Obtención de un scaffold cerámico de fosfato de calcio a partir de estereolitografía cerámica con potencial aplicación en regeneración de tejido óseo

dc.contributor.advisorGarcía García, Claudia Patricia
dc.contributor.authorDuque Uribe, Carolina
dc.contributor.researchgroupMateriales Cerámicos y Vítreosspa
dc.date.accessioned2025-02-18T02:12:02Z
dc.date.available2025-02-18T02:12:02Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractLos scaffolds basados en las superficies minimales triplemente periódicas (TPMS) cumplen las condiciones necesarias para ser utilizados en ingeniería tisular. En esta tesis se desarrollaron scaffolds de alúmina (Al) y fosfatos de calcio (CaP) a través de la técnica de estereolitografía cerámica, utilizando geometrías TPMS Giroide y Schwartz P. para ser aplicados en la regeneración de tejidos óseos. Se realizaron suspensiones con cargas cerámicas de 35, 40 y 50 vol% con los dos materiales, las cuales se caracterizaron reológicamente y para ambos casos se encontró que las más viscosas eran las de 50 vol% con valores de 1.1 Pa·s para CaP y de 0.78 Pa·s para Al. A las muestras impresas de ambos materiales se les hizo un tratamiento térmico para eliminar la resina y sinterizar los cuerpos cerámicos. A los andamios híbridos y cerámicos se les tomaron imágenes digitales, SEM y FESEM. Las contracciones volumétricas más altas fueron las de las muestras con menor porcentaje de carga (35 vol%) de geometría giroide, con valores de 58.4% para las de Al y de 79.4% para los de CaP. Las muestras que más cantidad de grietas presentaron fueron las de Al con geometría Schwartz P. Los scaffolds que presentaron mayor resistencia a la compresión fueron los híbridos para ambos materiales. La geometría giroide de Al sinterizada presentó resistencias más altas que la Schwartz P, siendo la de 50Al la mejor con un valor de 0.4 ± 0.2 MPa. En el caso de CaP sinterizados la mayor resistencia mecánica fue para 50CaP con un valor de 0.83 ± 0.06 MPa. Dichos valores son comparables con los del hueso esponjoso y cortical. Finalmente, los scaffolds de 50 vol% de Al y CaP se impregnaron con extractos de propóleos de Tame, Arauca, Colombia. Para los de Al se evaluó la actividad antimicrobiana, demostrando que existe una mejor respuesta frente a S. aureus que a E. Coli. Para los de CaP, se evaluó la citotoxicidad y proliferación celular, demostrando que el material con y sin propóleo no presenta efectos tóxicos sobre las células y que existe una mejor respuesta de crecimiento celular en aquellos que están impregnados. (Tomado de la fuente)spa
dc.description.abstractScaffolds based on triple periodic minimal surfaces (TPMS) satisfy the necessary conditions to be used in tissue engineering. In this thesis, alumina (Al) and calcium phosphate (CaP) scaffolds were developed through the ceramic stereolithography technique, using TPMS gyroid and Schwartz P geometries to be applied in bone tissue regeneration. Suspensions with ceramic fillers of 35, 40 and 50 vol% were made with the two materials, which were characterized rheologically and for both cases it was found that the most viscous were those of 50 vol% with values of 1.1 Pa·s for CaP and 0.78 Pa·s for Al. The printed samples of both materials were heat treated to remove the resin and sinter the ceramic bodies. Digital photographs, SEM and FESEM were taken of the hybrid and ceramic scaffolds. The highest volumetric shrinkages were those of the samples with the lowest percentage of load (35 vol%) of gyroid geometry, with values of 58.4% for Al and 79.4% for CaP. The samples with the highest number of cracks were those of Al with Schwartz P geometry. The scaffolds with the highest compressive strength were the hybrids for both materials. The Sintered Al gyroid geometry presented higher strengths than the Schwartz P, being the 50Al the best with a value of 0.4 ± 0.2 MPa. In the case of sintered CaP, the highest mechanical strength was for 50CaP with a value of 0.83 ± 0.06 MPa. Such values are comparable with those of cancellous and cortical bone. Finally, the 50 vol% Al and CaP scaffolds were impregnated with propolis extracts from Tame, Arauca, Colombia. The antimicrobial activity of the Al scaffolds was evaluated, demonstrating a better response to S. aureus than to E. coli. For CaP, cytotoxicity and cell proliferation were evaluated, demonstrating that the material with and without propolis did not present toxic effects on the cells and that there was a better response to cell growth in those that were impregnated.eng
dc.description.curricularareaFísica.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Físicaspa
dc.description.researchareaBiomaterialesspa
dc.format.extent157 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87509
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesGonzález LA, Vásquez GM, Molina JF. Epidemiología de la osteoporosis. 2009;16(1):15.spa
dc.relation.referencesAsociación Colombiana de Osteoporosis y Metabolismo Mineral con el apoyo de la Fundación de Apoyo al Reumático, FUNDARE, 2017spa
dc.relation.referencesFelice B, Sánchez MA, Socci MC, Sappia LD, Gómez MI, Cruz MK, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Materials Science and Engineering: C. diciembre de 2018;93:724-38.spa
dc.relation.referencesRibeiro M, Ferraz MP, Monteiro FJ, Fernandes MH, Beppu MM, Mantione D, et al. Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine. enero de 2017;13(1):231-9.spa
dc.relation.referencesRamírez JA, Ospina V, Rozo AA, Viana MI, Ocampo S, Restrepo S, et al. Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J Mater Res. 28 de noviembre de 2019;34(22):3757-65.spa
dc.relation.referencesOkada T, Uto K, Aoyagi T, Ebara M. 3D Printing Porous Ceramic Scaffold for Bone Tissue Engineering: A Review. Biomater Sci. 2016;4(1):96-103.spa
dc.relation.referencesTortolini P, Rubio S. Diferentes alternativas de rellenos óseos. Avances en Periodoncia. diciembre de 2012;24(3):133-8spa
dc.relation.referencesSchmidleithner C, Malferrari S, Palgrave R, Bomze D, Schwentenwein M, Kalaskar DM. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomed Mater. 1 de julio de 2019;14(4):045018.spa
dc.relation.referencesZhang H, Jiao C, Liu Z, He Z, Mengxing Ge, Zongjun Tian, et al. 3D-printed composite, calcium silicate ceramic doped with CaSO4·2H2O: Degradation performance and biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials. septiembre de 2021;121:104642spa
dc.relation.referencesFeng C, Zhang K, He R, Ding G, Xia M, Jin X, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram. junio de 2020;9(3):360-73.spa
dc.relation.referencesZhu H, Li M, Huang X, Qi D, Nogueira LP, Yuan X, et al. 3D printed tricalcium phosphate-bioglass scaffold with gyroid structure enhance bone ingrowth in challenging bone defect treatment. Applied Materials Today. diciembre de 2021;25:101166.spa
dc.relation.referencesÖzcan M, Hotza D, Fredel MC, Cruz A, Volpato CAM. Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. J Compos Sci. 11 de marzo de 2021;5(3):78.spa
dc.relation.referencesSzymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering. abril de 2020;40(2):624-38.spa
dc.relation.referencesLy M, Spinelli S, Hays S, Zhu D. 3D Printing of Ceramic Biomaterials. Engineered Regeneration. marzo de 2022;3(1):41-52.spa
dc.relation.referencesEsteves AVM, Martins MI, Soares P, Rodrigues MA, Lopes MA, Santos JD. Additive manufacturing of ceramic alumina/calcium phosphate structures by DLP 3D printing. Materials Chemistry and Physics. enero de 2022;276:125417.spa
dc.relation.referencesLiu S, Mo L, Bi G, Chen S, Yan D, Yang J, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceramics International. agosto de 2021;47(15):21108-16.spa
dc.relation.referencesBi G, Mo L, Liu S, Zhong X, Yang J, Yuan Z, et al. DLP printed β-tricalcium phosphate functionalized ceramic scaffolds promoted angiogenesis and osteogenesis in long bone defects. Ceramics International. 15 de septiembre de 2022;48(18):26274-86.spa
dc.relation.referencesRíos-Díaz J, Linares Hevilla FJ, Martínez-Payá JJ, Palomino Cortés MÁ, Del Baño Aledo ME. Arquitectura y organización interna del hueso ante la aplicación de diferentes estímulos mecánicos. Fisioterapia. julio de 2008;30(4):194-203.spa
dc.relation.referencesD. S, C. R. Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal. 1 de octubre de 2001;10(0):S86-95spa
dc.relation.referencesCaeiro JR, González P, Guede D. Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea. Rev Osteoporos Metab Miner. junio de 2013;5(2):99-108.spa
dc.relation.referencesHenkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Res. 25 de septiembre de 2013;1(3):216-48.spa
dc.relation.referencesMegías, M. Molist, P. Pombal, MA. Tejidos animales. Tejido óseo. Atlas de Histología Vegetal y Animal [Internet]. [citado 14 de agosto de 2024]. Disponible en: https://mmegias.webs.uvigo.es/guiada_a_oseo.phpspa
dc.relation.referencesGong H, Zhu D, Gao J, Lv L, Zhang X. An adaptation model for trabecular bone at different mechanical levels. 2010;spa
dc.relation.referencesFallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N. A review of: Application of synthetic scaffold in tissue engineering heart valves. Materials Science and Engineering: C. marzo de 2015;48:556-65.spa
dc.relation.referencesMelchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. agosto de 2010;31(24):6121-30.spa
dc.relation.referencesMallick M, Are RP, Babu AR. An overview of collagen/bioceramic and synthetic collagen for bone tissue engineering. Materialia. 1 de mayo de 2022;22:101391.spa
dc.relation.referencesMelek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dental Journal. septiembre de 2015;12(3):211-23.spa
dc.relation.referencesGibson I, Rosen D, Stucker B. Additive Manufacturing Technologies [Internet]. New York, NY: Springer New York; 2015 [citado 14 de septiembre de 2022]. Disponible en: http://link.springer.com/10.1007/978-1-4939-2113-3spa
dc.relation.referencesYang L, Miyanaji H. CERAMIC ADDITIVE MANUFACTURING: A REVIEW OF CURRENT STATUS AND CHALLENGES. :28.spa
dc.relation.referencesZakeri S, Vippola M, Levänen E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Additive Manufacturing. octubre de 2020;35:101177spa
dc.relation.referencesHalloran JW. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization. Annu Rev Mater Res. 1 de julio de 2016;46(1):19-40.spa
dc.relation.referencesJ. Deckers. Additive Manufacturing of Ceramics: A Review. J Ceram Sci Tech [Internet]. 2014 [citado 14 de septiembre de 2022];(04). Disponible en: https://doi.org/10.4416/JCST2014-00032spa
dc.relation.referencesBove A, Calignano F, Galati M, Iuliano L. Photopolymerization of Ceramic Resins by Stereolithography Process: A Review. Applied Sciences. 1 de abril de 2022;12(7):3591.spa
dc.relation.referencesHalloran JW, Tomeckova V, Gentry S, Das S, Cilino P, Yuan D, et al. Photopolymerization of powder suspensions for shaping ceramics. Journal of the European Ceramic Society. 1 de noviembre de 2011;31(14):2613-9.spa
dc.relation.referencesBandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration. Curr Osteoporos Rep. octubre de 2020;18(5):505-14.spa
dc.relation.referencesCooper K. Rapid Prototyping Technology: Selection and Application. Boca Raton: CRC Press; 2001. 248 p.spa
dc.relation.referencesKruth JP. Material Incress Manufacturing by Rapid Prototyping Techniques. CIRP Annals. 1 de enero de 1991;40(2):603-14.spa
dc.relation.referencesCastro e Costa E, Duarte JP, Bártolo P. A review of additive manufacturing for ceramic production. RPJ. 22 de agosto de 2017;23(5):954-63.spa
dc.relation.referencesWang Z, Huang C, Wang J, Zou B. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceramics International. febrero de 2019;45(3):3902-9.spa
dc.relation.referencesWei Y, Zhao D, Cao Q, Wang J, Wu Y, Yuan B, et al. Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System. ACS Biomater Sci Eng. 9 de marzo de 2020;6(3):1787-97.spa
dc.relation.referencesWu H, Cheng Y, Liu W, He R, Zhou M, Wu S, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceramics International. noviembre de 2016;42(15):17290-4.spa
dc.relation.referencesAmjad Z. Calcium Phosphates in Biological and Industrial Systems. Springer Science & Business Media; 2013. 509 p.spa
dc.relation.referencesCanillas M, Pena P, de Aza AH, Rodríguez MA. Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio. mayo de 2017;56(3):91-112.spa
dc.relation.referencesLeGeros RZ. Calcium Phosphate-Based Osteoinductive Materials. Chem Rev. 12 de noviembre de 2008;108(11):4742-53.spa
dc.relation.referencesMarques A, Miranda G, Silva F, Pinto P, Carvalho Ó. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J Biomed Mater Res. marzo de 2021;109(3):377-93.spa
dc.relation.referencesWebler GD, Zapata MJM, Agra LC, Barreto E, Silva AOS, Hickmann JM, et al. Characterization and evaluation of cytotoxicity of biphasic calcium phosphate synthesized by a solid state reaction route. Current Applied Physics. 1 de junio de 2014;14(6):876-80spa
dc.relation.referencesNasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Materials Letters. 28 de febrero de 2009;63(5):543-6.spa
dc.relation.referencesLoca D, Sokolova M, Locs J, Smirnova A, Irbe Z. Calcium phosphate bone cements for local vancomycin delivery. Mater Sci Eng C Mater Biol Appl. abril de 2015;49:106-13.spa
dc.relation.referencesWu YS, Lee YH, Chang HC. Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method. Materials Science and Engineering: C. 1 de enero de 2009;29(1):237-41.spa
dc.relation.referencesLin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomaterialia. 1 de octubre de 2014;10(10):4071-102.spa
dc.relation.referencesZhang W, Chai Y, Xu X, Wang Y, Cao N. Rod-shaped hydroxyapatite with mesoporous structure as drug carriers for proteins. Applied Surface Science. 15 de diciembre de 2014;322.spa
dc.relation.referencesGuo YP, Yao YB, Guo YJ, Ning C. Hydrothermal fabrication of mesoporous carbonated hydroxyapatite microspheres for a drug delivery system. Microporous and Mesoporous Materials. 1 de junio de 2012;155:245-51.spa
dc.relation.referencesChen L, Zhu H, Yang S, Zhou B, You F, Yan X. Nanostructured calcium phosphate carriers for deliver of poor water-soluble drug silybin. Materials Letters. 1 de marzo de 2015;143spa
dc.relation.referencesBaradari H, Damia C, Colas M, Laborde E, Pecout N, Champion E, et al. Calcium phosphate porous pellets as drug delivery systems : effect of drug carrier composition on drug loading and in vitro release. Journal of the European Ceramic Society. 2012;32:2679-90.spa
dc.relation.referencesZhao J, Dong X, Bian M, Zhao J, Zhang Y, Sun Y, et al. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Applied Surface Science. 1 de septiembre de 2014;314:1026-33spa
dc.relation.referencesGhosh S, Roy S, Kundu B, Datta S, Basu D. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Materials Science and Engineering: B. 15 de enero de 2011;176:14-21.spa
dc.relation.referencesZhao J, Zhao J, Chen J, Wang X, Han Z, Li Y. Rietveld refinement of hydroxyapatite, tricalcium phosphate and biphasic materials prepared by solution combustion method. Ceramics International. 1 de marzo de 2014;40(2):3379-88.spa
dc.relation.referencesDeganello F, Tyagi AK. Solution combustion synthesis, energy and environment: Best parameters for better materials. Progress in Crystal Growth and Characterization of Materials. junio de 2018;64(2):23-61spa
dc.relation.referencesPérez Rodríguez GA, Guitián Rivera F, De Aza Pendás S. Obtención industrial de materiales cerámicos a partir de lodos rojos del proceso Bayer. Bol Soc Esp Ceram Vidr. 30 de junio de 1999;38(3):220-6.spa
dc.relation.referencesRahmati M, Mozafari M. Biocompatibility of alumina‐based biomaterials–A review. Journal Cellular Physiology. abril de 2019;234(4):3321-35spa
dc.relation.referencesMa PX. Scaffolds for tissue fabrication. Materials Today. mayo de 2004;7(5):30-40.spa
dc.relation.referencesPalucci Rosa R, Rosace G. Nanomaterials for 3D Printing of Polymers via Stereolithography: Concept, Technologies, and Applications. Macromol Mater Eng. octubre de 2021;306(10):2100345.spa
dc.relation.referencesBian W, Li D, Lian Q, Li X, Zhang W, Wang K, et al. Fabrication of a bio‐inspired beta‐Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyping Journal. 13 de enero de 2012;18(1):68-80.spa
dc.relation.referencesLee JW, Ahn G, Kim DS, Cho DW. Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering. abril de 2009;86(4-6):1465-7.spa
dc.relation.referencesGuillaume O, Geven MA, Grijpma DW, Tang TT, Qin L, Lai YX, et al. Poly(trimethylene carbonate) and nano-hydroxyapatite porous scaffolds manufactured by stereolithography: Composite PTMC/HA Scaffold Using Stereolithography. Polym Adv Technol. octubre de 2017;28(10):1219-25.spa
dc.relation.referencesDuque C, Gómez-Tirado CA, Ocampo S, Arroyave-Muñoz LM, Restrepo-Munera LM, Vásquez AF, et al. Obtaining biocompatible polymeric scaffolds loaded with calcium phosphates through the digital light processing technique. Journal of Materials Research [Internet]. 11 de septiembre de 2023 [citado 25 de octubre de 2023]; Disponible en: https://link.springer.com/10.1557/s43578-023-01144-0spa
dc.relation.referencesAn D, Li H, Xie Z, Zhu T, Luo X, Shen Z, et al. Additive manufacturing and characterization of complex Al 2 O 3 parts based on a novel stereolithography method. Int J Appl Ceram Technol. septiembre de 2017;14(5):836-44.spa
dc.relation.referencesFerrage L, Bertrand G, Lenormand P, Grossin D, Ben-Nissan B. A review of the additive manufacturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. J Aust Ceram Soc. abril de 2017;53(1):11-20.spa
dc.relation.referencesLi X, Zhong H, Zhang J, Duan Y, Bai H, Li J, et al. Dispersion and properties of zirconia suspensions for stereolithography. Int J Appl Ceram Technol. enero de 2020;17(1):239-47.spa
dc.relation.referencesCHU TMG. Hydroxyapatite implants with designed internal architecture. :8.spa
dc.relation.referencesDing G, He R, Zhang K, Xia M, Feng C, Fang D. Dispersion and stability of SiC ceramic slurry for stereolithography. Ceramics International. marzo de 2020;46(4):4720-9.spa
dc.relation.referencesZhou W, Li D, Wang H. A novel aqueous ceramic suspension for ceramic stereolithography. Rapid Prototyping Journal. 19 de enero de 2010;16(1):29-35.spa
dc.relation.referencesLiu Z, Liang H, Shi T, Xie D, Chen R, Han X, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceramics International. junio de 2019;45(8):11079-86.spa
dc.relation.referencesUIIah I, Cao L, Cui W, Xu Q, Yang R, Tang K lai, et al. Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles. Journal of Materials Science & Technology. octubre de 2021;88:99-108.spa
dc.relation.referencesKim JH, Maeng WY, Koh YH, Kim HE. Digital light processing of zirconia prostheses with high strength and translucency for dental applications. Ceramics International. diciembre de 2020;46(18):28211-8.spa
dc.relation.referencesSu CY, Wang JC, Chen DS, Chuang CC, Lin CK. Additive manufacturing of dental prosthesis using pristine and recycled zirconia solvent-based slurry stereolithography. Ceramics International. diciembre de 2020;46(18):28701-9.spa
dc.relation.referencesSkorulska A, Piszko P, Rybak Z, Szymonowicz M, Dobrzyński M. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry—Application, Mechanical Characteristics and Comparison. Materials. 24 de marzo de 2021;14(7):1592.spa
dc.relation.referencesXiang D, Xu Y, Bai W, Lin H. Dental zirconia fabricated by stereolithography: Accuracy, translucency and mechanical properties in different build orientations. Ceramics International. octubre de 2021;47(20):28837-47.spa
dc.relation.referencesWang Z, Huang C, Wang J, Zou B, Abbas CA, Wang X. Design and Characterization of Hydroxyapatite Scaffolds Fabricated by Stereolithography for Bone Tissue Engineering Application. Procedia CIRP. 2020;89:170-5.spa
dc.relation.referencesLi X, Yuan Y, Liu L, Leung YS, Chen Y, Guo Y, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-des Manuf. marzo de 2020;3(1):15-29.spa
dc.relation.referencesLe Guéhennec L, Van hede D, Plougonven E, Nolens G, Verlée B, De Pauw M, et al. In vitro and in vivo biocompatibility of calcium‐phosphate scaffolds three‐dimensional printed by stereolithography for bone regeneration. J Biomed Mater Res. marzo de 2020;108(3):412-25.spa
dc.relation.referencesChu TMG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. marzo de 2002;23(5):1283-93.spa
dc.relation.referencesKim JY, Lee JW, Lee SJ, Park EK, Kim SY, Cho DW. Development of a bone scaffold using HA nanopowder and micro-stereolithography technology. Microelectronic Engineering. mayo de 2007;84(5-8):1762-5.spa
dc.relation.referencesJiao C, Xie D, He Z, Liang H, Shen L, Yang Y, et al. Additive manufacturing of Bio-inspired ceramic bone Scaffolds: Structural Design, mechanical properties and biocompatibility. Materials & Design. mayo de 2022;217:110610.spa
dc.relation.referencesKang JH, Sakthiabirami K, Jang KJ, Jang JG, Oh GJ, Park C, et al. Mechanical and biological evaluation of lattice structured hydroxyapatite scaffolds produced via stereolithography additive manufacturing. Materials & Design. febrero de 2022;214:110372.spa
dc.relation.referencesLiang H, Wang Y, Chen S, Liu Y, Liu Z, Bai J. Nano-Hydroxyapatite Bone Scaffolds with Different Porous Structures Processed by Digital Light Processing 3D Printing. Int J Bioprint. 17 de enero de 2022;8(1):502.spa
dc.relation.referencesFilippov YaY, Murashko AM, Evdokimov PV, Safronova TV, Putlayev VI. Stereolithography 3D printed calcium pyrophosphate macroporous ceramics for bone grafting. Open Ceramics. diciembre de 2021;8:100185.spa
dc.relation.referencesLi X, Zhang H, Shen Y, Xiong Y, Dong L, Zheng J, et al. Fabrication of porous β-TCP/58S bioglass scaffolds via top-down DLP printing with high solid loading ceramic-resin slurry. Materials Chemistry and Physics. julio de 2021;267:124587.spa
dc.relation.referencesHuang X, Dai H, Hu Y, Zhuang P, Shi Z, Ma Y. Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP -based ceramic stereolithography. Journal of the European Ceramic Society. junio de 2021;41(6):3743-54.spa
dc.relation.referencesWang Y, Chen S, Liang H, Liu Y, Bai J, Wang M. Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceramics International. octubre de 2022;48(19):27681-92.spa
dc.relation.referencesAnanth KP, Jayram ND, Muthusamy K. 3D-printed Biphasic Calcium Phosphate Scaffold to augment cytocompatibility evaluation for load-bearing implant applications. Annals of 3D Printed Medicine. mayo de 2024;14:100148spa
dc.relation.referencesChen H, Lo WL, Lee SY, Lin YM. Controlling sintering temperature for biphasic calcium phosphate scaffolds using submicron hydroxyapatite slurries for LCD 3D printing. Ceramics International. enero de 2024;S0272884224000075.spa
dc.relation.referencesEvdokimov PV, Tikhonova SA, Putlyaev VI. Mechanical Properties of Graded Macroporous Calcium Phosphate Ceramics of Tailored Architecture. Inorg Mater. septiembre de 2023;59(9):1012-8.spa
dc.relation.referencesZhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia. enero de 2019;84:16-33.spa
dc.relation.referencesFarre Guasch E, Wolff J, Helder M, Schulten E, Forouzanfar T, Klein-Nulend J. Application of Additive Manufacturing in Oral and Maxillofacial Surgery. Journal of Oral and Maxillofacial Surgery. 25 de abril de 2015spa
dc.relation.referencesBhumiratana S, Vunjak-Novakovic G. Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Translational Medicine. 1 de enero de 2012;1(1):64-9spa
dc.relation.referencesJazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, et al. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Materials Science and Engineering: C. enero de 2017;70:913-29spa
dc.relation.referencesRestrepo S, Ocampo S, Ramírez JA, Paucar C, García C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J Phys: Conf Ser. diciembre de 2017;935:012036spa
dc.relation.referencesAmbu R, Morabito A. Porous Scaffold Design Based on Minimal Surfaces: Development and Assessment of Variable Architectures. Symmetry. 25 de agosto de 2018;10(9):361spa
dc.relation.referencesMontazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Materials & Design. julio de 2017;126:98-114spa
dc.relation.referencesLu J, Dong P, Zhao Y, Zhao Y, Zeng Y. 3D printing of TPMS structural ZnO ceramics with good mechanical properties. Ceramics International. mayo de 2021;47(9):12897-905spa
dc.relation.referencesFeng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extrem Manuf. 1 de junio de 2022;4(2):022001.spa
dc.relation.referencesLiu W, Li M, Nie J, Wang C, Li W, Xing Z. Synergy of solid loading and printability of ceramic paste for optimized properties of alumina via stereolithography-based 3D printing. Journal of Materials Research and Technology. septiembre de 2020;9(5):11476-83.spa
dc.relation.referencesXu H, Li S, Liu R, Bao C, Mu M, Wang K. Fabrication of alumina ceramics with high flexural strength using stereolithography. Int J Adv Manuf Technol. octubre de 2023;128(7-8):2983-94.spa
dc.relation.referencesSchwentenwein M, Homa J. Additive Manufacturing of Dense Alumina Ceramics. Int J Applied Ceramic Tech. enero de 2015;12(1):1-7.spa
dc.relation.referencesChen S, Wang CS, Zheng W, Wu JM, Yan CZ, Shi YS. Effects of particle size distribution and sintering temperature on properties of alumina mold material prepared by stereolithography. Ceramics International. marzo de 2022;48(5):6069-77.spa
dc.relation.referencesLi H, Liu Y, Liu Y, Hu K, Lu Z, Liang J. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography. Acta Metall Sin (Engl Lett). febrero de 2020;33(2):204-14.spa
dc.relation.referencesAzarmi F, Amiri A. Microstructural evolution during fabrication of alumina via laser stereolithography technique. Ceramics International. enero de 2019;45(1):271-8.spa
dc.relation.referencesXin M, Liu Z, Wang B, Song Q. Microstructures and mechanical properties of additively manufactured alumina ceramics with digital light processing. ArchivCivMechEng. 29 de diciembre de 2022;23(1):52.spa
dc.relation.referencesBrady GA, Chu TM, Halloran JW. Curing Behavior of Ceramic Resin for Stereolithographyspa
dc.relation.referencesGordon RJ, Lowy FD. Pathogenesis of Methicillin‐Resistant Staphylococcus aureus Infection. CLIN INFECT DIS. junio de 2008;46(S5):S350-9.spa
dc.relation.referencesSimone-Finstrom M, Borba R, Wilson M, Spivak M. Propolis Counteracts Some Threats to Honey Bee Health. Insects. 29 de abril de 2017;8(2):46.spa
dc.relation.referencesBecerra TB, Calla-Poma RD, Requena-Mendizabal MF, Millones-Gómez PA. Antibacterial Effect of Peruvian Propolis Collected During Different Seasons on the Growth of Streptococcus Mutans. TODENTJ. 30 de septiembre de 2019;13(1):327-31.spa
dc.relation.referencesOryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomedicine & Pharmacotherapy. febrero de 2018;98:469-83.spa
dc.relation.referencesMoreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, et al. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 9 de junio de 2023;15(12):2629.spa
dc.relation.referencesPrzybyłek I, Karpiński TM. Antibacterial Properties of Propolis. Molecules. 29 de mayo de 2019;24(11):2047.spa
dc.relation.referencesHayakawa T, Takahashi K, Kikutake K, Yokota I, Nemoto K. analysis of polymerization behavior of dental dimethacrylate monomers ny diferential scanning calorimetry.pdf. 1999;41(1):9-13.spa
dc.relation.referencesAlarcon RT, Gaglieri C, Dos Santos GC, Roldao JC, Magdalena AG, Da Silva-Filho LC, et al. A deep investigation into the thermal degradation of urethane dimethacrylate polymer. J Therm Anal Calorim. febrero de 2022;147(4):3083-97.spa
dc.relation.referencesPitzanti G, Mohylyuk V, Corduas F, Byrne NM, Coulter JA, Lamprou DA. Urethane dimethacrylate-based photopolymerizable resins for stereolithography 3D printing: A physicochemical characterisation and biocompatibility evaluation. Drug Deliv and Transl Res. enero de 2024;14(1):177-90.spa
dc.relation.referencesNurmi N. Debinding of Stereolithographically Printed Ceramic Parts: Supercritical Carbon Dioxide as Solvent. Tampere University; 2022.spa
dc.relation.referencesBaklouti S, Bouaziz J, Chartier T, Baumard JF. Binder burnout and evolution of the mechanical strength of dry-pressed ceramics containing poly(vinyl alcohol). Journal of the European Ceramic Society. agosto de 2001;21(8):1087-92.spa
dc.relation.referencesJones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. marzo de 2009;30(7):1440-51.spa
dc.relation.referencesYu S, Sun J, Bai J. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design. noviembre de 2019;182:108021.spa
dc.relation.referencesSeidel V, Peyfoon E, Watson DG, Fearnley J. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones. Phytotherapy Research. septiembre de 2008;22(9):1256-63.spa
dc.relation.referencesGonsales GZ, Orsi RO, Fernandes Júnior A, Rodrigues P, Funari SRC. Antibacterial activity of propolis collected in different regions of Brazil. J Venom Anim Toxins incl Trop Dis [Internet]. abril de 2006 [citado 19 de diciembre de 2023];12(2). Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992006000200009&lng=en&nrm=iso&tlng=enspa
dc.relation.referencesTeimouri A, Ebrahimi R, Chermahini AN, Emadi R. Fabrication and characterization of silk fibroin/chitosan/Nano γ-alumina composite scaffolds for tissue engineering applications. RSC Adv. 2015;5(35):27558-70.spa
dc.relation.referencesZhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, et al. Critical influence of alumina content on the low temperature degradation of 2–3mol% yttria-stabilized TZP for dental restorations. Journal of the European Ceramic Society. febrero de 2015;35(2):741-50.spa
dc.relation.referencesNegishi J, Nam K, Kimura T, Fujisato T, Kishida A. High-hydrostatic pressure technique is an effective method for the preparation of PVA–heparin hybrid gel. European Journal of Pharmaceutical Sciences. diciembre de 2010;41(5):617-22.spa
dc.relation.referencesHoexter DL. Bone regeneration graft materials. J Oral Implantol. 2002;28(6):290-4.spa
dc.relation.referencesDong Z, Zhao X. Application of TPMS structure in bone regeneration. Engineered Regeneration. 2021;2:154-62.spa
dc.relation.referencesSaleh Alghamdi S, John S, Roy Choudhury N, Dutta NK. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers. enero de 2021;13(5):753.spa
dc.relation.referencesSim JH, Koo BK, Jung M, Kim DS. Study on Debinding and Sintering Processes for Ceramics Fabricated Using Digital Light Processing (DLP) 3D Printing. Processes. 21 de noviembre de 2022;10(11):2467.spa
dc.relation.referencesQu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 19 de agosto de 2019;9(45):26252-62.spa
dc.relation.referencesDu P, Chen X, Chen Y, Li J, Lu Y, Li X, et al. In vivo and in vitro studies of a propolis-enriched silk fibroin-gelatin composite nanofiber wound dressing. Heliyon. marzo de 2023;9(3):e13506.spa
dc.relation.referencesFung C, Mohamad H, Hashim S, Htun A, Ahmad A. Proliferative Effect of Malaysian Propolis on Stem Cells from Human Exfoliated Deciduous Teeth: An In vitro Study. BJPR. 10 de enero de 2015;8(1):1-8spa
dc.relation.referencesBuitrago DM, Perdomo SJ, Silva FA, Cely-Veloza W, Lafaurie GI. Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study. Molecules. 6 de abril de 2024;29(7):1643.spa
dc.relation.referencesLopera AA, Montoya A, Vélez ID, Robledo SM, Garcia CP. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis. Photodiagnosis and Photodynamic Therapy. marzo de 2018;21:138-46.spa
dc.relation.referencesZeng Y, Yan Y, Yan H, Liu C, Li P, Dong P, et al. 3D printing of hydroxyapatite scaffolds withgood mechanical and biocompatible properties by digital light processing. J Mater Sci. mayo de 2018;53(9):6291-301.spa
dc.relation.referencesSun J, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. Journal of the European Ceramic Society. abril de 2019;39(4):1660-7.spa
dc.relation.referencesScalera F, Esposito Corcione C, Montagna F, Sannino A, Maffezzoli A. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International. diciembre de 2014;40(10):15455-62.spa
dc.relation.referencesSong SY, Park MS, Lee D, Lee JW, Yun JS. Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography. Materials & Design. octubre de 2019;180:107960.spa
dc.relation.referencesSchumacher M, Deisinger U, Detsch R, Ziegler G. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J Mater Sci: Mater Med. diciembre de 2010;21(12):3119-27.spa
dc.relation.referencesGrela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochemica. mayo de 2018;120(4):303-11spa
dc.relation.referencesSu J, Hua S, Chen A, Chen P, Yang L, Yuan X, et al. Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Biomater Adv. febrero de 2022;133:112595.spa
dc.relation.referencesBattulga B, Shiizaki K, Miura Y, Osanai Y, Yamazaki R, Shinohara Y, et al. Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet. Sci Rep. 16 de enero de 2023;13(1):852.spa
dc.relation.referencesKanwar S, Vijayavenkataraman S. 3D printable bone-mimicking functionally gradient stochastic scaffolds for tissue engineering and bone implant applications. Materials & Design. 1 de noviembre de 2022;223:111199spa
dc.relation.referencesVijayavenkataraman S, Zhang L, Zhang S, Hsi Fuh JY, Lu WF. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS Appl Bio Mater. 20 de agosto de 2018;1(2):259-69.spa
dc.relation.referencesEbadi P, Fazeli M. Evaluation of the potential in vitro effects of propolis and honey on wound healing in human dermal fibroblast cells. South African Journal of Botany. marzo de 2021;137:414-22.spa
dc.relation.referencesElkhenany H, El-Badri N, Dhar M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomedicine & Pharmacotherapy. julio de 2019;115:108861.spa
dc.relation.referencesÇINAR İ, SEVİM Ç. Effect of Various Extracts Obtained From Bee Pollen on L929 Fibroblast Cell Proliferation. 4 de marzo de 2024 [citado 22 de abril de 2024]; Disponible en: https://zenodo.org/doi/10.5281/zenodo.10779249spa
dc.relation.referencesPatil K, Aruna ST, Mimani T. Combustion Synthesis: An Update. Current Opinion in Solid State and Materials Science. 1 de diciembre de 2002;6:507-12.spa
dc.relation.referencesAruna ST, Mukasyan A. Combustion Synthesis and Nanomaterials. Current Opinion in Solid State and Materials Science. 1 de junio de 2008;12:44-50.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc660 - Ingeniería química::666 - Cerámica y tecnologías afinesspa
dc.subject.ddc530 - Físicaspa
dc.subject.decsTratamientos basados en células y tejidos
dc.subject.decsEstereolitografía
dc.subject.decsRegeneración ósea
dc.subject.decsFosfatos de calcio
dc.subject.lembConservación de tejidos
dc.subject.lembTejido óseo
dc.subject.proposalEstereolitografíaspa
dc.subject.proposalregeneración óseaspa
dc.subject.proposalfosfatos de calciospa
dc.subject.proposalalúminaspa
dc.subject.proposalscaffoldseng
dc.subject.proposalstereolithographyeng
dc.subject.proposalbone regenerationeng
dc.subject.proposalcalcium phosphateseng
dc.subject.proposalscaffoldseng
dc.titleObtención de un scaffold cerámico de fosfato de calcio a partir de estereolitografía cerámica con potencial aplicación en regeneración de tejido óseospa
dc.title.translatedProduction of ceramic calcium phosphate scaffold via ceramic stereolithography with potential application in bone tissue regenerationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017249203.2024.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: