi.org/10.1016/j.soilbio.2011.03.012
dc.relation.referencesBernal, E., Celis, S., Galíndez, X., Moratto, C., Sánchez, J., García, D. (2006). Microflora cultivable y endomicorrizas obtenidas en hojarasca de bosque (páramo guerrerofinca puente de tierra) Zipaquirá. Acta Biológica Colombiana, 11(2): 125-130.
dc.relation.referencesBeveridge, T. J. (1989). ROLE OF CELLULAR DESIGN IN BACTERIAL METAL ACCUMULATION AND MINERALIZATION. Annual Review of Microbiology, 43(1), 147–171. https://doi.org/10.1146/annurev.mi.43.100189.001051
dc.relation.referencesBodenhausen, N., Bortfeld-Miller, M., Ackermann, M., & Vorholt, J. A. (2014). A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota. PLoS Genetics, 10(4), e1004283. https://doi.org/10.1371/journal.pgen.1004283
dc.relation.referencesBodor, A., Bounedjoum, N., Vincze, G. E., Erdeiné Kis, Á., Laczi, K., Bende, G., Szilágyi, Á., Kovács, T., Perei, K., & Rákhely, G. (2020). Challenges of unculturable bacteria: environmental perspectives. Reviews in Environmental Science and Bio/Technology, 19(1), 1–22. https://doi.org/10.1007/s11157-020-09522-4
dc.relation.referencesBolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018
dc.relation.referencesBolger, A. M., Lohse, M., y Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relation.referencesBoller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
dc.relation.referencesBollmann, A., Palumbo, A. V., Lewis, K., & Epstein, S. S. (2010). Isolation and Physiology of Bacteria from Contaminated Subsurface Sediments. Applied and Environmental Microbiology, 76(22), 7413–7419. https://doi.org/10.1128/AEM.00376-10
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai. et al. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27295v2
dc.relation.referencesBouffaud, M., Poirier, M., Muller, D., & Moënne‐Loccoz, Y. (2014). Root microbiome relates to plant host evolution in maize and other <scp>P</scp> oaceae. Environmental Microbiology, 16(9), 2804–2814. https://doi.org/10.1111/1462-2920.12442
dc.relation.referencesBowatte, S., Newton, P. C. D., Brock, S., Theobald, P., & Luo, D. (2015). Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. The ISME Journal, 9(1), 265–267. https://doi.org/10.1038/ismej.2014.118
dc.relation.referencesBradford, M. A., Jones, T. H., Bardgett, R. D., Black, H. I. J., Boag, B., Bonkowski, M., Cook, R., Eggers, T., Gange, A. C., Grayston, S. J., Kandeler, E., McCaig, A. E., Newington, J. E., Prosser, J. I., Setälä, H., Staddon, P. L., Tordoff, G. M., Tscherko, D., & Lawton, J. H. (2002). Impacts of Soil Faunal Community Composition on Model Grassland Ecosystems. Science, 298(5593), 615–618. https://doi.org/10.1126/science.1075805
dc.relation.referencesBravo, D., & Braissant, O. (2022). Cadmium‐tolerant bacteria: current trends and applications in agriculture. Letters in Applied Microbiology, 74(3), 311–333. https://doi.org/10.1111/lam.13594
dc.relation.referencesBravo, D., Pardo‐Díaz, S., Benavides‐Erazo, J., Rengifo‐Estrada, G., Braissant, O., & Leon‐Moreno, C. (2018). Cadmium and cadmium‐tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698
dc.relation.referencesBray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325–349. https://doi.org/10.2307/1942268
dc.relation.referencesBruisson, S., Zufferey, M., L’Haridon, F., Trutmann, E., Anand, A., Dutartre, A., De Vrieze, M., & Weisskopf, L. (2019). Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02726
dc.relation.referencesBulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 64(1), 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
dc.relation.referencesBuresova, A., Kopecky, J., Hrdinkova, V., Kamenik, Z., Omelka, M., y Sagova-Mareckova, M. (2019). Succession of Microbial Decomposers Is Determined by Litter Type, but Site Conditions Drive Decomposition Rates. Applied and Environmental Microbiology, 85(24). https://doi.org/10.1128/AEM.01760-19
dc.relation.referencesCáceres, J & Torres, E. (2017). Microorganismos cultivables asociados a cadmio (Cd) presentes en suelos cacaoteros de los municipios de Yacopí y Nilo, como estrategia de biorremediación. International Symposium on Cocoa Research. Universidad Nacional de Colombia.
dc.relation.referencesCallahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119
dc.relation.referencesCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303
dc.relation.referencesCarmona Rojas, L. M., Gutiérrez Rodríguez, E. A., Henao Ramirez, A. M., & Urrea Trujillo, A. I. (2022). Nutrition in cacao (Theobroma cacao L.) crops: What determining factors should be considered? Revista de La Facultad de Agronomía, 121(Especial 2), 101. https://doi.org/10.24215/16699513e101
dc.relation.referencesCarro, L., Pujic, P., Trujillo, M. E., & Normand, P. (2013). Micromonospora is a normal occupant of actinorhizal nodules. Journal of Biosciences, 38(4), 685–693. https://doi.org/10.1007/s12038-013-9359-y
dc.relation.referencesChakraborty, J., Palit, K., & Das, S. (2022). Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment—a case study on north-eastern coast of Bay of Bengal, India. In Microbial Biodegradation and Bioremediation (pp. 81–107). Elsevier. https://doi.org/10.1016/B978-0-323-85455-9.00014-X
dc.relation.referencesCharrupi-Riascos, N., y Martínez-Novoa, D. C. (2017). Estudio ambiental del cadmio y su relación con suelos destinados al cultivo de cacao en los departamentos de Arauca y Nariño [Tesis de pregrado]. Universidad de la Salle, Bogotá, D. C. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/718
dc.relation.referencesChen, J., Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D., et al. (2012). Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics, 28(16), 2106–2113. doi:10.1093/bioinformatics/bts34210.1093/bioinformatics/bts342
dc.relation.referencesChen, M.-S., Chen, F., Chen, X.-H., Zheng, Z.-Q., Ma, X., & Tuo, L. (2022). Nocardioides mangrovi sp. nov., a novel endophytic actinobacterium isolated from root of Kandelia candel. International Journal of Systematic and Evolutionary Microbiology, 72(3). https://doi.org/10.1099/ijsem.0.005295
dc.relation.referencesChen, X.-H., Li, F., Li, F.-N., Chen, M.-S., Yan, X.-R., He, Z.-B., Li, S.-L., Wu, Y.-L., & Tuo, L. (2021). Nocardioides acrostichi sp. nov., a novel endophytic actinobacterium isolated from leaf of Acrostichum aureum. Antonie van Leeuwenhoek, 114(4), 479–486. https://doi.org/10.1007/s10482-021-01535-5
dc.relation.referencesChiu, C. Y., & Miller, S. A. (2019). Clinical metagenomics. Nature Reviews Genetics, 20(6), 341–355. https://doi.org/10.1038/s41576-019-0113-7
dc.relation.referencesChong, C. W., Pearce, D. A., Convey, P., Yew, W. C., & Tan, I. K. P. (2012). Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma, 181–182, 45–55. https://doi.org/10.1016/j.geoderma.2012.02.017
dc.relation.referencesChoudhary, D. K., Sharma, K. P., y Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett, 33: 1905-10. DOI 10.1007/s10529-011-0662-0
dc.relation.referencesChristian, N., Herre, E. A., Mejia, L. C., & Clay, K. (2017). Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proceedings of the Royal Society B: Biological Sciences, 284(1858), 20170641. https://doi.org/10.1098/rspb.2017.0641
dc.relation.referencesClemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003
dc.relation.referencesCorpe, W. A., & Rheem, S. (1989). Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiology Letters, 62(4), 243–249. https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
dc.relation.referencesCruz-Neto, R. D. O., SOUZA JÚNIOR, J. O. DE, SODRÉ, G. A., & BALIGAR, V. C. (2015). GROWTH AND NUTRITION OF CACAO SEEDLINGS INFLUENCED BY ZINC APLICATION IN SOIL. Revista Brasileira de Fruticultura, 37(4), 1053–1064. https://doi.org/10.1590/0100-2945-238/14
dc.relation.referencesCubillos, G. (2017). Frosty Pod Rot, disease that affects the cocoa (Theobroma cacao) crops in Colombia. Crop Protection, 96, 77–82. https://doi.org/10.1016/j.cropro.2017.01.011
dc.relation.referencesCui, D., Kong, L., Wang, Y., Zhu, Y., & Zhang, C. (2022). In situ identification of environmental microorganisms with Raman spectroscopy. Environmental Science and Ecotechnology, 11, 100187. https://doi.org/10.1016/j.ese.2022.100187
dc.relation.referencesCunha, J. R., Carvalho, F. E. L., Lima-Neto, M. C., Jardim-Messeder, D., Cerqueira, J. V. A., Martins, M. O., Fontenele, A. V., Márgis-Pinheiro, M., Komatsu, S., & Silveira, J. A. G. (2019). Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. Journal of Proteomics, 192, 125–136. https://doi.org/10.1016/j.jprot.2018.08.014
dc.relation.referencesde Vries, F. T., Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., Hobbs, P. J., Quirk, H., Shipley, B., Cornelissen, J. H. C., Kattge, J., & Bardgett, R. D. (2012). Abiotic drivers and plant traits explain landscape‐scale patterns in soil microbial communities. Ecology Letters, 15(11), 1230–1239. https://doi.org/10.1111/j.1461-0248.2012.01844.x
dc.relation.referencesDelmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C., & Vorholt, J. A. (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences, 106(38), 16428–16433. https://doi.org/10.1073/pnas.0905240106
dc.relation.referencesDeng, Y., Fu, S., Sarkodie, E. K., Zhang, S., Jiang, L., Liang, Y., Yin, H., Bai, L., Liu, X., Liu, H., & Jiang, H. (2022). Ecological responses of bacterial assembly and functions to steep Cd gradient in a typical Cd-contaminated farmland ecosystem. Ecotoxicology and Environmental Safety, 229, 113067. https://doi.org/10.1016/j.ecoenv.2021.113067
dc.relation.referencesDethlefsen, L., Huse, S., Sogin, M. L., & Relman, D. A. (2008). The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biology, 6(11), e280. https://doi.org/10.1371/journal.pbio.0060280
dc.relation.referencesDewi Puspita, I., Kamagata, Y., Tanaka, M., Asano, K., & Nakatsu, C. H. (2012). Are Uncultivated Bacteria Really Uncultivable? Microbes and Environments, 27(4), 356–366. https://doi.org/10.1264/jsme2.ME12092
dc.relation.referencesDheer, P., Rautela, I., Sharma, V., Dhiman, M., Sharma, A., Sharma, N., & Sharma, M. D. (2020). Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene, 753, 144795. https://doi.org/10.1016/j.gene.2020.144795
dc.relation.referencesDilly, O., Bartsch, S., Rosenbrock, P., Buscot, F., & Munch, J. C. (2001). Shifts in physiological capabilities of the microbiota during the decomposition of leaf litter in a black alder ( Alnus glutinosa (Gaertn.) L.) forest. Soil Biology and Biochemistry, 33(7–8), 921–930. https://doi.org/10.1016/S0038-0717(00)00239-X
dc.relation.referencesDobroné Tóth, M., Halász, J. L., & Balázsy, S. (2009). Phyllospheric microbial populations of ragweed ( Ambrosia Elatior L.) plant grown in toxic metal-contaminated areas. Archives of Agronomy and Soil Science, 55(2), 217–231. https://doi.org/10.1080/03650340802477718
dc.relation.referencesDonelli, G., Vuotto, C., & Mastromarino, P. (2013). Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microbial Ecology in Health & Disease, 24(0). https://doi.org/10.3402/mehd.v24i0.20105
dc.relation.referencesDong, X., Greening, C., Rattray, J. E., Chakraborty, A., Chuvochina, M., Mayumi, D., Dolfing, J., Li, C., Brooks, J. M., Bernard, B. B., Groves, R. A., Lewis, I. A., & Hubert, C. R. J. (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications, 10(1), 1816. https://doi.org/10.1038/s41467-019-09747-0
dc.relation.referencesDouglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685–688. https://doi.org/10.1038/s41587-020-0548-6
dc.relation.referencesDu, Y., Zhang, D., Zhou, D., Liu, L., Wu, J., Chen, H., Jin, D., & Yan, M. (2021). The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil–plant system. AMB Express, 11(1), 103. https://doi.org/10.1186/s13568-021-01264-y
dc.relation.referencesDubey, S., Shri, M., Gupta, A., Rani, V., & Chakrabarty, D. (2018). Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters, 16(4), 1169–1192. https://doi.org/10.1007/s10311-018-0741-8
dc.relation.referencesEdelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431–444. https://doi.org/10.1016/j.scienta.2017.12.039
dc.relation.referencesEdgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604
dc.relation.referencesEichlerová, I., Homolka, L., Žifčáková, L., Lisá, L., Dobiášová, P., & Baldrian, P. (2015). Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecology, 13, 10–22. https://doi.org/10.1016/j.funeco.2014.08.002
dc.relation.referencesEller, F., & Brix, H. (2016). Influence of low calcium availability on cadmium uptake and translocation in a fast-growing shrub and a metal-accumulating herb. AoB PLANTS, 8. https://doi.org/10.1093/aobpla/plv143
dc.relation.referencesEl-Sayed, A. S. A., Fathalla, M., Shindia, A. A., Rady, A. M., El-Baz, A. F., Morsy, Y., Sitohy, B., & Sitohy, M. (2021). Purification and Biochemical Characterization of Taxadiene Synthase from Bacillus koreensis and Stenotrophomonas maltophilia. Scientia Pharmaceutica, 89(4), 48. https://doi.org/10.3390/scipharm89040048
dc.relation.referencesEpstein, S. (2013). The phenomenon of microbial uncultivability. Current Opinion in Microbiology, 16(5), 636–642. https://doi.org/10.1016/j.mib.2013.08.003
dc.relation.referencesFaith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10.
dc.relation.referencesFaith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., Rosenbaum, M., & Gordon, J. I. (2013). The Long-Term Stability of the Human Gut Microbiota. Science, 341(6141). https://doi.org/10.1126/science.1237439
dc.relation.referencesFaizan, M., Alam, P., Hussain, A., Karabulut, F., Tonny, S. H., Cheng, S. H., Yusuf, M., Adil, M. F., Sehar, S., Alomrani, S. O., Albalawi, T., & Hayat, S. (2024). Phytochelatins: Key regulator against heavy metal toxicity in plants. Plant Stress, 11, 100355. https://doi.org/10.1016/j.stress.2024.100355
dc.relation.referencesFAOSTAT. (2020). Base de datos de la FAO sobre agricultura, comercio y alimentación. Tomado de: https://www.fao.org/faostat/es/#data/QCL 28-09-2022.
dc.relation.referencesFiguereido, N. N., Cravo, M. S., & Macedo, J. L. V. Definição da época de amostragem e da idade da folha para diagnose do estado nutricional do cupuaçuzeiro (Theobroma grandiflorum (Willd. ex Spreng.) Schum.) na Amazônia Central. Ciências Agrárias: Revista da Universidade Federal do Amazonas, 9(1-2), p. 71-88.
dc.relation.referencesFINAGRO (2021). Ficha de inteligencia: Cacao. Tomado de: https://www.finagro.com.co/sites/default/files/ficha_de_inteligencia_-_cacao.pdf 23-04-2024.
dc.relation.referencesFinkel, O. M., Burch, A. Y., Lindow, S. E., Post, A. F., & Belkin, S. (2011). Geographical Location Determines the Population Structure in Phyllosphere Microbial Communities of a Salt-Excreting Desert Tree. Applied and Environmental Microbiology, 77(21), 7647–7655. https://doi.org/10.1128/AEM.05565-11
dc.relation.referencesFischer, M. A., Güllert, S., Neulinger, S. C., Streit, W. R., & Schmitz, R. A. (2016). Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01297
dc.relation.referencesFowler, M. S. (2008). Cocoa Beans: From Tree to Factory. In Industrial Chocolate Manufacture and Use (pp. 10–47). Wiley. https://doi.org/10.1002/9781444301588.ch2
dc.relation.referencesFranco-Duarte, R., Černáková, L., Kadam, S., Kaushik, K. S., Salehi, B., Bevilacqua, A., Corbo, M. R., Antolak, H., Dybka-Stępień, K., Leszczewicz, M., Relison Tintino, S., Alexandrino de Souza, V. C., Sharifi-Rad, J., Coutinho, H. D. M., Martins, N., & Rodrigues, C. F. (2019). Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. Microorganisms, 7(5). https://doi.org/10.3390/microorganisms7050130
dc.relation.referencesFurcal Beriguete, P. (2016). Extracción de nutrientes por los frutos de cacao en dos localidades en Costa Rica. Agronomía Mesoamericana, 28(1), 113. https://doi.org/10.15517/am.v28i1.23236
dc.relation.referencesGal, M., Preston, G. M., Massey, R. C., Spiers, A. J., & Rainey, P. B. (2003). Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Molecular Ecology, 12(11), 3109–3121. https://doi.org/10.1046/j.1365-294X.2003.01953.x
dc.relation.referencesGalán Huertos, E., & Romero Baena, A. (2008). Contaminación de Suelos por Metales Pesados. Macla, 10, 48–60. https://doi.org/10.1520/C0033-03
dc.relation.referencesGao, B., y Gupta, R. S. (2012). Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria. Microbiology and Molecular Biology Reviews, 76(1): 66–112. https://doi.org/10.1128/MMBR.05011-11
dc.relation.referencesGarcia, R., & Müller, R. (2014). The Family Nannocystaceae. In The Prokaryotes (pp. 213–229). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_305
dc.relation.referencesGillespie, D. E., Brady, S. F., Bettermann, A. D., Cianciotto, N. P., Liles, M. R., Rondon, M. R., Clardy, J., Goodman, R. M., & Handelsman, J. (2002). Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA. Applied and Environmental Microbiology, 68(9), 4301–4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002
dc.relation.referencesGramacho, K. P., Luz, E. D. M. N., Silva, F. S. da, Lopes, U. V., Pires, J. L., & Pereira, L. (2016). Pathogenic variability of Moniliophthora perniciosa in three agroecological zones of the cacao region of Bahia, Brazil. Crop Breeding and Applied Biotechnology, 16(1), 7–13. https://doi.org/10.1590/1984-70332016v16n1a2
dc.relation.referencesGramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370–378. https://doi.org/10.1016/j.scitotenv.2017.08.145
dc.relation.referencesGran-Scheuch, A., Ramos-Zuñiga, J., Fuentes, E., Bravo, D., & Pérez-Donoso, J. M. (2020). Effect of Co-contamination by PAHs and Heavy Metals on Bacterial Communities of Diesel Contaminated Soils of South Shetland Islands, Antarctica. Microorganisms, 8(11), 1749. https://doi.org/10.3390/microorganisms8111749
dc.relation.referencesGreen, B. D., & Keller, M. (2006). Capturing the uncultivated majority. Current Opinion in Biotechnology, 17(3), 236–240. https://doi.org/10.1016/j.copbio.2006.05.004
dc.relation.referencesGriffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., & Whiteley, A. S. (2011). The bacterial biogeography of British soils. Environmental Microbiology, 13(6), 1642–1654. https://doi.org/10.1111/j.1462-2920.2011.02480.x
dc.relation.referencesGuan, W., Fang, Z., Chen, Y., Li, Y., Peng, Z., Sun, L., Deng, Q., & Gooneratne, R. (2023). Cadmium-chelating ability of the siderophore DHBS secreted by Leclercia adecarboxylata FCH-CR2 and its action mechanism. Science of The Total Environment, 900, 165850. https://doi.org/10.1016/j.scitotenv.2023.165850
dc.relation.referencesGuarín, D., Martín-López, J. M., Libohova, Z., Benavides-Bolaños, J., Maximova, S. N., Guiltinan, M. J., Spargo, J., da Silva, M., Fernandez, A., & Drohan, P. (2024). Accumulation of cadmium in soils, litter and leaves in cacao farms in the North Sierra Nevada de Santa Marta, Colombia. Geoderma Regional, 36, e00762. https://doi.org/10.1016/j.geodrs.2024.e00762
dc.relation.referencesGuest, D. (2007). Black Pod: Diverse Pathogens with a Global Impact on Cocoa Yield. Phytopathology®, 97(12), 1650–1653. https://doi.org/10.1094/PHYTO-97-12-1650
dc.relation.referencesGuo, W.-J., Meetam, M., & Goldsbrough, P. B. (2008). Examining the Specific Contributions of Individual Arabidopsis Metallothioneins to Copper Distribution and Metal Tolerance . Plant Physiology, 146(4), 1697–1706. https://doi.org/10.1104/pp.108.115782
dc.relation.referencesHartemink, A. E. (2005). Nutrient Stocks, Nutrient Cycling, and Soil Changes in Cocoa Ecosystems: A Review (pp. 227–253). https://doi.org/10.1016/S0065-2113(05)86005-5
dc.relation.referencesHe, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils (pp. 135–225). https://doi.org/10.1016/bs.agron.2015.06.005
dc.relation.referencesHe, X. L., Fan, S. K., Zhu, J., Guan, M. Y., Liu, X. X., Zhang, Y. S., & Jin, C. W. (2017). Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant and Soil, 416(1–2), 453–462. https://doi.org/10.1007/s11104-017-3232-y
dc.relation.referencesHector, A., Beale, A. J., Minns, A., Otway, S. J., & Lawton, J. H. (2000). Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 90(2), 357–371. https://doi.org/10.1034/j.1600-0706.2000.900217.x
dc.relation.referencesHilton, S. K., Castro-Nallar, E., Pérez-Losada, M., Toma, I., McCaffrey, T. A., Hoffman, E. P., Siegel, M. O., Simon, G. L., Johnson, W. E., & Crandall, K. A. (2016). Metataxonomic and Metagenomic Approaches vs. Culture-Based Techniques for Clinical Pathology. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00484
dc.relation.referencesHolland, M. A. (2011). Nitrogen: Give and Take from Phylloplane Microbes. In Ecological Aspects of Nitrogen Metabolism in Plants (pp. 215–230). Wiley. https://doi.org/10.1002/9780470959404.ch10
dc.relation.referencesHopwood, D. A. (2007). Streptomyces in Nature and Medicine: The Antibiotic Makers. Oxford University Press.
dc.relation.referencesHou, D., Lin, Z., Wang, R., Ge, J., Wei, S., Xie, R., Wang, H., Wang, K., Hu, Y., Yang, X., Lu, L., & Tian, S. (2018). Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere. Applied and Environmental Microbiology, 84(12). https://doi.org/10.1128/AEM.02797-17
dc.relation.referencesHou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366–381. https://doi.org/10.1038/s43017-020-0061-y
dc.relation.referencesICCO. (2024). Quarterly Bulletin of Cocoa Statistics. Production of cocoa (Vol. L).
dc.relation.referencesIndiarto, R., Raihan, Z. R., Puspita Dewi, M., Raisa Aqila, Z., & Yusuf Efendi, M. (2021). A Review of Innovation in Cocoa Bean Processing By-Products. International Journal of Emerging Trends in Engineering Research, 9(8), 1162–1169. https://doi.org/10.30534/ijeter/2021/22982021
dc.relation.referencesIrfan, M., Hayat, S., Ahmad, A. y Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi J Biol Sci, 20, 1-10.
dc.relation.referencesJaffré, T., Brooks, R. R., Lee, J., & Reeves, R. D. (1976). Sebertia acuminata : A Hyperaccumulator of Nickel from New Caledonia. Science, 193(4253), 579–580. https://doi.org/10.1126/science.193.4253.579
dc.relation.referencesJaimes-Gelves, D. A. (2018). Microbiota bacteriana cultivable asociada a la degradación de la hojarasca de Machaerium arboreum en el corregimiento la garita, los patios - Norte de Santander. [Tesis de pregrado]. Universidad de Pamplona, Norte de Santander.
dc.relation.referencesJaimes-Suárez, Y. Y., Carvajal-Rivera, A. S., Galvis-Neira, D. A., Carvalho, F. E. L., & Rojas-Molina, J. (2022). Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.921469
dc.relation.referencesJanssen, P. H. (2009). Dormant microbes: scouting ahead or plodding along? Nature, 458(7240), 831–831. https://doi.org/10.1038/458831a
dc.relation.referencesJanssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved Culturability of Soil Bacteria and Isolation in Pure Culture of Novel Members of the Divisions Acidobacteria , Actinobacteria , Proteobacteria , and Verrucomicrobia. Applied and Environmental Microbiology, 68(5), 2391–2396. https://doi.org/10.1128/AEM.68.5.2391-2396.2002
dc.relation.referencesJarvis, S. C., Jones, L. H. P., & Hopper, M. J. (1976). Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and Soil, 44(1), 179–191. https://doi.org/10.1007/BF00016965
dc.relation.referencesJia, T., Guo, T., Cao, M., & Chai, B. (2018). Effects of Heavy Metals on Phyllosphere and Rhizosphere Microbial Community of Bothriochloa ischaemum. Applied Sciences, 8(9), 1419. https://doi.org/10.3390/app8091419
dc.relation.referencesKaevska, M., Lvoncik, S., Slana, I., Kulich, P., & Kralik, P. (2014). Microscopy, Culture, and Quantitative Real-Time PCR Examination Confirm Internalization of Mycobacteria in Plants. Applied and Environmental Microbiology, 80(13), 3888–3894. https://doi.org/10.1128/AEM.00496-14
dc.relation.referencesKämpfer, P., Glaeser, S. P., McInroy, J. A., & Busse, H.-J. (2016). Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. International Journal of Systematic and Evolutionary Microbiology, 66(4), 1869–1874. https://doi.org/10.1099/ijsem.0.000959
dc.relation.referencesKawano, T., Kawano, N., Muto, S. y Lapeyrie, F. (2001). Cation-induced superoxide generation in tobacco cell suspension culture is dependent on ion valence. Plant Cell Environ, 24: 1235–1241.
dc.relation.referencesKhan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 22(18), 13772–13799. https://doi.org/10.1007/s11356-015-4881-0
dc.relation.referencesKhan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., Wei, L., & Wang, T. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449–458. https://doi.org/10.1016/j.fct.2013.05.014
dc.relation.referencesKhan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of The Total Environment, 601–602, 1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030
dc.relation.referencesKielak, A. M., Scheublin, T. R., Mendes, L. W., van Veen, J. A., & Kuramae, E. E. (2016). Bacterial Community Succession in Pine-Wood Decomposition. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00231
dc.relation.referencesKim, M., Singh, D., Lai-Hoe, A., Go, R., Abdul Rahim, R., A.N., A., Chun, J., & Adams, J. M. (2012). Distinctive Phyllosphere Bacterial Communities in Tropical Trees. Microbial Ecology, 63(3), 674–681. https://doi.org/10.1007/s00248-011-9953-1
dc.relation.referencesKlaumann, S., Nickolaus, S. D., Fürst, S. H., Starck, S., Schneider, S., Ekkehard Neuhaus, H., & Trentmann, O. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 192(2), 393–404. https://doi.org/10.1111/j.1469-8137.2011.03798.x
dc.relation.referencesKlindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1–e1. https://doi.org/10.1093/nar/gks808
dc.relation.referencesKnief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C., & Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal, 6(7), 1378–1390. https://doi.org/10.1038/ismej.2011.192
dc.relation.referencesKnief, C., Frances, L., & Vorholt, J. A. (2010). Competitiveness of Diverse Methylobacterium Strains in the Phyllosphere of Arabidopsis thaliana and Identification of Representative Models, Including M. extorquens PA1. Microbial Ecology, 60(2), 440–452. https://doi.org/10.1007/s00248-010-9725-3
dc.relation.referencesKopittke, P. M., Wang, P., Menzies, N. W., Naidu, R., & Kinraide, T. B. (2014). A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant and Soil, 375(1–2), 35–46. https://doi.org/10.1007/s11104-013-1948-x
dc.relation.referencesKudo, T., MATSUSHIMA, K., ITOH, T., SASAKI, J., & SUZUKI, K.-I. (1998). Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia. International Journal of Systematic Bacteriology, 48(4), 1245–1255. https://doi.org/10.1099/00207713-48-4-1245
dc.relation.referencesKudo, T., Nakajima, Y., & Suzuki, K. (1999). Catenuloplanes crispus (Petrolini et al. 1993) comb. nov.: incorporation of the genus Planopolyspora Petrolini 1993 into the genus Catenuloplanes Yokota et al. 1993 with an amended description of the genus Catenuloplanes. International Journal of Systematic and Evolutionary Microbiology, 49(4), 1853–1860. https://doi.org/10.1099/00207713-49-4-1853
dc.relation.referencesKumar, B., Singh, A.., Bala, M. y Kumar, A. (2017). Microbial Community Composition and Functions Through Metagenomics. Plant-Microbe Interactions in Agro-Ecological. Dpringer Nature Singapore Pte Ltd. DOI: 10.1007/978-981-10-5813-4_32
dc.relation.referencesKumar, J., Babele, P. K., Singh, D., & Kumar, A. (2016). UV-B Radiation Stress Causes Alterations in Whole Cell Protein Profile and Expression of Certain Genes in the Rice Phyllospheric Bacterium Enterobacter cloacae. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01440
dc.relation.referencesKumar, J., Singh, D., Ghosh, P., & Kumar, A. (2017). Endophytic and Epiphytic Modes of Microbial Interactions and Benefits. In Plant-Microbe Interactions in Agro-Ecological Perspectives (pp. 227–253). Springer Singapore. https://doi.org/10.1007/978-981-10-5813-4_12
dc.relation.referencesKumar, M., Revathi, K., & Khanna, S. (2015). Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydrate Polymers, 134, 761–766. https://doi.org/10.1016/j.carbpol.2015.08.072
dc.relation.referencesLagier, J.-C., Hugon, P., Khelaifia, S., Fournier, P.-E., La Scola, B., & Raoult, D. (2015). The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clinical Microbiology Reviews, 28(1), 237–264. https://doi.org/10.1128/CMR.00014-14
dc.relation.referencesLan, G., Wei, Y., Zhang, X., Wu, Z., Ji, K., Xu, H., Chen, B., & He, F. (2024). Assembly and maintenance of phyllosphere microbial diversity during rubber tree leaf senescence. Communications Biology, 7(1), 1192. https://doi.org/10.1038/s42003-024-06907-x
dc.relation.referencesLeducq, J.-B., Seyer-Lamontagne, É., Condrain-Morel, D., Bourret, G., Sneddon, D., Foster, J. A., Marx, C. J., Sullivan, J. M., Shapiro, B. J., & Kembel, S. W. (2022). Fine-Scale Adaptations to Environmental Variation and Growth Strategies Drive Phyllosphere Methylobacterium Diversity. MBio, 13(1). https://doi.org/10.1128/mbio.03175-21
dc.relation.referencesLee, C-W., Ng, A Y-F., Narayanan, K., Sim, E. U-H., & Ng, C-C. (2009). Aislamiento y caracterización de bacterias cultivables de aguas costeras tropicales. Ciencias marinas, 35(2), 153-167. Recuperado en 24 de octubre de 2024, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802009000200003&lng=es&tlng=es.
dc.relation.referencesLee, S. (2020). Artificial induction and isolation of cadmium-tolerant soil bacteria. Journal of Applied Biological Chemistry, 63(2), 125–129. https://doi.org/10.3839/jabc.2020.017
dc.relation.referencesLewis, R. W., Bittenbender, H. C., Heisey, S., & Nguyen, N. H. (2024). Phyllosphere to Ferment: Site Conditions Structure Cacao Pod and Fermentation Microbiomes in Hawaiʻi. PhytoFrontiersTM, 4(2), 150–158. https://doi.org/10.1094/PHYTOFR-08-23-0104-R
dc.relation.referencesLeys, N. M., Ryngaert, A., Bastiaens, L., Wattiau, P., Top, E. M., Verstraete, W., & Springael, D. (2005). Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 51(3), 375–388. https://doi.org/10.1016/j.femsec.2004.09.015
dc.relation.referencesLi, Y., Zhang, Z., Liu, W., Ke, M., Qu, Q., Zhou, Z., Lu, T., & Qian, H. (2021). Phyllosphere bacterial assemblage is affected by plant genotypes and growth stages. Microbiological Research, 248, 126743. https://doi.org/10.1016/j.micres.2021.126743
dc.relation.referencesLilley, A. (1997). The dispersal and establishment of pseudomonad populations in the phyllosphere of sugar beet by phytophagous caterpillars. FEMS Microbiology Ecology, 24(2), 151–157. https://doi.org/10.1016/S0168-6496(97)00054-8
dc.relation.referencesLima, A. I. G., Corticeiro, S. C., & de Almeida Paula Figueira, E. M. (2006). Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 39(4), 763–769. https://doi.org/10.1016/j.enzmictec.2005.12.009
dc.relation.referencesLin, H., & Peddada, S. Das. (2020). Analysis of compositions of microbiomes with bias correction. Nature Communications, 11(1), 3514. https://doi.org/10.1038/s41467-020-17041-7
dc.relation.referencesLin, T., Lu, Q., Zheng, Z., Li, S., Li, S., Liu, Y., Zhu, T., Chen, L., Yang, C., & Han, S. (2023). Soil cadmium stress affects the phyllosphere microbiome and associated pathogen resistance differently in male and female poplars. Journal of Experimental Botany, 74(6), 2188–2202. https://doi.org/10.1093/jxb/erad034
dc.relation.referencesLin, Y.-F., & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 69(19), 3187–3206. https://doi.org/10.1007/s00018-012-1089-z
dc.relation.referencesLindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
dc.relation.referencesLiu, C., Cui, Y., Li, X., & Yao, M. (2021). microeco : an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97(2). https://doi.org/10.1093/femsec/fiaa255
dc.relation.referencesLiu, N., Liu, Q., Min, J., Zhang, S., Li, S., Chen, Y., & Dai, J. (2022). Specific bacterial communities in the rhizosphere of low-cadmium and high zinc wheat (Triticum aestivum L.). Science of The Total Environment, 838, 156484. https://doi.org/10.1016/j.scitotenv.2022.156484
dc.relation.referencesLópez‐Climent, M. F., Arbona, V., Pérez‐Clemente, R. M., Zandalinas, S. I., & Gómez‐Cadenas, A. (2014). Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants. Plant Biology, 16(1), 79–87. https://doi.org/10.1111/plb.12006
dc.relation.referencesLópez-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 6(1), 25279. https://doi.org/10.1038/srep25279
dc.relation.referencesLozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Applied and Environmental Microbiology, 73(5), 1576–1585. https://doi.org/10.1128/AEM.01996-06
dc.relation.referencesLozupone, C., & Knight, R. (2005). UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology, 71(12), 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
dc.relation.referencesLu, L., Tian, S., Zhang, M., Zhang, J., Yang, X., & Jiang, H. (2010). The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. Journal of Hazardous Materials, 183(1–3), 22–28. https://doi.org/10.1016/j.jhazmat.2010.06.036
dc.relation.referencesLumibao, C. Y., & Liu, Y. (2024). Long-Term Contaminant Exposure Alters Functional Potential and Species Composition of Soil Bacterial Communities in Gulf Coast Prairies. Microorganisms, 12(7). https://doi.org/10.3390/microorganisms12071460
dc.relation.referencesLuo, J., Tao, Q., Jupa, R., Liu, Y., Wu, K., Song, Y., Li, J., Huang, Y., Zou, L., Liang, Y., & Li, T. (2019). Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in Sedum alfredii. Environmental Science & Technology, 53(12), 6954–6963. https://doi.org/10.1021/acs.est.9b01093
dc.relation.referencesLuo, L. Y., Xie, L. L., Jin, D. C., Mi, B. B., Wang, D. H., Li, X. F., Dai, X. Z., Zou, X. X., Zhang, Z., Ma, Y. Q., & Liu, F. (2019). Bacterial community response to cadmium contamination of agricultural paddy soil. Applied Soil Ecology, 139, 100–106. https://doi.org/10.1016/j.apsoil.2019.03.022
dc.relation.referencesLux, A., Martinka, M., Vaculik, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62(1), 21–37. https://doi.org/10.1093/jxb/erq281
dc.relation.referencesMace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology & Evolution, 27(1), 19–26. https://doi.org/10.1016/j.tree.2011.08.006
dc.relation.referencesMandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., & Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial Ecology in Health & Disease, 26(0). https://doi.org/10.3402/mehd.v26.27663
dc.relation.referencesMarchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3(1), 31. https://doi.org/10.1186/s40168-015-0094-5
dc.relation.referencesMarín, I., & Arahal, D. R. (2014). The Family Beijerinckiaceae. In The Prokaryotes (pp. 115–133). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_255
dc.relation.referencesMartínez–Murcia, A. J., Soler, L., Saavedra, M. J., Chacón, M. R., Guarro, J., Stackebrandt, E., y Figueras, M. J. (2005). Phenotypic, genotypic and phylogenetic discrepancies to differentiate Aeromonas salmonicida from Aeromonas bestiarum. Int. Microbiol. 8: 259–269.
dc.relation.referencesMartiny, J. B. H., Jones, S. E., Lennon, J. T., & Martiny, A. C. (2015). Microbiomes in light of traits: A phylogenetic perspective. Science, 350(6261). https://doi.org/10.1126/science.aac9323
dc.relation.referencesMcGrath, S. P. (1999). Adverse effects of cadmium on soil microflora and fauna. En Cadmium in soils and plants eds. McLaughlin, M. J. y Singh, B. R. pp.199-218. Dordrecht: Springer Netherlands.
dc.relation.referencesMelnick, R. L., Suárez, C., Bailey, B. A., & Backman, P. A. (2011). Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biological Control, 57(3), 236–245. https://doi.org/10.1016/j.biocontrol.2011.03.005
dc.relation.referencesMercier, J., & Lindow, S. E. (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology, 66(1), 369–374. https://doi.org/10.1128/AEM.66.1.369-374.2000
dc.relation.referencesMeter A., Atkinson R.J., & Laliberte B. (2019). Cadmium in Cacao from Latin America and the Caribbean – A Review of Research and Potential Mitigation Solutions. Bioversity International.
dc.relation.referencesMille-Lindblom, C., & Tranvik, L. J. (2003). Antagonism between Bacteria and Fungi on Decomposing Aquatic Plant Litter. Microbial Ecology, 45(2), 173–182. https://doi.org/10.1007/s00248-002-2030-z
dc.relation.referencesMinasny, B. y McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9): 1378-1388. https://doi.org/10.1016/j.cageo.2005.12.009
dc.relation.referencesMonier, J.-M., & Lindow, S. E. (2004). Frequency, Size, and Localization of Bacterial Aggregates on Bean Leaf Surfaces. Applied and Environmental Microbiology, 70(1), 346–355. https://doi.org/10.1128/AEM.70.1.346-355.2004
dc.relation.referencesMoreno, Edgardo. (2002). In search of a bacterial species definition. Revista de Biología Tropical, 50(2), 803-821. Retrieved October 29, 2024, from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442002000200036&lng=en&tlng=en.
dc.relation.referencesMORILLO, F., SÁNCHEZ, P., GIRÓN, C., VALERA, Á., MUÑOZ, W., & GUERRA, J. (2008). Comportamiento de híbridos de cacao (Theobroma cacao) al ataque de Steirastoma breve (Coleoptera: Cerambycidae). Revista Colombiana de Entomología, 34(2), 151–155. https://doi.org/10.25100/socolen.v34i2.9273
dc.relation.referencesMorris, C. E., Monier, J.-M., & Jacques, M.-A. (1998). A Technique To Quantify the Population Size and Composition of the Biofilm Component in Communities of Bacteria in the Phyllosphere. Applied and Environmental Microbiology, 64(12), 4789–4795. https://doi.org/10.1128/AEM.64.12.4789-4795.1998
dc.relation.referencesMorrow, H. (2010). Cadmium and Cadmium Alloys. In Kirk-Othmer Encyclopedia of Chemical Technology (pp. 1–36). Wiley. https://doi.org/10.1002/0471238961.0301041303011818.a01.pub3
dc.relation.referencesMotilal, L. A., & Sreenivasan, T. N. (2012). Revisiting 1727: Crop Failure Leads to the Birth of Trinitario Cacao. Journal of Crop Improvement, 26(5), 599–626. https://doi.org/10.1080/15427528.2012.663734
dc.relation.referencesNational Research Council (US). (2012). Panel on Biodiversity Research Priorities. Conserving Biodiversity: A Research Agenda for Development Agencies. Washington (DC): National Academies Press (US), Biodiversity and Development. Available from: https://www.ncbi.nlm.nih.gov/books/NBK234666/
dc.relation.referencesNelson, M. T. (1986). Interactions of divalent cations with single calcium channels from rat brain synaptosomes. J Gen Physiol, 87: 201–222.
dc.relation.referencesNurkanto, A., Lisdiyanti, P., Hamada, M., Ratnakomala, S., Shibata, C., & Tamura, T. (2015). Cryptosporangium cibodasense sp. nov., isolated from leaf litter in Indonesia. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_12), 4632–4637. https://doi.org/10.1099/ijsem.0.000625
dc.relation.referencesOdiwe, A. (2011). Litter Production and Decomposition in Cacao (Theobroma cacao Linn.) and Kola nut (Cola nitida (Vent.) Schott&Endl.) Plantations in Southwestern Nigeria. Ecotropica, 17, 79–90.
dc.relation.referencesOkoroiwu, H. (2019). Choice of Parametric and Nonparametric statistical procedures in Clinical and Biomedical Research. Sokoto Journal of Medical Laboratory Science, 4(2): 5 – 15.
dc.relation.referencesPabón, M. G., Herrera-Roa, L. I., y Sepúlveda, W. S. (2016). Caracterizacion socio-económica y productiva del cultivo de cacao en el departamento de Santander (Colombia). Revista Mexicana de Agronegocios, 38: 283-294.
dc.relation.referencesPacheco, D. D. R., Santana, B. C. G., Pirovani, C. P., & de Almeida, A.-A. F. (2023). Zinc/iron-regulated transporter-like protein gene family in Theobroma cacao L: Characteristics, evolution, function and 3D structure analysis. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1098401
dc.relation.referencesPage, V., y Feller, U. (2015). Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agronomy, 5(3): 447–463. https://doi.org/10.3390/agronomy5030447
dc.relation.referencesPankratov, T. A., Grouzdev, D. S., Patutina, E. O., Kolganova, T. V., Suzina, N. E., & Berestovskaya, J. J. (2020). Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales. Antonie van Leeuwenhoek, 113(4), 477–489. https://doi.org/10.1007/s10482-019-01357-6
dc.relation.referencesPark, J., Song, W., Ko, D., Eom, Y., Hansen, T. H., Schiller, M., Lee, T. G., Martinoia, E., & Lee, Y. (2012). The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 69(2), 278–288. https://doi.org/10.1111/j.1365-313X.2011.04789.x
dc.relation.referencesPence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97(9), 4956–4960. https://doi.org/10.1073/pnas.97.9.4956
dc.relation.referencesPeñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends in Plant Science, 19(5), 278–280. https://doi.org/10.1016/j.tplants.2013.12.007
dc.relation.referencesPereira de Araújo, R., Furtado de Almeida, A.-A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148–157. https://doi.org/10.1016/j.ecoenv.2017.06.006
dc.relation.referencesPereira, S. I. A., Lima, A. I. G., & Figueira, E. M. de A. P. (2006). Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy-metal contamination: Effects on protein expression. Applied Soil Ecology, 33(3), 286–293. https://doi.org/10.1016/j.apsoil.2005.10.002
dc.relation.referencesPetrolini, B., Quaroni, S., Saracchi, M., & Sardi, P. (1993). A new genus of the maduromycetes: Planopolyspora gen. nov. Actinomycetes; 4, 8-16.
dc.relation.referencesPollard, A. J., Powell, K. D., Harper, F. A., & Smith, J. A. C. (2002). The Genetic Basis of Metal Hyperaccumulation in Plants. Critical Reviews in Plant Sciences, 21(6), 539–566. https://doi.org/10.1080/0735-260291044359
dc.relation.referencesPrashith-Kekuda T.R., Shobha K.S., & Onkarappa Rudrappa. (2010). Fascinating diversity and Potent biological activities of Actinomycete metabolites. Journal of Pharmacy Research Journal of Pharmacy Research This Journal Doesn’t Have a Profile on ResearchGate yet. Interested in This Journal? Get Notified When It Activates Its Profile, and Start Getting Updates. I’m Interested , 3(2), 250–256.
dc.relation.referencesPurahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., Hofrichter, M., Krüger, D., & Buscot, F. (2016). Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 25(16), 4059–4074. https://doi.org/10.1111/mec.13739
dc.relation.referencesPurvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405(6783), 212–219. https://doi.org/10.1038/35012221
dc.relation.referencesQian, F., Huang, X., & Bao, Y. (2023). Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions. Ecotoxicology and Environmental Safety, 251, 114495. https://doi.org/10.1016/j.ecoenv.2022.114495
dc.relation.referencesQian, X.-B., Chen, T., Xu, Y.-P., Chen, L., Sun, F.-X., Lu, M.-P., & Liu, Y.-X. (2020). A guide to human microbiome research: study design, sample collection, and bioinformatics analysis. Chinese Medical Journal, 133(15), 1844–1855. https://doi.org/10.1097/CM9.0000000000000871
dc.relation.referencesQin, S., Xing, K., Jiang, J.-H., Xu, L.-H., & Li, W.-J. (2011). Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology, 89(3), 457–473. https://doi.org/10.1007/s00253-010-2923-6
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. y Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res, 41(D1): D590-D596.
dc.relation.referencesQuiroga-Mateus, R., López-Zuleta, S., Chávez, E., & Bravo, D. (2022). Cadmium-Tolerant Bacteria in Cacao Farms from Antioquia, Colombia: Isolation, Characterization and Potential Use to Mitigate Cadmium Contamination. Processes, 10(8), 1457. https://doi.org/10.3390/pr10081457
dc.relation.referencesRajakumar, S., Abhishek, A., Selvam, G. S., & Nachiappan, V. (2020). Effect of cadmium on essential metals and their impact on lipid metabolism in Saccharomyces cerevisiae. Cell Stress & Chaperones, 25(1), 19–33. https://doi.org/10.1007/s12192-019-01058-z
dc.relation.referencesRappé, M. S., & Giovannoni, S. J. (2003). The Uncultured Microbial Majority. Annual Review of Microbiology, 57(1), 369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759
dc.relation.referencesRios-Guzmán, W. (2023). Caracterización de microbiomas bacterianos presentes en suelos cacaoteros con alta y baja concentración de cadmio del municipio de Yacopí - Cundinamarca. Universidad Nacional de Colombia [Tesis de Maestría].
dc.relation.referencesRivera-Urbalejo, A., Vazquez-Sandoval, D., Fernández-Vázquez, J. L., Rosete-Enríquez, M., Cesa-Luna, C., Morales-García, Y. E., Muñoz-Rojas, J. y Quintero-Hernández, V. (2021). Aportes y dificultades de la metagenómica de suelos y su impacto en la agricultura. Acta Biológica Colombiana, 26(3): 449-461. https://doi.org/10.15446/abc.v26n3.85760
dc.relation.referencesRoberts, T. L. (2014). Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering, 83, 52–59. https://doi.org/10.1016/j.proeng.2014.09.012
dc.relation.referencesRodríguez-Albarrcín, H. S., Darghan, A. E. y Henao, M. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16: e00214. https://doi.org/10.1016/j.geodrs.2019.e00214
dc.relation.referencesRuiz-Pérez, C. A., Restrepo, S., & Zambrano, M. M. (2016). Microbial and Functional Diversity within the Phyllosphere of Espeletia Species in an Andean High-Mountain Ecosystem. Applied and Environmental Microbiology, 82(6), 1807–1817. https://doi.org/10.1128/AEM.02781-15
dc.relation.referencesSaeed, W., Naseem, S., & Ali, Z. (2017). Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01487
dc.relation.referencesSandoval, F. (2019). Efecto de las comunidades locales de hongos formadores de micorrizas arbusculares y patrones de injertación en la fisiología de plántulas de cacao sometidas a estrés por cadmio y zinc. [Tesis de maestría]. Universidad Nacional de Colombia.
dc.relation.referencesSattelmacher, B., Mühling, K., & Pennewiß, K. (1998). The apoplast — its significance for the nutrition of higher plants. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 161(5), 485–498. https://doi.org/10.1002/jpln.1998.3581610502
dc.relation.referencesScavo, A., Restuccia, A., & Mauromicale, G. (2018). Allelopathy: principles and basic aspects for Agroecosystem control. In S. Gaba (Ed.), Sustainable Agriculture Reviews (pp. 47–101). Springer-Nature.
dc.relation.referencesSchmidt, J. E., DuVal, A., Isaac, M. E., & Hohmann, P. (2022). At the roots of chocolate: understanding and optimizing the cacao root-associated microbiome for ecosystem services. A review. Agronomy for Sustainable Development, 42(2), 14. https://doi.org/10.1007/s13593-021-00748-2
dc.relation.referencesSchmidt, J. E., Puig, A. S., DuVal, A. E., & Pfeufer, E. E. (2023). Phyllosphere microbial diversity and specific taxa mediate within-cultivar resistance to Phytophthora palmivora in cacao. MSphere, 8(5). https://doi.org/10.1128/msphere.00013-23
dc.relation.referencesSchneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B., Richter, A., Eberl, L., Zechmeister-Boltenstern, S., & Riedel, K. (2012). Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME Journal, 6(9), 1749–1762. https://doi.org/10.1038/ismej.2012.11
dc.relation.referencesSchreiber, L., Krimm, U., Knoll, D., Sayed, M., Auling, G., & Kroppenstedt, R. M. (2005). Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytologist, 166(2), 589–594. https://doi.org/10.1111/j.1469-8137.2005.01343.x
dc.relation.referencesSchroeter, S. A., Eveillard, D., Chaffron, S., Zoppi, J., Kampe, B., Lohmann, P., Jehmlich, N., von Bergen, M., Sanchez-Arcos, C., Pohnert, G., Taubert, M., Küsel, K., & Gleixner, G. (2022). Microbial community functioning during plant litter decomposition. Scientific Reports, 12(1), 7451. https://doi.org/10.1038/s41598-022-11485-1
dc.relation.referencesSchwabe, R., Senges, C. H. R., Bandow, J. E., Heine, T., Lehmann, H., Wiche, O., Schlömann, M., Levicán, G., & Tischler, D. (2020). Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2. Microbiological Research, 238, 126481. https://doi.org/10.1016/j.micres.2020.126481
dc.relation.referencesSermeño Chicas, J. M., Pérez, D., Serrano-Cervantes, L., Parada-Jaco, M. E., Joyce, A. L., Maldonado-Santos, E. J., Alvanes-Leiva, Y. D. L. Á., Rodríguez-Sibrían, F. M., Girón-Segovia, C. D., García-Sánchez, D. A., Hernández-León, C. E., Rivas-Nieto, F., Rivera-Mejía, F. A., Parada-Berríos, F. A., Rodríguez-Urrutia, E. A., Vásquez-Osegueda, E. A., & Lovo-Lara, L. M. (2022). Insectos como plagas potenciales del cacao (Theobroma cacao L.) en El Salvador. Revista Minerva, 2(2), 117–134. https://doi.org/10.5377/revminerva.v2i2.12498
dc.relation.referencesShannon C. E., y Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press. Urbana, IL, EEUU. 144p.
dc.relation.referencesShao, M., & Zhu, Y. (2020). Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area. Scientific Reports, 10(1), 4453. https://doi.org/10.1038/s41598-020-61143-7
dc.relation.referencesShukla, P. K., Misra, P., Maurice, N., & Ramteke, P. W. (2019). Heavy Metal Toxicity and Possible Functional Aspects of Microbial Diversity in Heavy Metal-Contaminated Sites. In Microbial Genomics in Sustainable Agroecosystems (pp. 255–317). Springer Singapore. https://doi.org/10.1007/978-981-32-9860-6_15
dc.relation.referencesSkerman, V. A. (1959). Guide to the Identification of the Genera of Bacteria, with Methods and Digests of Generic Characteristics (2nd ed.). Williams & Wilkins Co.
dc.relation.referencesŠnajdr, J., Cajthaml, T., Valášková, V., Merhautová, V., Petránková, M., Spetz, P., Leppänen, K., & Baldrian, P. (2011). Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiology Ecology, 75(2), 291–303. https://doi.org/10.1111/j.1574-6941.2010.00999.x
dc.relation.referencesSnoeck, D., Koko, L., Joffre, J., Bastide, P., & Jagoret, P. (2016). Cacao Nutrition and Fertilization (pp. 155–202). https://doi.org/10.1007/978-3-319-26777-7_4
dc.relation.referencesSong, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598
dc.relation.referencesSreenivasa Nayaka, Bidhayak Chakraborty, Pallavi Sathyanarayan Swamy, Meghashyama Prabhakara Bhat, Dattatraya Airodagi, Dhanyakumara Shivapoojar Basavarajappa, Muthuraj Rudrappa, Halaswamy Hiremath, Shashiraj Kareyelloppa Nagaraja, & Chaitra Madhappa. (2019). Isolation, characterization, and functional groups analysis of Pseudoxanthomonas indica RSA-23 from rhizosphere soil. Journal of Applied Pharmaceutical Science, 9(11), 101–106. https://doi.org/10.7324/JAPS.2019.91113
dc.relation.referencesSteel, K. J. (1965). Microbial Identification. Journal of General Microbiology, 40(1), 143–148. https://doi.org/10.1099/00221287-40-1-143
dc.relation.referencesSteele, H. L., & Streit, W. R. (2005). Metagenomics: Advances in ecology and biotechnology. FEMS Microbiology Letters, 247(2), 105–111. https://doi.org/10.1016/j.femsle.2005.05.011
dc.relation.referencesSteele, H. L., Jaeger, K.-E., Daniel, R., & Streit, W. R. (2009). Advances in Recovery of Novel Biocatalysts from Metagenomes. Microbial Physiology, 16(1–2), 25–37. https://doi.org/10.1159/000142892
dc.relation.referencesStevens, M. H. H. (2009). Community Composition and Diversity. In A Primer of Ecology with R (pp. 285–333). Springer New York. https://doi.org/10.1007/978-0-387-89882-7_10
dc.relation.referencesStone, B. W. G., Weingarten, E. A., & Jackson, C. R. (2018). The Role of the Phyllosphere Microbiome in Plant Health and Function. In Annual Plant Reviews online (pp. 533–556). Wiley. https://doi.org/10.1002/9781119312994.apr0614
dc.relation.referencesŠtursová, M., Žifčáková, L., Leigh, M. B., Burgess, R., & Baldrian, P. (2012). Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiology Ecology, 80(3), 735–746. https://doi.org/10.1111/j.1574-6941.2012.01343.x
dc.relation.referencesSturz, A. (2000). Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Critical Reviews in Plant Sciences, 19(1), 1–30. https://doi.org/10.1016/S0735-2689(01)80001-0
dc.relation.referencesSu, X., Xue, B., Wang, Y., Hashmi, M. Z., Lin, H., Chen, J., Mei, R., Wang, Z., & Sun, F. (2019). Bacterial community shifts evaluation in the sediments of Puyang River and its nitrogen removal capabilities exploration by resuscitation promoting factor. Ecotoxicology and Environmental Safety, 179, 188–197. https://doi.org/10.1016/j.ecoenv.2019.04.067
dc.relation.referencesSun, H., Shao, C., Jin, Q., Li, M., Zhang, Z., Liang, H., Lei, H., Qian, J., & Zhang, Y. (2022). Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC Microbiology, 22(1), 77. https://doi.org/10.1186/s12866-022-02488-z
dc.relation.referencesSun, R.-L., Zhou, Q.-X., Sun, F.-H., & Jin, C.-X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental and Experimental Botany, 60(3), 468–476. https://doi.org/10.1016/j.envexpbot.2007.01.004
dc.relation.referencesSuwastika, I. N., Cruz, A. F., Pakawaru, N. A., Wijayanti, W., Muslimin, Basri, Z., Ishizaki, Y., Tanaka, T., Ono, N., Kanaya, S., & Shiina, T. (2019). Characterization of Bacterial and Fungal Communities in Soils under Different Farming Systems. The Cacao Plantation in Sulawesi Island—Indonesia. Eurasian Soil Science, 52(10), 1234–1243. https://doi.org/10.1134/S1064229319100144
dc.relation.referencesTajti, J., Janda, T., Majláth, I., Szalai, G., & Pál, M. (2018). Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicology and Environmental Safety, 148, 546–554. https://doi.org/10.1016/j.ecoenv.2017.10.068
dc.relation.referencesTang, H., Xiang, G., Xiao, W., Yang, Z., & Zhao, B. (2024). Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1420408
dc.relation.referencesTanner, K., Martorell, P., Genovés, S., Ramón, D., Zacarías, L., Rodrigo, M. J., Peretó, J., & Porcar, M. (2019). Bioprospecting the Solar Panel Microbiome: High-Throughput Screening for Antioxidant Bacteria in a Caenorhabditis elegans Model. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00986
dc.relation.referencesTaylor, A. J., Cardenas-Torres, E., Miller, M. J., Zhao, S. D., & Engeseth, N. J. (2022). Microbes associated with spontaneous cacao fermentations - A systematic review and meta-analysis. Current Research in Food Science, 5, 1452–1464. https://doi.org/10.1016/j.crfs.2022.08.008
dc.relation.referencesTchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment (pp. 133–164). https://doi.org/10.1007/978-3-7643-8340-4_6
dc.relation.referencesTejera, N., Ortega, E., Rodes, R., & Lluch, C. (2006). Nitrogen compounds in the apoplastic sap of sugarcane stem: Some implications in the association with endophytes. Journal of Plant Physiology, 163(1), 80–85. https://doi.org/10.1016/j.jplph.2005.03.010
dc.relation.referencesTishchenko, A., Bakieva, E., Litvinenko, L., Ivshina, I. (2019). Resistance of Actinobacteria of the Genus Gordonia to Potentially Toxic Metals. In: Khayrulina, E., Wolkersdorfer, Ch., Polyakova, S., Bogush, A. Mine Water – Technological and Ecological Challenges. 281 – 286, Perm, Russia (Perm State University).
dc.relation.referencesTláskal, V., Voříšková, J., & Baldrian, P. (2016). Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiology Ecology, 92(11), fiw177. https://doi.org/10.1093/femsec/fiw177
dc.relation.referencesUfarté, L., Laville, É., Duquesne, S., & Potocki-Veronese, G. (2015). Metagenomics for the discovery of pollutant degrading enzymes. Biotechnology Advances, 33(8), 1845–1854. https://doi.org/10.1016/j.biotechadv.2015.10.009
dc.relation.referencesUllah, I., Wang, Y., Eide, D. J., & Dunwell, J. M. (2018). Evolution, and functional analysis of Natural Resistance-Associated Macrophage Proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation. Scientific Reports, 8(1), 14412. https://doi.org/10.1038/s41598-018-32819-y
dc.relation.referencesVaast, P., Harmand, J.-M., Rapidel, B., Jagoret, P., & Deheuvels, O. (2016). Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model. In Climate Change and Agriculture Worldwide (pp. 209–224). Springer Netherlands. https://doi.org/10.1007/978-94-017-7462-8_16
dc.relation.referencesVandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196–1206. https://doi.org/10.1111/nph.13312
dc.relation.referencesVerbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), 759–776. https://doi.org/10.1111/j.1469-8137.2008.02748.x
dc.relation.referencesVester, J. K., Glaring, M. A., & Stougaard, P. (2015). Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles, 19(1), 17–29. https://doi.org/10.1007/s00792-014-0704-3
dc.relation.referencesVorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828–840. https://doi.org/10.1038/nrmicro2910
dc.relation.referencesVoříšková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116
dc.relation.referencesWade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PloS One, 17(2), e0261989. https://doi.org/10.1371/journal.pone.0261989
dc.relation.referencesWagner, M. R., Lundberg, D. S., del Rio, T. G., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 7(1), 12151. https://doi.org/10.1038/ncomms12151
dc.relation.referencesWan, G., Najeeb, U., Jilani, G., Naeem, M. S., & Zhou, W. (2011). Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environmental Science and Pollution Research, 18(9), 1478–1486. https://doi.org/10.1007/s11356-011-0509-1
dc.relation.referencesWang, C. Q., & Song, H. (2009). Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Reports, 28(9), 1341–1349. https://doi.org/10.1007/s00299-009-0734-y
dc.relation.referencesWang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences, 14(4), 7370–7390. https://doi.org/10.3390/ijms14047370
dc.relation.referencesWang, Y., Wu, J., Sun, P., Chen, C., & Shen, J. (2022). Community Structure of Phyllosphere Bacteria in Different Cultivars of Fingered Citron (Citrus medica ‘Fingered’) and Their Correlations With Fragrance. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.936252
dc.relation.referencesWaring, B. G., Weintraub, S. R., y Sinsabaugh, R. L. (2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117(1): 101-113. Doi: 10.1007/s10533-013-9849-x.
dc.relation.referencesWeinstock, G. M. (2012). Genomic approaches to studying the human microbiota. Nature, 489(7415), 250–256. https://doi.org/10.1038/nature11553
dc.relation.referencesWeiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E. R., & Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), 27. https://doi.org/10.1186/s40168-017-0237-y
dc.relation.referencesWemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., & Wemheuer, B. (2020). Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome, 15(1), 11. https://doi.org/10.1186/s40793-020-00358-7
dc.relation.referencesWhipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x
dc.relation.referencesWood, G. A. R., & Lass, R. A. (2001). Cocoa. Wiley. https://doi.org/10.1002/9780470698983
dc.relation.referencesWu, W., Dong, C., Wu, J., Liu, X., Wu, Y., Chen, X., & Yu, S. (2017). Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Science of The Total Environment, 601–602, 57–65. https://doi.org/10.1016/j.scitotenv.2017.05.165
dc.relation.referencesWu, Z., Zheng, R., Liu, G., Liu, R., Wu, S., & Sun, C. (2021). Calcium protects bacteria against cadmium stress via reducing nitric oxide production and increasing iron acquisition. Environmental Microbiology, 23(7), 3541–3553. https://doi.org/10.1111/1462-2920.15237
dc.relation.referencesXia, Y., Sun, J., & Chen, D.-G. (2018). Community Diversity Measures and Calculations (pp. 167–190). https://doi.org/10.1007/978-981-13-1534-3_6
dc.relation.referencesYadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167–179. https://doi.org/10.1016/j.sajb.2009.10.007
dc.relation.referencesYair, S., Yaacov, D., Susan, K., & Jurkevitch, E. (2009). Small Eats Big: Ecology and Diversity of Bdellovibrio and Like Organisms, and their Dynamics in Predator-Prey Interactions. En Sustainable Agriculture (pp. 275–284). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_18
dc.relation.referencesYan, C., Wang, F., Geng, H., Liu, H., Pu, S., Tian, Z., Chen, H., Zhou, B., Yuan, R., & Yao, J. (2020). Integrating high-throughput sequencing and metagenome analysis to reveal the characteristic and resistance mechanism of microbial community in metal contaminated sediments. Science of The Total Environment, 707, 136116. https://doi.org/10.1016/j.scitotenv.2019.136116
dc.relation.referencesYang, H., Yu, H., Wang, S., Huang, H., Ye, D., Zhang, X., Liu, T., Wang, Y., Zheng, Z., & Li, T. (2024). Comparative transcriptomics reveals the key pathways and genes of cadmium accumulation in the high cadmium-accumulating rice (Oryza Sativa L.) line. Environment International, 193, 109113. https://doi.org/10.1016/j.envint.2024.109113
dc.relation.referencesYoshihara, T., Hodoshima, H., Miyano, Y., Shoji, K., Shimada, H., & Goto, F. (2006). Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Reports, 25(4), 365–373. https://doi.org/10.1007/s00299-005-0092-3
dc.relation.referencesYu, R., Li, D., Du, X., Xia, S., Liu, C., & Shi, G. (2017). Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics, 18(1), 587. https://doi.org/10.1186/s12864-017-3973-2
dc.relation.referencesYu, X., Zhao, J., Liu, X., Sun, L., Tian, J., & Wu, N. (2021). Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.698834
dc.relation.referencesZeyad, M. T., Singh-Rajawat, M. V., Kumar, M., Malik, A., Mohammad, A., Ansari, W. A., Singh, B. N., Singh, D. y Kumar-Saxena, A. (2021). Role of Microorganisms in Plant Adaptation Towards Climate Change for Sustainable Agriculture. En: Lone, S. A., y Malik, A. (Eds.). (2021). Microbiomes and the Global Climate Change. doi:10.1007/978-981-33-4508-9
dc.relation.referencesZhang, L., Chen, Z., & Zhu, C. (2012). Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings. Journal of Environmental Sciences, 24(5), 940–948. https://doi.org/10.1016/S1001-0742(11)60978-9
dc.relation.referencesZhou, Y., Tang, Y., Hu, C., Zhan, T., Zhang, S., Cai, M., & Zhao, X. (2021). Soil applied Ca, Mg and B altered phyllosphere and rhizosphere bacterial microbiome and reduced Huanglongbing incidence in Gannan Navel Orange. Science of The Total Environment, 791, 148046. https://doi.org/10.1016/j.scitotenv.2021.148046
dc.relation.referencesZhu, Y., Li, Q., Feng, L., Dong, Y., Zhang, Y., Nurmaimaiti, N., & Mamut, R. (2024). Phyllosphere bacterial community and metabolomic analysis revealed the mechanism of Cd tolerance in the bryophyte Tortella tortuosa (Hedw.) Limpr. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1466659
dc.relation.referencesZorrig, W., Rouached, A., Shahzad, Z., Abdelly, C., Davidian, J.-C., & Berthomieu, P. (2010). Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. Journal of Plant Physiology, 167(15), 1239–1247. https://doi.org/10.1016/j.jplph.2010.04.012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.agrovocMicrobiomaspa
dc.subject.agrovocmicrobiomeseng
dc.subject.agrovocMateria orgánica del suelospa
dc.subject.agrovocsoil organic mattereng
dc.subject.agrovocTheobroma cacaospa
dc.subject.agrovocTheobroma cacaoeng
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalTheobroma cacaospa
dc.subject.proposalCadmiospa
dc.subject.proposalHojaspa
dc.subject.proposalHojarascaspa
dc.subject.proposalEpífitosspa
dc.subject.proposalFilósferaspa
dc.subject.proposalBacteriasspa
dc.subject.proposalMetataxonómicaspa
dc.subject.proposalCadmiumeng
dc.subject.proposalLeafeng
dc.subject.proposalLittereng
dc.subject.proposalEpiphyteseng
dc.subject.proposalPhyllosphereeng
dc.subject.proposalBacteriaeng
dc.subject.proposalMetataxonomiceng
dc.titleAnálisis de los microbiomas bacterianos presentes en hojas y hojarasca de cultivos de cacao (Theobroma cacao L.) establecidos en suelos con cadmio natural en el municipio de Yacopí, Cundinamarcaspa
dc.title.translatedAnalysis of the bacterial microbiomes present in leaves and leaf litter of cocoa crops (Theobroma cacao L.) established in soils with natural cadmium in the municipality of Yacopí, Cundinamarcaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameDivisión de Investigación - Sede Bogotá (DIEB)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documento_Tesis_Sebastian_19042025 (1).pdf
Tamaño:
4.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: