Exploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imaging

dc.contributor.advisorHerrera, William
dc.contributor.advisorKu, Mark
dc.contributor.authorTamara Isaza, Jeyson de Jesus
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=f-soNsEAAAAJ&hl=esspa
dc.contributor.researchgroupSuperconductividad y Nanotecnologíaspa
dc.date.accessioned2024-02-12T22:14:18Z
dc.date.available2024-02-12T22:14:18Z
dc.date.issued2024-02-07
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThe development of techniques and methods, from an experimental and theoretical view, to explore condensed matter systems is crucial to reveal the distinguishable features of their electronic or magnetic properties, characterize them and in this way uncover, understand, and control the footprint of exotic collective phenomena, novel quantum phases of matter, among others and in this way then further use them for specific technological application and/or to ground the foundational basis of condensed matter physics. Interestingly, many promises in quantum technological applications and novel exotic phenomena as well as quantum phases of matter have as a platform the very rich family of two-dimensional material, Some interesting phases that have been or it is predicted to be observed are quantum spin liquid, topological quantum phases, skyrmion textures, etc. In light of the aforementioned claims, our work presents several novel theoretical and experimental approaches to studying different types of condensed matter phases and properties in a wide range of materials but focuses on the family of graphene-like and Van der Waals (VdW) materials.(Texto tomado de la fuente)eng
dc.description.abstractEl desarrollo de técnicas y métodos, desde un punto de vista experimental y teórico, para explorar los sistemas de materia condensada es crucial para revelar los rasgos distinguibles de sus propiedades electrónicas o magnéticas, caracterizarlos y de esta manera descubrir, comprender y controlar la huella de fenómenos colectivos exóticos, nuevas fases cuánticas de la materia, entre otros, y de esta manera utilizarlos posteriormente para aplicaciones tecnológicas específicas y/o para fundamentar las bases de la física de la materia condensada. Curiosamente, muchas promesas en aplicaciones tecnológicas cuánticas y fenómenos exóticos novedosos, así como fases cuánticas de la materia, tienen como plataforma la riquísima familia de materiales bidimensionales. Algunas fases interesantes que se han observado o se prevé observar son el líquido cuántico de espín, las fases cuánticas topológicas, las texturas de skyrmion, etc. A la luz de las afirmaciones anteriores, nuestro trabajo presenta varios enfoques teóricos y experimentales novedosos para estudiar diferentes tipos de fases y propiedades de la materia condensada en una amplia gama de materiales, pero se centra en la familia de materiales similares al grafeno y Van der Waals (VdW).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en ciencias físicaspa
dc.description.researchareaMateriales bidimensionalesspa
dc.description.researchareaSensores cuánticosspa
dc.description.researchareaTransporte cuánticospa
dc.description.researchareaMateriales topologicosspa
dc.description.researchareaMagnetometría cuánticaspa
dc.description.researchareaComputacion Cuanticaspa
dc.format.extent[xix, 117 páginas]spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85691
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesTámara-Isaza, J., Burset, P., & Herrera, W. J. (2023). Microscopic Green's function approach for generalized Dirac Hamiltonians. ArXiv e-prints, 2308.15685. Retrieved from https://arxiv.org/abs/2308.15685v1spa
dc.relation.referencesChen, H., Asif, S., Whalen, M., Támara-Isaza, J., Luetke, B., Wang, Y., ...Ku, M. J. H. (2022). Revealing room temperature ferromagnetism in exfoliated Fe5GeTe2 flakes with quantum magnetic imaging. 2D Materials, 9(2), 025017. doi: 10.1088/2053-1583/ac57a9spa
dc.relation.referencesChen, H., Asif, S., Dolui, K., Wang, Y., Támara-Isaza, J., Goli, V. M. L. D. P., ...Ku, M. J. H. (2023). Above-Room-Temperature Ferromagnetism in Thin van der Waals Flakes of Cobalt-Substituted Fe5GeTe2. ACS Applied Materials & Interfaces, 15(2), 3287–3296. doi: 10.1021/acsami.2c18028spa
dc.relation.referencesNatalie Wolchover. Physicists aim to classify all possible phases of matter, Jan 2019.spa
dc.relation.referencesBogdan Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314:1757 – 1761, 2006.spa
dc.relation.referencesMarkus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318:766 – 770, 2007.spa
dc.relation.referencesXiaofeng Qian, Junwei Liu, Liang Fu, and Ju Li. Quantum spin hall effect and topological field effect transistor in two-dimensional transition metal dichalcogenides. Science, 2014spa
dc.relation.referencesSanfeng Wu, Valla Fatemi, Quinn D. Gibson, Kenji Watanabe, Takashi Taniguchi, Robert J. Cava, and Pablo Jarillo-Herrero. Observation of the quantum spin hall effect up to 100 kelvin in a monolayer crystal. Science, 359:76 – 79, 2017.spa
dc.relation.referencesXiao-Liang Qi and Shou-Cheng Zhang. The quantum spin hall effect and topological insulators. Physics Today, 63:33–38, 2010.spa
dc.relation.referencesYuqi Xia, Dong Qian, David Hsieh, L. Andrew Wray, Arijeet Pal, Hsin Lin, Arun Bansil, David C Grauer, Yew San Hor, Robert J. Cava, and M Zahid Hasan. Observation of a largegap topological-insulator class with a single dirac cone on the surface. Nature Physics, 5:398– 402, 2009spa
dc.relation.referencesDavid Hsieh, Dong Qian, L. Andrew Wray, Y. Y. Xia, Yew San Hor, Robert J. Cava, and M Zahid Hasan. A topological dirac insulator in a quantum spin hall phase. Nature, 452:970–974, 2008.spa
dc.relation.referencesY. L. Chen, James G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, Xiao-Liang Qi, H. J. Zhang, Donghui Lu, Xi Dai, Zhong Fang, S. C. Zhang, Ian R. Fisher, Zahid Hussain, and Z. X. Shen. Experimental realization of a three-dimensional topological insulator, bi2te3. Science, 325:178 – 181, 2009.spa
dc.relation.referencesAlex R. Mellnik, J. S. Lee, Anthony Richardella, Jennifer L. Grab, Peter J. Mintun, Mark H. Fischer, Abolhassan Vaezi, Aurélien Manchon, E.-A. Kim, Nitin Samarth, and Daniel C.Ralph. Spin-transfer torque generated by a topological insulator. Nature, 511:449–451, 2014.spa
dc.relation.referencesYabin Fan, Pramey Upadhyaya, Xufeng Kou, Murong Lang, So Takei, Zhenxing Wang, Jianshi Tang, Liang He, Li-Te Chang, Mohammad Montazeri, Guoqiang Yu, Wanjun Jiang, Tianxiao Nie, Robert N. Schwartz, Yaroslav Tserkovnyak, and Kang L. Wang. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nature materials, 13 7:699–704, 2014.spa
dc.relation.referencesCharles L. Kane and Eugene J. Mele. Quantum spin hall effect in graphene. Physical review letters, 95 22:226801, 2004.spa
dc.relation.referencesMotohiko Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. Journal of the Physical Society of Japan, 84:121003, 2015.spa
dc.relation.referencesMasatoshi Sato and Yoichi Ando. Topological superconductors: a review. Reports on Progress in Physics, 80, 2016.spa
dc.relation.referencesLiang Fu and Charles L. Kane. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Physical review letters, 100 9:096407, 2007.spa
dc.relation.referencesQing Lin He, Lei Pan, Alex Stern, Edward C. Burks, Xiaoyu Che, Gen Yin, Jing Wang, Biao Lian, Quan Zhou, Eun Sang Choi, Koichi Murata, Xufeng Kou, Zhijie Chen, Tianxiao Nie, Qiming Shao, Yabin Fan, Shou-Cheng Zhang, Kai Liu, Jing Xia, and Kang L. Wang. Chiral majorana fermion modes in a quantum anomalous hall insulator–superconductor structure. Science, 357:294 – 299, 2016.spa
dc.relation.referencesA. Fornieri, A. M. Whiticar, F. Setiawan, Elías Portolés, A. C. C. Drachmann, Anna Keselman, Sergei Gronin, Candice Thomas, Tian Wang, Raymond L. Kallaher, Geoff C. Gardner, Erez Berg, Michael J. Manfra, Ady Stern, Charles M. Marcus, and Fabrizio Nichele. Evidence of topological superconductivity in planar josephson junctions. Nature, 569:89–92, 2018.spa
dc.relation.referencesP. Zhang, Koichiro Yaji, Takahiro Hashimoto, Yuichi Ota, Takeshi Kondo, Kozo Okazaki, Zhijun Wang, Jinsheng Wen, Genda Gu, Hong Ding, and Shik Shin. Observation of topological superconductivity on the surface of an iron-based superconductor. Science, 360:182 – 186, 2017.spa
dc.relation.referencesElsa Prada, Pablo San-Jose, Michiel W. A. de Moor, Attila Geresdi, Eduardo J H Lee, Jelena Klinovaja, Daniel Loss, Jesper Nygård, Ramón Aguado, and Leo P Kouwenhoven. From andreev to majorana bound states in hybrid superconductor–semiconductor nanowires. Nature Reviews Physics, pages 1–20, 2019.spa
dc.relation.referencesDmitry I. Pikulin, Bernard van Heck, Torsten Karzig, Esteban A. Martinez, Bas Nijholt, Tom Laeven, G. W. Winkler, John D. Watson, Sebastian Heedt, M. Temurhan, V. Svidenko, R. M. Lutchyn, Mason Thomas, Gijs de Lange, L. Casparis, and C. Nayak. Protocol to identify a topological superconducting phase in a three-terminal device. 2021.spa
dc.relation.referencesCenke Xu and Leon Balents. Topological superconductivity in twisted multilayer graphene. Physical review letters, 121 8:087001, 2018.spa
dc.relation.referencesYi-Ting Hsu, Abolhassan Vaezi, Mark H. Fischer, and Eun-Ah Kim. Topological superconductivity in monolayer transition metal dichalcogenides. Nature Communications, 8, 2016.spa
dc.relation.referencesNatalie Wolchover. Forging a qubit to rule them all, Apr 2019.spa
dc.relation.referencesYoshinori Tokura and Naoya Kanazawa. Magnetic skyrmion materials. Chemical reviews, 2020.spa
dc.relation.referencesLucas Thiel, Z. Wang, M. A. Tschudin, Dominik Rohner, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, Marco Gibertini, Enrico Giannini, Alberto F. Morpurgo, and Patrick Maletinsky. Probing magnetism in 2d materials at the nanoscale with single-spin microscopy. Science, 364:973 – 976, 2019.spa
dc.relation.referencesSebastian Mühlbauer, Benedikt Binz, Florian Jonietz, Christian Pfleiderer, Achim Rosch, Andreas Neubauer, Robert Georgii, and Peter Böni. Skyrmion lattice in a chiral magnet. Science, 323:915 – 919, 2009.spa
dc.relation.referencesE. C. Marino. Quantum field theory approach to condensed matter physics. 2017spa
dc.relation.referencesGerald Rickayzen. Green’s functions and condensed matter. 1981spa
dc.relation.referencesWilliam J. Herrera, Pablo Burset, and Alfredo Levy Yeyati. A green function approach to graphene–superconductor junctions with well-defined edges. Journal of Physics: Condensed Matter, 22:275304, 2010.spa
dc.relation.referencesOscar E. Casas, Shirley Gómez Páez, and William J. Herrera. A green’s function approach to topological insulator junctions with magnetic and superconducting regions. Journal of Physics: Condensed Matter, 32, 2020.spa
dc.relation.referencesF. Fabre, Aurore Finco, Anike Purbawati, Abdellali Hadj-Azzem, Nicolas Rougemaille, Johann Coraux, I. Philip, and Vincent Jacques. Characterization of room-temperature inplane magnetization in thin flakes of crte2 with a single-spin magnetometer. arXiv: Materials Science, 2020.spa
dc.relation.referencesMark J. H. Ku, Tony X. Zhou, Qing Li, Young Jae Shin, Jingcheng Shi, Claire Burch, Laurel E. Anderson, Andrew T. Pierce, Yonglong Xie, A. Hamo, Uri Vool, Huiliang Zhang, Francesco Casola, Takashi Taniguchi, Kenji Watanabe, Michael M. Fogler, Philip Kim, Amir Yacoby and Ronald L. Walsworth. Imaging viscous flow of the dirac fluid in graphene. Nature, 583:537 – 541, 2019.spa
dc.relation.referencesYuliya Dovzhenko, Francesco Casola, Sarah Schlotter, Tony X. Zhou, Felix Büttner, Ronald L. Walsworth, Geoffrey S. D. Beach, and Amir Yacoby. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications, 9, 2018spa
dc.relation.referencesEdlyn V. Levine, Matthew J. Turner, Pauli Kehayias, Connor A Hart, Nicholas Langellier, Raisa Trubko, David R. Glenn, Roger R. Fu, and Ronald L. Walsworth. Principles and techniques of the quantum diamond microscope. Nanophotonics, 8:1945 – 1973, 2019.spa
dc.relation.referencesTim Oliver Wehling, Annica M. BlackffSchaffer, and Alexander V. Balatsky. Dirac materials. Advances in Physics, 63, May 2014.spa
dc.relation.referencesJérôme Cayssol. Introduction to Dirac materials and topological insulators. C. R. Phys., 14(9):760–778, November 2013.spa
dc.relation.referencesMingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-Like TwoDimensional Materials. Chem. Rev., 113(5):3766–3798, May 2013.spa
dc.relation.referencesJinying Wang, Shibin Deng, Zhongfan Liu, and Zhirong Liu. The rare two-dimensional materials with Dirac cones. National Science Review, 2(1):22–39, 01 2015.spa
dc.relation.referencesChaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev., 117(9):6225–6331, May 2017.spa
dc.relation.referencesMarkus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318(5851):766–770, 2007spa
dc.relation.referencesIvan Knez, Rui-Rui Du, and Gerard Sullivan. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells. Phys. Rev. Lett., 107:136603, Sep 2011.spa
dc.relation.referencesM. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045– 3067, Nov 2010.spa
dc.relation.referencesLiangzhi Kou, Yandong Ma, Ziqi Sun, Thomas Heine, and Changfeng Chen. TwoDimensional Topological Insulators: Progress and Prospects. J. Phys. Chem. Lett., 8(8):1905– 1919, April 2017spa
dc.relation.referencesA Acun, L Zhang, P Bampoulis, M Farmanbar, A van Houselt, A N Rudenko, M Lingenfelder, G Brocks, B Poelsema, M I Katsnelson, and H J W Zandvliet. Germanene: the germanium analogue of graphene. Journal of Physics: Condensed Matter, 27(44):443002, oct 2015.spa
dc.relation.referencesC. Kamal and Motohiko Ezawa. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B, 91:085423, Feb 2015.spa
dc.relation.referencesSuman Chowdhury and Debnarayan Jana. A theoretical review on electronic, magnetic and optical properties of silicene. Reports on Progress in Physics, 79(12):126501, oct 2016.spa
dc.relation.referencesSajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8):17033, August 2017.spa
dc.relation.referencesBarry Bradlyn, L. Elcoro, Jennifer Cano, M. G. Vergniory, Zhijun Wang, C. Felser, M. I. Aroyo, and B. Andrei Bernevig. Topological quantum chemistry. Nature, 547:298–305, July 2017.spa
dc.relation.referencesL. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the dirac equation. Phys. Rev. B, 73:235411, Jun 2006.spa
dc.relation.referencesJürgen Wurm, Klaus Richter, and İnan ç Adagideli. Edge effects in graphene nanostructures: From multiple reflection expansion to density of states. Phys. Rev. B, 84:075468, Aug 2011.spa
dc.relation.referencesDiego A. Manjarrés, William J. Herrera, and Shirley Gómez. Andreev levels in a graphene– superconductor surface. Physica B: Condensed Matter, 404(18):2799–2801, 2009.spa
dc.relation.referencesWilliam J Herrera, P Burset, and A Levy Yeyati. A green function approach to graphene– superconductor junctions with well-defined edges. Journal of Physics: Condensed Matter, 22(27):275304, jun 2010.spa
dc.relation.referencesP. Burset, W. Herrera, and A. Levy Yeyati. Proximity-induced interface bound states in superconductor-graphene junctions. Phys. Rev. B, 80:041402, Jul 2009.spa
dc.relation.references] Shirley Gómez Páez, Camilo Martínez, William J. Herrera, Alfredo Levy Yeyati, and Pablo Burset. Dirac point formation revealed by andreev tunneling in superlatticegraphene/superconductor junctions. Phys. Rev. B, 100:205429, Nov 2019.spa
dc.relation.referencesOscar E Casas, Shirley Gómez Páez, and William J Herrera. A green’s function approach to topological insulator junctions with magnetic and superconducting regions. Journal of Physics: Condensed Matter, 32(48):485302, sep 2020.spa
dc.relation.referencesC. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95:226801, Nov 2005.spa
dc.relation.referencesMotohiko Ezawa. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New Journal of Physics, 14(3):033003, mar 2012.spa
dc.relation.referencesCheng Cheng Liu, Wanxiang Feng, and Yugui Yao. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett., 107:076802, Aug 2011.spa
dc.relation.referencesJ. H. N. Loubser and J. A. van Wyk. Electron spin resonance in the study of diamond. Rep. Prog. Phys., 41(8):1201, August 1978.spa
dc.relation.referencesMingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-Like TwoDimensional Materials. Chem. Rev., 113(5):3766–3798, May 2013.spa
dc.relation.referencesSajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2(17033):1–15, June 2017spa
dc.relation.referencesWonbong Choi, Nitin Choudhary, Gang Hee Han, Juhong Park, Deji Akinwande, and Young Hee Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 20(3):116–130, April 2017.spa
dc.relation.referencesDeep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, February 2014.spa
dc.relation.referencesMotohiko Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. Journal of the Physical Society of Japan, 84(12):121003, 2015.spa
dc.relation.referencesM. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay. Germanene: a novel twodimensional germanium allotrope akin to graphene and silicene. New J. Phys., 16(9):095002, September 2014.spa
dc.relation.referencesMaría Eugenia Dávila and Guy Le Lay. Few layer epitaxial germanene: a novel twodimensional Dirac material. Sci. Rep., 6(20714):1–9, February 2016.spa
dc.relation.referencesPatrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Bénédicte Ealet, and Guy Le Lay. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett., 108(15):155501, April 2012.spa
dc.relation.referencesDeep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, February 2014spa
dc.relation.referencesAndor Kormányos, Guido Burkard, Martin Gmitra, Jaroslav Fabian, Viktor Zólyomi, Neil D. Drummond, and Vladimir Fal’ko. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater., 2(2):022001, April 2015.spa
dc.relation.referencesA. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater., 6(3):183–191, March 2007spa
dc.relation.referencesA. K. Geim. Graphene: Status and Prospects. Science, 324(5934):1530–1534, June 2009.spa
dc.relation.referencesK. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. A roadmap for graphene. Nature, 490(7419):192–200, October 2012.spa
dc.relation.referencesJannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth. The structure of suspended graphene sheets. Nature, 446(7131):60–63, March 2007.spa
dc.relation.referencesRuitao Lv, Joshua A. Robinson, Raymond E. Schaak, Du Sun, Yifan Sun, Thomas E. Mallouk, and Mauricio Terrones. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res., 48(1):56–64, January 2015.spa
dc.relation.referencesCheng-Cheng Liu, Wanxiang Feng, and Yugui Yao. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Phys. Rev. Lett., 107(7):076802, August 2011.spa
dc.relation.referencesLi Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanciulli, Madan Dubey, Alessandro Molle, and Deji Akinwande. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 10(3):227–231, March 2015.spa
dc.relation.referencesJijun Zhao, Hongsheng Liu, Zhiming Yu, Ruge Quhe, Si Zhou, Yangyang Wang, Cheng Cheng Liu, Hongxia Zhong, Nannan Han, Jing Lu, Yugui Yao, and Kehui Wu. Rise of silicene: A competitive 2D material. Prog. Mater. Sci., 83:24–151, October 2016.spa
dc.relation.referencesDi Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett., 108(19):196802, May 2012.spa
dc.relation.referencesMotohiko Ezawa. Monolayer Topological Insulators: Silicene, Germanene, and Stanene. J. Phys. Soc. Jpn., 84(12):121003, October 2015.spa
dc.relation.referencesWei-Tao Lu and Qing-Feng Sun. Electrical control of crossed andreev reflection and spinvalley switch in antiferromagnet/superconductor junctions. Phys. Rev. B, 104:045418, Jul 2021.spa
dc.relation.referencesJingang Wang, Fengcai Ma, and Mengtao Sun. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv., 7(27):16801–16822, March 2017.spa
dc.relation.referencesArchana Raja, Andrey Chaves, Jaeeun Yu, Ghidewon Arefe, Heather M. Hill, Albert F. Rigosi, Timothy C. Berkelbach, Philipp Nagler, Christian Schüller, Tobias Korn, Colin Nuckolls, James Hone, Louis E. Brus, Tony F. Heinz, David R. Reichman, and Alexey Chernikov. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 8(15251):1–7, May 2017.spa
dc.relation.referencesA. Chaves, J. G. Azadani, Hussain Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, Seung Hyun Song, Y. D. Kim, Daowei He, Jiadong Zhou, A. Castellanos-Gomez, F. M. Peeters, Zheng Liu, C. L. Hinkle, Sang-Hyun Oh, Peide D. Ye, Steven J. Koester, Young Hee Lee, Ph. Avouris, Xinran Wang, and Tony Low. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl., 4(29):1–21, August 2020.spa
dc.relation.referencesAndrew F. May, Dmitry Ovchinnikov, Qiang Zheng, Raphael P. Hermann, Stuart Calder, Bevin Huang, Zaiyao Fei, Yaohua Liu, Xiaodong Xu, and Michael A. McGuire. Ferromagnetism near room temperature in the cleavable van der waals crystal fe5gete2. ACS nano, 13 4:4436–4442, 2019.spa
dc.relation.referencesZheng Li, Wei Xia, Hao Su, Zhenhai Yu, Yunpeng Fu, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, and Yanfeng Guo. Magnetic critical behavior of the van der waals fe5gete2 crystal with near room temperature ferromagnetism. Scientific Reports, 10, 2020.spa
dc.relation.referencesTomoharu Ohta, Masashi Tokuda, Shuichi Iwakiri, Kosuke Sakai, Benjamin Driesen, Yoshinori Okada, Kensuke Kobayashi, and Yasuhiro Niimi. Butterfly-shaped magnetoresistance in van der waals ferromagnet fe5gete2. AIP Advances, 11:025014, 2021.spa
dc.relation.referencesXiang Chen, Enrico Schierle, Yu He, Mayia Vranas, John W. Freeland, Jessica L. McChesney, Ramamoorthy Ramesh, Robert J. Birgeneau, and Alex Frano. Antiferromagnetic order in co-doped fe$_5$gete$_2$ probed by resonant magnetic x-ray scattering. 2022.spa
dc.relation.referencesCongkuan Tian, Feihao Pan, Sheng Xu, Kun Ai, Tianlong Xia, and Peng Cheng. Tunable magnetic properties in van der waals crystals (fe1−xcox)5gete2. arXiv: Mesoscale and Nanoscale Physics, 2020.spa
dc.relation.referencesHongrui Zhang, Yu Tsun Shao, R. Chen, Xiang Chen, Sandhya Susarla, David Raftrey, Jonathan T. Reichanadter, Lucas Caretta, Xiaoxi Huang, Nicholas S. Settineri, Zhen Chen, Jingcheng Zhou, Edith Bourret-Courchesne, Peter Ercius, Jie Yao, Peter Fischer, Jeffrey B. Neaton, David A. Muller, Robert J. Birgeneau, and Ramamoorthy Ramesh. A room temperature polar magnetic metal. Physical Review Materials, 2022.spa
dc.relation.referencesErik Bauch, Connor A. Hart, Jennifer M. Schloss, Matthew J. Turner, John F. Barry, Pauli Kehayias, Swati Singh, and Ronald L. Walsworth. Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control. Phys. Rev. X, 8(3):031025, July 2018.spa
dc.relation.referencesLucio Robledo, Hannes Bernien, Toeno van der Sar, and Ronald Hanson. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New J. Phys., 13(2):025013, February 2011.spa
dc.relation.referencesAndrew Horsley, Patrick Appel, Janik Wolters, Jocelyn Achard, Alexandre Tallaire, Patrick Maletinsky, and Philipp Treutlein. Microwave Device Characterization Using a Widefield Diamond Microscope. Phys. Rev. Appl., 10(4):044039, October 2018.spa
dc.relation.referencesAdam M. Wojciechowski, Mürsel Karadas, Alexander Huck, Christian Osterkamp, Steffen Jankuhn, Jan Meijer, Fedor Jelezko, and Ulrik L. Andersen. Contributed Review: Cameralimits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Rev. Sci. Instrum., 89(3):031501., March 2018.spa
dc.relation.referencesEduardo A. Lima and Benjamin P. Weiss. Obtaining vector magnetic field maps from singlecomponent measurements of geological samples. J. Geophys. Res. Solid Earth, 114(B6), June 2009.spa
dc.relation.referencesD. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth. Optical magnetic imaging of living cells. Nature, 496(7446):486–489, April 2013.spa
dc.relation.referencesConnor Hart. Experimental Realization of Improved Magnetic Sensing and Imaging in Ensembles of Nitrogen Vacancy Centers in Diamond. PhD thesis, September 2020.spa
dc.relation.referencesMatthew James Turner. Quantum Diamond Microscopes for Biological Systems and Integrated Circuits. PhD thesis, September 2020.spa
dc.relation.referencesM. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao, S. D. Bennett, N. B. Manson, A. Kubanek, and M. D. Lukin. State-selective intersystem crossing in nitrogen-vacancy centers. Phys. Rev. B, 91(16):165201, April 2015.spa
dc.relation.referencesA. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. J. Rogers, R. L. McMurtrie, N. B. Manson, F. Jelezko, and J. Wrachtrup. Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond. Phys. Rev. Lett., 102(19):195506, May 2009.spa
dc.relation.referencesJ.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys., 14(10):103033, October 2012.spa
dc.relation.referencesJennifer May. Schloss. Optimizing nitrogen-vacancy diamond magnetic sensors and imagers for broadband sensitivity. PhD thesis, Massachusetts Institute of Technology, 2019.spa
dc.relation.referencesL. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson. Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies. New J. Phys., 10(10):103024, October 2008.spa
dc.relation.referencesV. M. Acosta, A. Jarmola, E. Bauch, and D. Budker. Optical properties of the nitrogenvacancy singlet levels in diamond. Phys. Rev. B, 82(20):201202, November 2010.spa
dc.relation.referencesL. J. Rogers, M. W. Doherty, M. S. J. Barson, S. Onoda, T. Ohshima, and N. B. Manson. Singlet levels of the NV- centre in diamond. New J. Phys., 17(1):013048, January 2015.spa
dc.relation.referencesTse-Luen Wee, Yan-Kai Tzeng, Chau-Chung Han, Huan-Cheng Chang, Wunshain Fann, JuiHung Hsu, Kuan-Ming Chen, and Yueh-Chung Yu. Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond. J. Phys. Chem. A, 111(38):9379–9386, September 2007.spa
dc.relation.referencesRobert Chapman and Taras Plakhotnik. Quantitative luminescence microscopy on Nitrogen-Vacancy Centres in diamond: Saturation effects under pulsed excitation. Chem. Phys. Lett., 507(1):190–194, April 2011.spa
dc.relation.referencesA. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B, 84(19):195204, November 2011.spa
dc.relation.referencesM. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. B. Manson, and L. C. L. Hollenberg. Theory of the ground-state spin of the NV− center in diamond. Phys. Rev. B, 85(20):205203, May 2012.spa
dc.relation.referencesMarcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, and Lloyd C. L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528(1):1–45, July 2013.spa
dc.relation.referencesChang S. Shin, Mark C. Butler, Hai-Jing Wang, Claudia E. Avalos, Scott J. Seltzer, RenBao Liu, Alexander Pines, and Vikram S. Bajaj. Optically detected nuclear quadrupolar interaction of 14N in nitrogen-vacancy centers in diamond. Phys. Rev. B, 89(20):205202, May 2014.spa
dc.relation.referencesV. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett., 104(7):070801, February 2010.spa
dc.relation.referencesS. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, D. J. Twitchen, and J. M. Baker. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B, 79(7):075203, February 2009.spa
dc.relation.referencesM. W. Doherty, V. M. Acosta, A. Jarmola, M. S. J. Barson, N. B. Manson, D. Budker, and L. C. L. Hollenberg. Temperature shifts of the resonances of the NV− center in diamond. Phys. Rev. B, 90(4):041201, July 2014.spa
dc.relation.referencesF. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7(6):459–463, June 2011.spa
dc.relation.referencesEric Van Oort and Max Glasbeek. Electric-field-induced modulation of spin echoes of N-V centers in diamond. Chem. Phys. Lett., 168(6):529–532, May 1990.spa
dc.relation.referencesV. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B, 80(11):115202, September 2009.spa
dc.relation.referencesJanis Smits, Joshua T. Damron, Pauli Kehayias, Andrew F. McDowell, Nazanin Mosavian, Ilja Fescenko, Nathaniel Ristoff, Abdelghani Laraoui, Andrey Jarmola, and Victor M. Acosta. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci. Adv., 5(7):eaaw7895., July 2019.spa
dc.relation.referencesEd E. Kleinsasser, Matthew M. Stanfield, Jannel K. Q. Banks, Zhouyang Zhu, Wen-Di Li, Victor M. Acosta, Hideyuki Watanabe, Kohei M. Itoh, and Kai-Mei C. Fu. High density NV sensing surface created via He^(+) ion implantation of (12)^C diamond. arXiv, February 2016.spa
dc.relation.referencesGopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jörg Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8(5):383–387, May 2009spa
dc.relation.referencesD. P. L. Aude Craik, P. Kehayias, A. S. Greenspon, X. Zhang, M. J. Turner, J. M. Schloss, E. Bauch, C. A. Hart, E. L. Hu, and R. L. Walsworth. Microwave-Assisted Spectroscopy Technique for Studying Charge State in Nitrogen-Vacancy Ensembles in Diamond. Phys. Rev. Appl., 14(1):014009, July 2020.spa
dc.relation.referencesBoris Naydenov, Friedemann Reinhard, Anke Lämmle, V. Richter, Rafi Kalish, Ulrika F. S. D’Haenens-Johansson, Mark Newton, Fedor Jelezko, and Jörg Wrachtrup. Increasing the coherence time of single electron spins in diamond by high temperature annealing. arXiv, December 2010.spa
dc.relation.referencesAndrew F. May, Dmitry Ovchinnikov, Qiang Zheng, Raphael Hermann, Stuart Calder, Bevin Huang, Zaiyao Fei, Yaohua Liu, Xiaodong Xu, and Michael A. McGuire. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. ACS Nano, 13(4):4436–4442, April 2019.spa
dc.relation.referencesAndrew F. May, Mao-Hua Du, Valentino R. Cooper, and Michael A. McGuire. Tuning magnetic order in the van der Waals metal Fe5GeTe2 by cobalt substitution. Phys. Rev. Mater., 4(7):074008, July 2020.spa
dc.relation.referencesAndrew F. May, Craig A. Bridges, and Michael A. McGuire. Physical properties and thermal stability of Fe5−xGeTe2 single crystals. Phys. Rev. Mater., 3(10):104401, October 2019spa
dc.relation.referencesArne Wickenbrock, Sarunas Jurgilas, Albert Dow, Luca Marmugi, and Ferruccio Renzoni. Magnetic induction tomography using an all-optical 87Rb atomic magnetometer. Opt. Lett., 39(22):6367–6370, November 2014.spa
dc.relation.referencesCameron Deans, Luca Marmugi, Sarah Hussain, and Ferruccio Renzoni. Electromagnetic induction imaging with a radio-frequency atomic magnetometer. Appl. Phys. Lett., 108(10), March 2016.spa
dc.relation.referencesYechezkel Schlussel, Till Lenz, Dominik Rohner, Yaniv Bar-Haim, Lykourgos Bougas, David Groswasser, Michael Kieschnick, Evgeny Rozenberg, Lucas Thiel, Amir Waxman, Jan Meijer, Patrick Maletinsky, Dmitry Budker, and Ron Folman. Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond. Phys. Rev. Appl., 10(3):034032, September 2018.spa
dc.relation.referencesL. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, and V. Jacques. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett., 100(15), April 2012.spa
dc.relation.referencesDavid A. Broadway, James D. A. Wood, Liam T. Hall, Alastair Stacey, Matthew Markham, David A. Simpson, Jean-Philippe Tetienne, and Lloyd C. L. Hollenberg. Anticrossing Spin Dynamics of Diamond Nitrogen-Vacancy Centers and Aspa
dc.relation.referencesArne Wickenbrock, Huijie Zheng, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola, Victor M. Acosta, and Dmitry Budker. Microwave-free magnetometry with nitrogen-vacancy centers in diamond. Appl. Phys. Lett., 109(5), August 2016.spa
dc.relation.references] S. V. Anishchik and K. L. Ivanov. A method for simulating level anti-crossing spectra of diamond crystals containing NV- color centers. J. Magn. Reson., 305:67–76, August 2019.spa
dc.relation.referencesHuijie Zheng, Zhiyin Sun, Georgios Chatzidrosos, Chen Zhang, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Jörg Wrachtrup, Arne Wickenbrock, and Dmitry Budker. Microwave-Free Vector Magnetometry with Nitrogen-Vacancy Centers along a Single Axis in Diamond. Phys. Rev. Appl., 13(4):044023, April 2020.spa
dc.relation.referencesReinis Lazda, Laima Busaite, Andris Berzins, Janis Smits, Florian Gahbauer, Marcis Auzinsh, Dmitry Budker, and Ruvin Ferber. Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in external magnetic field. Phys. Rev. B, 103(13):134104, April 2021.spa
dc.relation.referencesC. Pellet-Mary, M. Perdriat, P. Huillery, and G. Hétet. Spin-Relaxation of Dipolar-Coupled Nitrogen-Vacancy Centers : The role of Double-flip Processes. arXiv, July 2022.spa
dc.relation.referencesJean Philippe Tetienne, Loïc Rondin, Piernicola Spinicelli, Mayeul Chipaux, Thierry Debuisschert, Jean-François Roch, and Vincent Jacques. Magnetic-field-dependent photodynamics of single nv defects in diamond: an application to qualitative all-optical magnetic imaging. New Journal of Physics, 14, 2012.spa
dc.relation.referencesViktor Ivády, Huijie Zheng, Arne Wickenbrock, Lykourgos Bougas, Georgios Chatzidrosos, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Dmitry Budker, Igor A. Abrikosov, and Adam Gali. Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study. Phys. Rev. B, 103(3):035307, January 2021.spa
dc.relation.referencesMarcis Auzinsh, Andris Berzins, Dmitry Budker, Laima Busaite, Ruvin Ferber, Florian Gahbauer, Reinis Lazda, Arne Wickenbrock, and Huijie Zheng. Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing. Phys. Rev. B, 100(7):075204, August 2019.spa
dc.relation.referencesG. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig, H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao, and M. D. Lukin. Critical Thermalization of a Disordered Dipolar Spin System in Diamond. Phys. Rev. Lett., 121(2):023601, July 2018spa
dc.relation.referencesOmkar Dhungel, Till Lenz, Muhib Omar, Joseph Shaji Rebeirro, Viktor Ivady, Adam Gali, Arne Wickenbrock, and Dmitry Budker. Zero-field microwave-free magnetometry with ensembles of nitrogen-vacancy centers in diamond. arXiv, January 2023.spa
dc.relation.referencesChul-Ho Lee, Gwan-Hyoung Lee, Arend M. van der Zande, Wenchao Chen, Yilei Li, Minyong Han, Xu Cui, Ghidewon Arefe, Colin Nuckolls, Tony F. Heinz, Jing Guo, James Hone, and Philip Kim. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 9(9):676–681, September 2014.spa
dc.relation.referencesJ. Fransson, A. M. Black-Schaffer, and A. V. Balatsky. Magnon Dirac materials. Phys. Rev. B, 94(7):075401, August 2016.spa
dc.relation.referencesS. A. Owerre. A first theoretical realization of honeycomb topological magnon insulator. J. Phys.: Condens. Matter, 28(38):386001, July 2016spa
dc.relation.referencesOliver Gröning, Shiyong Wang, Xuelin Yao, Carlo A. Pignedoli, Gabriela Borin Barin, Colin Daniels, Andrew Cupo, Vincent Meunier, Xinliang Feng, Akimitsu Narita, Klaus Müllen, Pascal Ruffieux, and Roman Fasel. Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 560(7717):209–213, August 2018.spa
dc.relation.referencesMotohiko Ezawa. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett., 109:055502, Aug 2012.spa
dc.relation.referencesDavid A. Simpson, Jean-Philippe Tetienne, Julia M. McCoey, Kumaravelu Ganesan, Liam T. Hall, Steven Petrou, Robert E. Scholten, and Lloyd C. L. Hollenberg. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep., 6(22797):1–8, March 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembImanesspa
dc.subject.lembMagnetseng
dc.subject.lembMateriaspa
dc.subject.lembMattereng
dc.subject.proposalGreen Functioneng
dc.subject.proposalNitrogen-Vacancy center in diamondeng
dc.subject.proposalQuantum Magnetic Imagingeng
dc.subject.proposalAll-optical Magnetometryeng
dc.subject.proposalDirac Hamiltonianeng
dc.subject.proposalGraphene-like materialseng
dc.subject.proposalVan der Waals Materialseng
dc.titleExploring Dirac Materials and Two-Dimensional Magnet Using Green's Function Method and Quantum Magnetic Imagingeng
dc.title.translatedExploracion de materiales de dirac e imanes bidimensionales usando el método de las funciones de green e imágenes magnéticas cuánticasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019111584.2023.pdf
Tamaño:
18.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: