Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama

dc.contributor.advisorAgulles Pedros, Luisspa
dc.contributor.advisorNamías, Maurospa
dc.contributor.authorGuarín Insignares, Marco Antoniospa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Marco-Guarinspa
dc.date.accessioned2024-05-09T19:10:03Z
dc.date.available2024-05-09T19:10:03Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl propósito de este estudio fue evaluar si las características radiómicas derivadas de imágenes de F-18 FDG PET y los mapas de ADC obtenidos por resonancia magnética (RM) son capaces de predecir la respuesta patológica completa (pCR) a la quimioterapia neoadyuvante (QNA) en pacientes con cáncer de mama localmente avanzado. 30 pacientes sin tratamiento previo sometidas a PET con F18-FDG y RM fueron incluidas en este estudio. Los especímenes de la biopsia pretratamiento fueron usados para extraer las características inmunohistoquímicas del tumor. Los resultados histopatológicos del tumor resecado post QNA fueron usados para clasificar entre pCR y No-pCR. 1702 características radiómicas y 4 por biopsia fueron extraídas. La reproducibilidad ante la variabilidad intra- e inter-observador fue evaluada usando el coeficiente de correlación intraclase ICC>0.9. La reducción de la dimensionalidad fue realizada por selección de mínima redundancia y máxima relevancia. Tres métodos: Boruta, Wilcoxon y un modelo Random Forest fueron implementados para seleccionar las características más importantes. Un modelo de aprendizaje supervisado por Random Forest con validación cruzada por Leave-One-Out fue implementado. El mayor rendimiento fue obtenido por la característica de PET “wavelet-HHL_glcm_Imc1” (AUC=0.78; IC95%: 0.70-0.87; sensibilidad: 50%; especificidad: 91%) que también fue la de mayor robustez entre los modelos de selección. El método de muestreo sintético adaptativo (ADASYN) fue implementado para balancear las clases y el modelo combinado entre la expresión de receptores de estrógenos (RE) obtenida por biopsia y la característica de PET “wavelet-HHL_glcm_Imc1” obtuvo el mejor rendimiento (AUC=0.95; sensibilidad=90%; especificidad=86%). El análisis radiómico combinado tiene el potencial para predecir la pCR a la QNA en pacientes con Ca de mama localmente avanzado y mejorar la estratificación preterapéutica. En este trabajo se ha desarrollado un flujo de trabajo radiómico robusto y reproducible para su implementación. (Texto tomado de la fuente).spa
dc.description.abstractBackground: The aim of this study was to assess whether 18F FDG and multiparametric MRI-based radiomics analysis is able to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients. Methods: A total of 30 female patients with locally advanced breast cancer proven by biopsy were included in this prospective study. All PET and MRI datasets were imported to dedicated software 3DSlicer (v. 4.11) for lesion annotation using a semiautomated method. Pretreatment biopsy specimens were used to determine tumour histology, tumor and nuclear grades, and immunohistochemical status. Histopathological results from surgical tumour specimens were used as the reference standard to distinguish between pCR and non-pCR. 1702 radiomics features were extracted using pyradiomics and 4 features from biopsy. The dimensionality reduction was achieved by minimum redundancy-maximum relevance. Three methods: Boruta, Wilcoxon and machine learning Random Forest were used to select the most important features. A supervised machine learning model with Random Forest and cross validated by Leave-One-Out was implemented. Results: The best performance was obtained by the PET feature “wavelet-HHL_glcm_Imc1” (AUC=0.78; IC95%: 0.70-0.87; sensibility=50%, specificity=91%) which was also the most robust among the selection models. The data were subsequently balanced using the method adaptive synthetic sampling (ADASYN) and better values in all metrics were obtained (AUC=0.95). The adaptive synthetic sampling (ADASYN) method to balance the classes was implemented and the best performance was obtained by the combined model between the expression of estrogen receptors (ER) and the PET feature “waveletHHL_glcm_Imc1” (AUC=0.95; sensibility=90%; specificity=86%). Conclusion: multiparametric radiomic features demonstrated ability as imaging biomarkers to predict the pCR to NAC in locally advanced breast cancer patients and hence potentially enhance pretherapeutic patient stratification.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.methodsModelo de aprendizaje automático supervisado a partir de datos clínicos de un estudio prospectivospa
dc.description.researchareaFísica Médica del diagnóstico por imágenesspa
dc.description.sponsorshipLa Fundación Centro Diagnóstico Nuclear es una alianza público-privada en Buenos Aires, Argentina, que trabaja en pro del diagnóstico eficiente de los pacientes oncológicos.spa
dc.format.extentxxiii, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86063
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesInternational Agency for Research on Cancer, “Global Cancer Observatory: Cancer Today”. Consultado: el 10 de noviembre de 2023. [En línea]. Disponible en: http://gco.iarc.fr/todayspa
dc.relation.referencesL. M. Spring et al., “Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis”, Clinical Cancer Research, vol. 26, núm. 12, pp. 2838–2848, jun. 2020, doi: 10.1158/1078-0432.CCR-19-3492.spa
dc.relation.referencesA. Marusyk, V. Almendro, y K. Polyak, “Intra-tumour heterogeneity: a looking glass for cancer?”, Nat Rev Cancer, vol. 12, núm. 5, pp. 323–334, may 2012, doi: 10.1038/nrc3261.spa
dc.relation.referencesR. Fisher, L. Pusztai, y C. Swanton, “Cancer heterogeneity: implications for targeted therapeutics”, Br J Cancer, vol. 108, núm. 3, pp. 479–485, feb. 2013, doi: 10.1038/bjc.2012.581.spa
dc.relation.referencesR. J. Gillies, P. E. Kinahan, y H. Hricak, “Radiomics: Images Are More than Pictures, They Are Data”, Radiology, vol. 278, núm. 2, pp. 563–577, feb. 2016, doi: 10.1148/radiol.2015151169.spa
dc.relation.referencesS. S. F. Yip y H. J. W. L. Aerts, “Applications and limitations of radiomics”, Phys Med Biol, vol. 61, núm. 13, pp. R150–R166, jul. 2016, doi: 10.1088/0031-9155/61/13/R150.spa
dc.relation.referencesB. Bendriem y D. W. Townsend, The Theory and Practice of 3D PET. Dordrecht: Springer Netherlands, 1998. doi: 10.1007/978-94-017-3475-2.spa
dc.relation.referencesD. L. Bailey, D. W. Townsend, P. E. Valk, y M. N. Maisey, Positron Emission Tomography: Basic Sciences. Springer London, 2005. doi: https://doi.org/10.1007/b136169.spa
dc.relation.referencesD. L. Bailey, J. L. Humm, A. Todd-Pokropek, y A. van Aswegen, Nuclear medicine physics: A handbook for teachers and students. 2014. [En línea]. Disponible en: https://api.semanticscholar.org/CorpusID:183658714spa
dc.relation.referencesD. W. Townsend, “Dual-Modality Imaging: Combining Anatomy and Function”, Journal of Nuclear Medicine, vol. 49, núm. 6, p. 938, jun. 2008, doi: 10.2967/jnumed.108.051276.spa
dc.relation.referencesD. W. Townsend, T. Beyer, y T. M. Blodgett, “PET/CT scanners: A hardware approach to image fusion”, Semin Nucl Med, vol. 33, núm. 3, pp. 193–204, jul. 2003, doi: 10.1053/snuc.2003.127314.spa
dc.relation.referencesJohn M Ollinger, “Model-based scatter correction for fully 3D PET”, Phys Med Biol, vol. 41, núm. 1, p. 153, 1996, doi: 10.1088/0031-9155/41/1/012.spa
dc.relation.referencesL. A. Shepp y Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Trans Med Imaging, vol. 1, núm. 2, pp. 113–122, 1982, doi: 10.1109/TMI.1982.4307558.spa
dc.relation.referencesM. Soret, S. L. Bacharach, y I. Buvat, “Partial-Volume Effect in PET Tumor Imaging”, Journal of Nuclear Medicine, vol. 48, núm. 6, p. 932, jun. 2007, doi: 10.2967/jnumed.106.035774.spa
dc.relation.referencesJ. M. M. Rogasch, F. Hofheinz, L. van Heek, C.-A. Voltin, R. Boellaard, y C. Kobe, “Influences on PET Quantification and Interpretation”, Diagnostics, vol. 12, núm. 2, p. 451, feb. 2022, doi: 10.3390/diagnostics12020451.spa
dc.relation.referencesM. Eskian et al., “Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements”, Eur J Nucl Med Mol Imaging, vol. 46, núm. 1, pp. 224–237, ene. 2019, doi: 10.1007/s00259-018-4194-x.spa
dc.relation.referencesM. C. Adams, T. G. Turkington, J. M. Wilson, y T. Z. Wong, “A Systematic Review of the Factors Affecting Accuracy of SUV Measurements”, American Journal of Roentgenology, vol. 195, núm. 2, pp. 310–320, ago. 2010, doi: 10.2214/AJR.10.4923.spa
dc.relation.referencesJ. T. Bushberg, J. A. Seibert, E. M. Leidholdt Jr., y J. M. Boone, The Essential Physics of Medical Imaging, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2012. doi: 10.1118/1.4811156.spa
dc.relation.referencesA. D. Elster, “Questions and Answers in MRI”. Consultado: el 7 de agosto de 2022. [En línea]. Disponible en: https://www.mriquestions.comspa
dc.relation.referencesA. B. Cohen, Concepts of Nuclear Physics. Tata McGraw-Hil, 1971.spa
dc.relation.referencesL. G. Hanson, “Introduction to Magnetic Resonance Imaging Techniques”, Copenhagen, ago. 2009. Consultado: el 7 de agosto de 2022. [En línea]. Disponible en: https://eprints.drcmr.dk/37/spa
dc.relation.referencesL. G. Hanson, “Is quantum mechanics necessary for understanding magnetic resonance?”, Concepts in Magnetic Resonance Part A, vol. 32A, núm. 5, pp. 329–340, 2008, doi: https://doi.org/10.1002/cmr.a.20123.spa
dc.relation.referencesR. P. Feynman, Jr. Vernon Frank L., y R. W. Hellwarth, “Geometrical Representation of the Schrödinger Equation for Solving Maser Problems”, J Appl Phys, vol. 28, núm. 1, pp. 49–52, ene. 1957, doi: 10.1063/1.1722572.spa
dc.relation.referencesJ. N. Oshinski, “MR Physics I: Magnetization, resonant frequency, relaxation and the MR signal”, en College on Medical Physics: Medical Imaging Physics and Technology. Principles of Optimisation, Safety and Education Development for Building Capacity in Developing Countries, Trieste: ICTP, sep. 2022.spa
dc.relation.referencesR. J. Gillies, P. E. Kinahan, y H. Hricak, “Radiomics: Images are more than pictures, they are data”, Radiology, vol. 278, núm. 2, pp. 563–577, feb. 2016, doi: 10.1148/radiol.2015151169.spa
dc.relation.referencesL. Urso et al., “PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review”, Int J Mol Sci, vol. 23, núm. 21, p. 13409, nov. 2022, doi: 10.3390/ijms232113409.spa
dc.relation.referencesS.-H. Lee, H. Park, y E. S. Ko, “Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review”, Korean J Radiol, vol. 21, núm. 7, p. 779, 2020, doi: 10.3348/kjr.2019.0855.spa
dc.relation.referencesV. Kumar et al., “Radiomics: the process and the challenges”, Magn Reson Imaging, vol. 30, núm. 9, pp. 1234–1248, nov. 2012, doi: 10.1016/j.mri.2012.06.010.spa
dc.relation.referencesRSNA, “Quantitative Imaging Biomarkers Alliance”. Consultado: el 27 de enero de 2021. [En línea]. Disponible en: https://www.rsna.org/research/quantitative-imaging-biomarkers-alliancespa
dc.relation.referencesE. J. Limkin et al., “Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology”, Annals of Oncology, vol. 28, núm. 6, pp. 1191–1206, jun. 2017, doi: 10.1093/annonc/mdx034.spa
dc.relation.referencesA. Zwanenburg, S. Leger, M. Vallières, y S. Löck, “Image biomarker standardisation initiative”, dic. 2016, doi: 10.1148/radiol.2020191145.spa
dc.relation.referencesK. Cheng, A. Lin, J. Yuvaraj, S. J. Nicholls, y D. T. L. Wong, “Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment of Coronary Inflammation”, Cells, vol. 10, núm. 4, p. 879, abr. 2021, doi: 10.3390/cells10040879.spa
dc.relation.referencesThe University of Texas MD Anderson Cancer Center, “Residual Cancer Burden Calculator”. Consultado: el 10 de noviembre de 2022. [En línea]. Disponible en: https://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3spa
dc.relation.referencesR. Boellaard et al., “FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0”, Eur J Nucl Med Mol Imaging, vol. 42, núm. 2, pp. 328–354, feb. 2015, doi: 10.1007/s00259-014-2961-x.spa
dc.relation.referencesD. Koopman et al., “Technical note: how to determine the FDG activity for tumour PET imaging that satisfies European guidelines”, EJNMMI Phys, vol. 3, núm. 1, p. 22, dic. 2016, doi: 10.1186/s40658-016-0158-z.spa
dc.relation.referencesEANM, “18F Accreditation specifications”. Consultado: el 10 de noviembre de 2023. [En línea]. Disponible en: https://earl.eanm.org/accreditation-specifications/spa
dc.relation.referencesNational Electrical Manufacturers Association, “NEMA MS 3-2008 (R2014) Determination Of Image Uniformity In Diagnostic Magnetic Resonance Images”, 2014.spa
dc.relation.referencesNational Electrical Manufacturers Association, “NEMA MS 5, 2018 Edition, 2018 - Determination of Slice Thickness in Diagnostic Magnetic Resonance Imaging”, ene. 2018.spa
dc.relation.referencesM. Hatt et al., “Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211”, Med Phys, vol. 44, núm. 6, pp. e1–e42, 2017, doi: 10.1002/mp.12124.spa
dc.relation.referencesM. Tamal, “Intensity threshold based solid tumour segmentation method for Positron Emission Tomography (PET) images: A review”, Heliyon, vol. 6, núm. 10, p. e05267, oct. 2020, doi: 10.1016/j.heliyon.2020.e05267.spa
dc.relation.referencesU. Nestle et al., “Comparison of Different Methods for Delineation of <sup>18</sup>F-FDG PET–Positive Tissue for Target Volume Definition in Radiotherapy of Patients with Non–Small Cell Lung Cancer”, Journal of Nuclear Medicine, vol. 46, núm. 8, p. 1342, ago. 2005, [En línea]. Disponible en: http://jnm.snmjournals.org/content/46/8/1342.abstractspa
dc.relation.referencesC. Nioche et al., “LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity”, Cancer Res, vol. 78, núm. 16, pp. 4786–4789, ago. 2018, doi: 10.1158/0008-5472.CAN-18-0125.spa
dc.relation.referencesA. Fedorov et al., “3D Slicer as an image computing platform for the Quantitative Imaging Network”, Magn Reson Imaging, 2012, doi: 10.1016/j.mri.2012.05.001.spa
dc.relation.referencesJ. J. M. van Griethuysen et al., “Computational Radiomics System to Decode the Radiographic Phenotype”, Cancer Res, vol. 77, núm. 21, pp. e104–e107, nov. 2017, doi: 10.1158/0008-5472.CAN-17-0339.spa
dc.relation.referencesPyradiomics Community, “Radiomic Features”. Consultado: el 9 de octubre de 2022. [En línea]. Disponible en: http://github.com/radiomics/pyradiomics Revision 6a761c4espa
dc.relation.referencesA. Traverso, L. Wee, A. Dekker, y R. Gillies, “Repeatability and Reproducibility of Radiomic Features: A Systematic Review”, International Journal of Radiation Oncology*Biology*Physics, vol. 102, núm. 4, pp. 1143–1158, nov. 2018, doi: 10.1016/j.ijrobp.2018.05.053.spa
dc.relation.referencesR. T. H. Leijenaar et al., “The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis”, Sci Rep, vol. 5, núm. 1, p. 11075, ago. 2015, doi: 10.1038/srep11075.spa
dc.relation.referencesE. Pfaehler et al., “Repeatability of 18 F‐ <scp>FDG PET</scp> radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method”, Med Phys, vol. 46, núm. 2, pp. 665–678, feb. 2019, doi: 10.1002/mp.13322.spa
dc.relation.referencesP. Brynolfsson et al., “Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters”, Sci Rep, vol. 7, núm. 1, p. 4041, jun. 2017, doi: 10.1038/s41598-017-04151-4.spa
dc.relation.referencesE. Ulrich, “PET-IndiC Extension”. Iowa. Consultado: el 27 de agosto de 2021. [En línea]. Disponible en: https://www.slicer.org/wiki/Documentation/Nightly/Extensions/PET-IndiCspa
dc.relation.referencesK. V. Mardia, J. T. Kent, y J. M. Bibby, “Multivariate Analysis”, Academic Press, 1979.spa
dc.relation.referencesJ. Peerlings et al., “Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial”, Sci Rep, vol. 9, núm. 1, p. 4800, mar. 2019, doi: 10.1038/s41598-019-41344-5.spa
dc.relation.referencesG. Collewet, M. Strzelecki, y F. Mariette, “Influence of MRI acquisition protocols and image intensity normalization methods on texture classification”, Magn Reson Imaging, vol. 22, núm. 1, pp. 81–91, ene. 2004, doi: 10.1016/j.mri.2003.09.001.spa
dc.relation.referencesL. Duron et al., “Gray-level discretization impacts reproducible MRI radiomics texture features”, PLoS One, vol. 14, núm. 3, p. e0213459, mar. 2019, doi: 10.1371/journal.pone.0213459.spa
dc.relation.referencesR. Cattell, S. Chen, y C. Huang, “Robustness of radiomic features in magnetic resonance imaging: review and a phantom study”, Vis Comput Ind Biomed Art, vol. 2, núm. 1, p. 19, dic. 2019, doi: 10.1186/s42492-019-0025-6.spa
dc.relation.referencesT. Zoeller, “Intraclass correlation coefficient with confidence intervals”. Consultado: el 29 de octubre de 2023. [En línea]. Disponible en: https://la.mathworks.com/matlabcentral/fileexchange/26885-intraclass-correlation-coefficient-with-confidence-intervalsspa
dc.relation.referencesThe MathWorks INC., “MATLAB”. Natick, MA, USA, 2021. Consultado: el 9 de octubre de 2022. [En línea]. Disponible en: https://www.mathworks.com/products/matlab.htmlspa
dc.relation.referencesC. Spick et al., “Diffusion‐weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy”, NMR Biomed, vol. 29, núm. 10, pp. 1445–1453, oct. 2016, doi: 10.1002/nbm.3596.spa
dc.relation.referencesM. B. Kursa y W. R. Rudnicki, “Feature Selection with the Boruta Package”, J Stat Softw, vol. 36, núm. 11, 2010, doi: 10.18637/jss.v036.i11.spa
dc.relation.referencesV. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, y B. P. Feuston, “Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling”, J Chem Inf Comput Sci, vol. 43, núm. 6, pp. 1947–1958, nov. 2003, doi: 10.1021/ci034160g.spa
dc.relation.referencesH. He, Y. Bai, E. A. Garcia, y S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning”, en 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, pp. 1322–1328. doi: 10.1109/IJCNN.2008.4633969.spa
dc.relation.referencesV. Romeo et al., “A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer”, Cancers (Basel), vol. 14, núm. 16, p. 3944, ago. 2022, doi: 10.3390/cancers14163944.spa
dc.relation.referencesA. A. van Loevezijn et al., “[18F]FDG-PET/CT in prone compared to supine position for optimal axillary staging and treatment in clinically node-positive breast cancer patients with neoadjuvant systemic therapy”, EJNMMI Res, vol. 11, núm. 1, p. 78, dic. 2021, doi: 10.1186/s13550-021-00824-4.spa
dc.relation.referencesJ. H. Choi et al., “Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning”, Sci Rep, vol. 10, núm. 1, p. 21149, dic. 2020, doi: 10.1038/s41598-020-77875-5.spa
dc.relation.referencesT. Sengoz et al., “Role of F-18 FDG PET/CT in Predicting Response to Neoadjuvant Chemotherapy in Invasive Ductal Breast Cancer”, Eur J Breast Health, vol. 19, núm. 2, pp. 159–165, abr. 2023, doi: 10.4274/ejbh.galenos.2023.2023-1-3.spa
dc.relation.referencesR. Ranjbarzadeh, A. Bagherian Kasgari, S. Jafarzadeh Ghoushchi, S. Anari, M. Naseri, y M. Bendechache, “Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images”, Sci Rep, vol. 11, núm. 1, p. 10930, may 2021, doi: 10.1038/s41598-021-90428-8.spa
dc.relation.referencesW. Yue et al., “Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging”, Front Oncol, vol. 12, ago. 2022, doi: 10.3389/fonc.2022.984626.spa
dc.relation.referencesU. Bashir et al., “The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer”, EJNMMI Res, vol. 7, núm. 1, p. 60, 2017, doi: 10.1186/s13550-017-0310-3.spa
dc.relation.referencesN. M. Braman et al., “Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI”, Breast Cancer Research, vol. 19, núm. 1, p. 57, dic. 2017, doi: 10.1186/s13058-017-0846-1.spa
dc.relation.referencesR. T. H. Leijenaar et al., “The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis”, Sci Rep, vol. 5, núm. 1, p. 11075, ago. 2015, doi: 10.1038/srep11075.spa
dc.relation.referencesA. Traverso et al., “Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients”, Radiotherapy and Oncology, vol. 143, pp. 88–94, feb. 2020, doi: 10.1016/j.radonc.2019.08.008.spa
dc.relation.referencesR. W. Y. Granzier et al., “MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability”, Sci Rep, vol. 10, núm. 1, p. 14163, ago. 2020, doi: 10.1038/s41598-020-70940-z.spa
dc.relation.referencesC. Parmar, P. Grossmann, J. Bussink, P. Lambin, y H. J. W. L. Aerts, “Machine Learning methods for Quantitative Radiomic Biomarkers”, Sci Rep, vol. 5, núm. 1, p. 13087, ago. 2015, doi: 10.1038/srep13087.spa
dc.relation.referencesM. Guarin et al., “18F-FDG-PET/CT and MRI in the Assessment of Neoadjuvant Chemotherapy Treatment Response in Breast Cancer. Correlation with Pathological Response”, San Antonio: San Antonio Breast Cancer Symposium, 2020.spa
dc.relation.referencesH. Li et al., “MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis”, The Breast, vol. 40, pp. 106–115, 2018, doi: https://doi.org/10.1016/j.breast.2018.04.018.spa
dc.relation.referencesH. Yoon, Y. Kim, J. Chung, y B. S. Kim, “Predicting neo‐adjuvant chemotherapy response and progression‐free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F‐18 <scp>FDG PET</scp> / <scp>CT</scp> and diffusion‐weighted <scp>MR</scp> imaging”, Breast J, vol. 25, núm. 3, pp. 373–380, may 2019, doi: 10.1111/tbj.13032.spa
dc.relation.referencesM. Sollini et al., “PET/CT radiomics in breast cancer: Mind the step”, Methods, vol. 188, pp. 122–132, abr. 2021, doi: 10.1016/j.ymeth.2020.01.007.spa
dc.relation.referencesH. Horng et al., “Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects”, Sci Rep, vol. 12, núm. 1, p. 4493, mar. 2022, doi: 10.1038/s41598-022-08412-9.spa
dc.relation.referencesT. K. Koo y M. Y. Li, “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research”, J Chiropr Med, vol. 15, núm. 2, pp. 155–163, jun. 2016, doi: 10.1016/j.jcm.2016.02.012.spa
dc.relation.referencesS. ying Huang et al., “Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis”, NPJ Breast Cancer, vol. 4, núm. 1, 2018, doi: 10.1038/s41523-018-0078-2.spa
dc.relation.referencesD. Leithner et al., “Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes”, Mol Imaging Biol, vol. 22, núm. 2, pp. 453–461, abr. 2020, doi: 10.1007/s11307-019-01383-w.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.decsNeoplasias de la Mama/diagnóstico por imagenspa
dc.subject.decsBreast Neoplasms/diagnostic imagingeng
dc.subject.decsTerapia Neoadyuvante/mortalidadspa
dc.subject.decsNeoadjuvant Therapy/mortalityeng
dc.subject.decsDiagnóstico por Imagen/métodosspa
dc.subject.decsDiagnostic Imaging/methodseng
dc.subject.proposalPositron Emission Tomography (PET)eng
dc.subject.proposalMagnetic Resonance Imaging (MRI)eng
dc.subject.proposalRadiomicseng
dc.subject.proposalBreast Cancereng
dc.subject.proposalTomografía por emisión de positrones (PET)spa
dc.subject.proposalResonancia Magnética (RM)spa
dc.subject.proposalRadiomics-based prediction of pathologic complete responseeng
dc.subject.proposalCáncer de mamaspa
dc.subject.proposalPredicción de la respuesta patológica completa (pCR) basada en radiomicsspa
dc.subject.proposalRadiómicaspa
dc.titleAnálisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mamaspa
dc.title.translated18f FDG PET and multiparametric magnetic resonance imaging based radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast canceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleAPORTE DE MAMMI-PET, PET/TC y RMN EN EL MANEJO DEL CÁNCER DE MAMA LOCALMENTE AVANZADOspa
oaire.fundernameFundación Centro Diagnóstico Nuclearspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032437176.2024.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: