Advancing healthcare analytics : a thematic review of machine learning, health informatics, and real-world data applications
dc.contributor.advisor | Velásquez Henao, Juan David | |
dc.contributor.author | Arias Rios, María Isabel | |
dc.contributor.cvlac | Arias Rios, Maria Isabel [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001828551] | |
dc.date.accessioned | 2025-09-22T13:41:03Z | |
dc.date.available | 2025-09-22T13:41:03Z | |
dc.date.issued | 2025-09-13 | |
dc.description.abstract | This study aims to map the conceptual and methodological landscape of healthcare analytics by identifying dominant thematic clusters, synthesizing key trends, and outlining translational challenges and research opportunities in the field. To achieve this, 2,281 Scopus-indexed publications were analyzed using unsupervised text mining and clustering techniques, with a focus on identifying recurring themes, methodological innovations, and gaps in the healthcare analytics literature across clinical, administrative, and public health contexts. The analysis revealed eight dominant themes: intelligent systems for predictive healthcare, patientcentered health analytics, adaptive AI for clinical insights, demographic health analytics, digital mental health surveillance, ethical analytics for health surveillance, personalized care through data analytics, and AI-driven insights for outbreak response. Together, these clusters illustrate an ongoing transition toward real-time, multimodal, and ethically grounded analytics ecosystems. However, the field continues to face persistent challenges, such as data interoperability, algorithmic opacity, standardization of evaluation practices, and demographic bias. The review also underscores emerging priorities that are likely to shape the next phase of development, including explainable AI, federated learning, and context-aware modeling, alongside ethical considerations related to data privacy and digital equity. From a practical perspective, key recommendations include the co-design of solutions with healthcare professionals, greater investment in infrastructure, and the deployment of real-time clinical decision support systems. Overall, healthcare analytics is positioned as a foundational pillar of learning health systems, carrying significant implications for translational research and the advancement of precision health. (Tomado de la fuente) | eng |
dc.description.abstract | Este estudio tiene como propósito mapear el panorama conceptual y metodológico de la analítica en salud, identificando los principales clústeres temáticos, sintetizando las tendencias clave y señalando los desafíos de transferencia y las oportunidades de investigación en el campo. Para ello, se analizaron 2.281 publicaciones indexadas en Scopus mediante técnicas no supervisadas de minería de texto y agrupamiento, con el objetivo de identificar temas recurrentes, innovaciones metodológicas y vacíos en la literatura sobre analítica en salud en contextos clínicos, administrativos y de salud pública. El análisis reveló ocho temas dominantes: sistemas inteligentes para la atención sanitaria predictiva, analítica en salud centrada en el paciente, inteligencia artificial adaptativa para generar conocimientos clínicos, analítica de salud demográfica, vigilancia digital de la salud mental, analítica ética para la vigilancia en salud, atención personalizada a través de la analítica de datos e información impulsada por IA para la respuesta a brotes. En conjunto, estos clústeres reflejan una transición hacia ecosistemas de analítica en tiempo real, multimodales y con fundamentos éticos. Sin embargo, el campo aún enfrenta desafíos persistentes como la interoperabilidad de datos, la opacidad algorítmica, la estandarización de evaluaciones y los sesgos demográficos. La revisión también resalta prioridades emergentes que probablemente orientarán la siguiente fase de desarrollo, entre ellas la inteligencia artificial explicable, el aprendizaje federado y la modelación consciente del contexto, junto con consideraciones éticas relacionadas con la privacidad de los datos y la equidad digital. Desde una perspectiva práctica, se proponen recomendaciones clave como el co-diseño de soluciones con profesionales de la salud, una mayor inversión en infraestructura y la implementación de sistemas de apoyo a la decisión clínica en tiempo real. En conjunto, la analítica en salud se posiciona como un pilar fundamental de los sistemas de salud en aprendizaje, con importantes implicaciones para la investigación traslacional y el avance de la salud de precisión. | spa |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Analítica | |
dc.description.methods | A total of 2,281 Scopus-indexed publications were analyzed using unsupervised text mining and clustering techniques. The analysis focused on identifying recurring themes, methodological innovations, and gaps within healthcare analytics literature across clinical, administrative, and public health contexts. This paper uses the standard workflow for literature analysis, incorporating recent enhancements from informatics research: 1. Study design. 2. Data collection and preparation. 3. Data analysis and interpretation | |
dc.description.researcharea | Analitica en salud | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88929 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | I. Ognjanovic, «Healthcare data analytics», Stud. Health Technol. Inform., vol. 274, pp. 122-135, 2020, doi: 10.3233/SHTI200672. | |
dc.relation.references | J. Wang, Z. Qin, J. Hsu, y B. Zhou, «A fusion of machine learning algorithms and traditional statistical forecasting models for analyzing American healthcare expenditure», Healthc. Anal., vol. 5, 2024, doi: 10.1016/j.health.2024.100312 | |
dc.relation.references | S. Naik, P. Kumar, S. Saha, S. D. Bairagya, D. Rawat, y S. K. Baliarsingh, «Predictive Healthcare Analytics: A Multidisease Approach using Logistic Regression», presentado en 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024, 2024. doi: 10.1109/ICCCNT61001.2024.10725194S. Naik, P. Kumar, S. Saha, S. D. Bairagya, D. Rawat, y S. K. Baliarsingh, «Predictive Healthcare Analytics: A Multidisease Approach using Logistic Regression», presentado en 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024, 2024. doi: 10.1109/ICCCNT61001.2024.10725194 | |
dc.relation.references | C. K. Leung, T. H. Daniel Mai, N. D. Thong Tran, y C. Y. Zhang, «Predictive Analytics to Support Health Informatics on COVID-19 Data», presentado en BIBE 2021 - 21st IEEE International Conference on BioInformatics and BioEngineering, Proceedings, 2021. doi: 10.1109/BIBE52308.2021.9635556. | |
dc.relation.references | S. Mishra, M. Alharbi, H. K. Tripathy, B. Sahoo, y A. Alkhayyat, Healthcare Analytics and Advanced Computational Intelligence. en Healthcare Analytics and Advanced Computational Intelligence. 2024, p. 223. doi: 10.1201/9781032624891. | |
dc.relation.references | E. Heitkemper, S. Hulse, B. Bekemeier, M. Schultz, G. Whitman, y A. M. Turner, «The Solutions in Health Analytics for Rural Equity Across the Northwest (SHARE-NW) Dashboard for Health Equity in Rural Public Health: Usability Evaluation», JMIR Hum. Factors, vol. 11, 2024, doi: 10.2196/51666. | |
dc.relation.references | M. Khalifa, «Health Analytics Types, Functions and Levels: A Review of Literature», Stud. Health Technol. Inform., vol. 251, pp. 137-140, 2018, doi: 10.3233/978-1-61499-880-8-137. | |
dc.relation.references | D. Kyriazis et al., «The CrowdHEALTH project and the hollistic health records: Collective wisdom driving public health policies», Acta Inform. Medica, vol. 27, n.o 5, pp. 369-373, 2019, doi: 10.5455/aim.2019.27.369-373. | |
dc.relation.references | M. Trigka y E. Dritsas, «Improving Cardiovascular Disease Prediction With Deep Learning and Correlation-Aware SMOTE», IEEE Access, vol. 13, pp. 44590-44606, 2025, doi: 10.1109/ACCESS.2025.3549417 | |
dc.relation.references | D. S. Saleh, M. S. Othman, W. O. Khudhur, y E. A. Aljabarti, «Effective Techniques for Handling Missing Values in Thyroid Disease Diagnosis: A Comparative Analysis», Appl. Comput. Intell. Soft Comput., vol. 2025, n.o 1, 2025, doi: 10.1155/acis/2766701 | |
dc.relation.references | S. Kukreti et al., «Enhancing Disease Prediction through Random Forests in Healthcare Analytics», presentado en Proceedings of International Conference on Contemporary Computing and Informatics, IC3I 2024, 2024, pp. 1693-1699. doi: 10.1109/IC3I61595.2024.10828927 | |
dc.relation.references | S. Li, M. Iqbal, A. K. Bashir, y X. Wang, «Privacy Preservation in Artificial Intelligence-Enabled Healthcare Analytics», Hum.-Centric Comput. Inf. Sci., vol. 15, pp. 1-15, 2025, doi: 10.22967/HCIS.2025.15.016 | |
dc.relation.references | L. Bohlen, J. Rosenberger, P. Zschech, y M. Kraus, «Leveraging interpretable machine learning in intensive care», Ann. Oper. Res., vol. 347, n.o 2, pp. 1093-1132, 2025, doi: 10.1007/s10479-024-06226-8. | |
dc.relation.references | A. Harikumar, S. Surendran, y S. Gargi, «Explainable AI in Deep Learning Based Classification of Fetal Ultrasound Image Planes», presentado en Procedia Computer Science, 2024, pp. 1023-1033. doi: 10.1016/j.procs.2024.03.291. | |
dc.relation.references | M. A. Saeed y M. A. Saeed, «Real-Time Diabetes Detection Using Machine Learning and Apache Spark», presentado en 4th International Conference on Emerging Smart Technologies and Applications, eSmarTA 2024, 2024. doi: 10.1109/eSmarTA62850.2024.10638853. | |
dc.relation.references | K. Zheng, H.-R. Chua, M. Herschel, H. V. Jagadish, B. C. Ooi, y J. W. L. Yip, «Exploiting Negative Samples: A Catalyst for Cohort Discovery in Healthcare Analytics», presentado en Proceedings of Machine Learning Research, 2024, pp. 61287-61320. [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198295164&partnerID=40&md5=7403836867210701732006609bee7659 | |
dc.relation.references | P. Whig, S. Kouser, A. B. Bhatia, R. R. Nadikattu, y P. Sharma, «Enabling trustworthy data sharing and collaborative insights in healthcare analytics», en Secure Big-data Analytics for Emerging Healthcare in 5G and beyond: Concepts, paradigms, and solutions, 2024, pp. 145-167. doi: 10.1049/PBHE063E_ch8. | |
dc.relation.references | R. Elragal, A. Elragal, y A. Habibipour, «Healthcare Analytics: Conceptualizing a Research Agenda», presentado en Procedia Computer Science, 2024, pp. 1678-1686. doi: 10.1016/j.procs.2024.06.345. | |
dc.relation.references | M. Aizpurua, T. Galluzzi, y S. Esteban, «Creating and implementing a professional development program to improve organizational capacity for health analytics in a public health setting», presentado en Studies in Health Technology and Informatics, 2020, pp. 1231-1232. doi: 10.3233/SHTI200377. | |
dc.relation.references | J. Ayles, M. D. C. C. de Lima, y N. Gupta, «Public sector health analytics capacity before and after Covid-19: A case study of manager perspectives in New Brunswick, Canada», Int. J. Popul. Data Sci., vol. 9, n.o 1, 2024, doi: 10.23889/ijpds.v9i1.2370. | |
dc.relation.references | S. Das, S. P. Nayak, B. Sahoo, y S. C. Nayak, «Machine Learning in Healthcare Analytics: A State-of-the-Art Review», Arch. Comput. Methods Eng., vol. 31, n.o 7, pp. 3923-3962, 2024, doi: 10.1007/s11831-024-10098-3. | |
dc.relation.references | M. S. Islam, M. M. Hasan, X. Wang, H. D. Germack, y M. Noor-E-alam, «A systematic review on healthcare analytics: Application and theoretical perspective of data mining», Healthc. Switz., vol. 6, n.o 2, 2018, doi: 10.3390/healthcare6020054. | |
dc.relation.references | R. Elragal, A. Elragal, y A. Habibipour, «Healthcare analytics—A literature review and proposed research agenda», Front. Big Data, vol. 6, 2023, doi: 10.3389/fdata.2023.1277976. | |
dc.relation.references | Q. Liu, M. Yu, B. Xiong, Z. Cai, P. Zhang, y C.-W. Tan, «Health analytics in business research: a literature review», J. Manag. Anal., vol. 10, n.o 3, pp. 447-476, 2023, doi: 10.1080/23270012.2023.2209863. | |
dc.relation.references | T. A. Pearson et al., «Precision Health Analytics With Predictive Analytics and Implementation Research: JACC State-of-the-Art Review», J. Am. Coll. Cardiol., vol. 76, n.o 3, pp. 306-320, 2020, doi: 10.1016/j.jacc.2020.05.043. | |
dc.relation.references | S.-S. M. Ajibade et al., «Evolution of machine learning applications in medical and healthcare analytics research: A bibliometric analysis», Intell. Syst. Appl., vol. 24, 2024, doi: 10.1016/j.iswa.2024.200441. | |
dc.relation.references | M. Khalifa, «Challenges of Health Analytics Utilization: A Review of Literature», presentado en Studies in Health Technology and Informatics, 2019, pp. 55-58. doi: 10.3233/SHTI190015. | |
dc.relation.references | S. Gold et al., «Clinical Concept Value Sets and Interoperability in Health Data Analytics», AMIA Annu. Symp. Proc. AMIA Symp., vol. 2018, pp. 480-489, 2018. | |
dc.relation.references | M. Khalifa y M. Househ, «Utilizing Health Analytics in Improving the Performance of Hospitals and Healthcare Services: Promises and Challenges», en Lecture Notes in Bioengineering, 2021, pp. 23-39. doi: 10.1007/978-3-030-67303-1_3. | |
dc.relation.references | «Healthcare Analytics Market Size | Industry Report, 2033». Accedido: 12 de septiembre de 2025. [En línea]. Disponible en: https://www.grandviewresearch.com/industry-analysis/healthcare-analytics-market | |
dc.relation.references | «Healthcare Analytics Market Growth, Drivers, and Opportunities», MarketsandMarkets. Accedido: 12 de septiembre de 2025. [En línea]. Disponible en: https://www.marketsandmarkets.com/Market-Reports/healthcare-data-analytics-market-905.html | |
dc.relation.references | S. Agboola et al., «Health Care Cost Analyses for Exploring Cost Savings Opportunities in Older Patients: Longitudinal Retrospective Study», JMIR Aging, vol. 1, n.o 2, p. e10254, ago. 2018, doi: 10.2196/10254. | |
dc.relation.references | T. Hawkins, «Corewell Health Study Determines Keys to Reducing Hospital Readmissions», Spectrum Health Newsroom. Accedido: 12 de septiembre de 2025. [En línea]. Disponible en: https://newsroom.spectrumhealth.org/corewell-health-study-determines-keys-to-reducing-hospital-readmissions/ | |
dc.relation.references | M. Aria y C. Cuccurullo, «bibliometrix: An R-tool for comprehensive science mapping analysis», J. Informetr., vol. 11, n.o 4, pp. 959-975, 2017. | |
dc.relation.references | N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, y W. M. Lim, «How to conduct a bibliometric analysis: An overview and guidelines», J. Bus. Res., vol. 133, pp. 285-296, 2021, doi: https://doi.org/10.1016/j.jbusres.2021.04.070. | |
dc.relation.references | M. J. Page et al., «The PRISMA 2020 statement: an updated guideline for reporting systematic reviews», BMJ, vol. 372, p. n71, mar. 2021, doi: 10.1136/bmj.n71. | |
dc.relation.references | S. Staras et al., «Using a clinical workflow analysis to enhance eHealth implementation planning: tutorial and case study», JMIR MHealth UHealth, vol. 9, n.o 3, p. e18534, 2021. | |
dc.relation.references | K. S. Taylor, K. R. Mahtani, y J. K. Aronson, «Summarising good practice guidelines for data extraction for systematic reviews and meta-analysis», BMJ Evid.-Based Med., vol. 26, n.o 3, pp. 88-90, 2021. | |
dc.relation.references | A. Sheikhtaheri, S. M. Tabatabaee Jabali, E. Bitaraf, A. TehraniYazdi, y A. Kabir, «A near real-time electronic health record-based COVID-19 surveillance system: An experience from a developing country», Health Inf. Manag. J., vol. 53, n.o 2, pp. 145-154, 2024, doi: 10.1177/18333583221104213. | |
dc.relation.references | A. Al Nuairi, M. C. E. Simsekler, A. Qazi, y A. Sleptchenko, «A data-driven Bayesian belief network model for exploring patient experience drivers in healthcare sector», Ann. Oper. Res., vol. 342, n.o 3, pp. 1797-1817, 2024, doi: 10.1007/s10479-023-05437-9. | |
dc.relation.references | L. Hammelrath, K. Hilbert, M. Heinrich, P. Zagorscak, y C. Knaevelsrud, «Select or adjust? How information from early treatment stages boosts the prediction of non-response in internet-based depression treatment», Psychol. Med., vol. 54, n.o 8, pp. 1641-1650, 2024, doi: 10.1017/S0033291723003537. | |
dc.relation.references | A. Manocha, S. K. Sood, y M. Bhatia, «Edge intelligence-assisted smart healthcare solution for health pandemic: a federated environment approach», Clust. Comput., vol. 27, n.o 5, pp. 5611-5630, 2024, doi: 10.1007/s10586-023-04245-x. | |
dc.relation.references | J. A. J. Singh, J. Gnanasoundharam, M. Birunda, G. Sudha, S. P. Maniraj, y C. Srinivasan, «Wearable Sepsis Early Warning Using Cloud Computing and Logistic Regression Predictive Analytics», presentado en 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2024, 2024. doi: 10.1109/ICRITO61523.2024.10522250. | |
dc.relation.references | A. Sambarey et al., «Integrative analysis of multimodal patient data identifies personalized predictors of tuberculosis treatment prognosis», iScience, vol. 27, n.o 2, 2024, doi: 10.1016/j.isci.2024.109025. | |
dc.relation.references | J.-H. Jeong, I.-G. Lee, S.-K. Kim, T.-E. Kam, S.-W. Lee, y E. Lee, «DeepHealthNet: Adolescent Obesity Prediction System Based on a Deep Learning Framework», IEEE J. Biomed. Health Inform., vol. 28, n.o 4, pp. 2282-2293, 2024, doi: 10.1109/JBHI.2024.3356580. | |
dc.relation.references | F. Papaiz, M. E. T. Dourado, R. A. de Medeiros Valentim, R. Pinto, A. H. F. de Morais, y J. P. Arrais, «Ensemble-imbalance-based classification for amyotrophic lateral sclerosis prognostic prediction: identifying short-survival patients at diagnosis», BMC Med. Inform. Decis. Mak., vol. 24, n.o 1, 2024, doi: 10.1186/s12911-024-02484-5. | |
dc.relation.references | W. Zhang, J. Xie, Z. Zhang, y X. Liu, «Depression Detection Using Digital Traces on Social Media: A Knowledge-aware Deep Learning Approach», J. Manag. Inf. Syst., vol. 41, n.o 2, pp. 546-580, 2024, doi: 10.1080/07421222.2024.2340822. | |
dc.relation.references | G. Owusu, X. Wang, y J. Sun, «Longitudinal healthcare analytics for early detection and progression of neurological diseases: A clinical decision support system», presentado en Proceedings of the Annual Hawaii International Conference on System Sciences, 2024, pp. 3297-3306. [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199771167&partnerID=40&md5=d31126afc2bee3d2a28e5a4fe87dc405 | |
dc.relation.references | B. P. P. Kumar y H. M. Manoj, «Comparative Assessment of Machine Learning Models for Predicting Glucose Intolerance Risk», SN Comput. Sci., vol. 5, n.o 7, 2024, doi: 10.1007/s42979-024-03259-5. | |
dc.relation.references | A. S. Zamani, A. H. A. Hashim, A. S. A. Shatat, M. M. Akhtar, M. Rizwanullah, y S. S. I. Mohamed, «Implementation of machine learning techniques with big data and IoT to create effective prediction models for health informatics», Biomed. Signal Process. Control, vol. 94, 2024, doi: 10.1016/j.bspc.2024.106247. | |
dc.relation.references | N. Al-Shanableh et al., «Advanced ensemble machine learning techniques for optimizing diabetes mellitus prognostication: A detailed examination of hospital data», Data Metadata, vol. 3, 2024, doi: 10.56294/dm2024.363. | |
dc.relation.references | D. K. Gurmessa y W. Jimma, «Explainable machine learning for breast cancer diagnosis from mammography and ultrasound images: a systematic review», BMJ Health Care Inform., vol. 31, n.o 1, 2024, doi: 10.1136/bmjhci-2023-100954. | |
dc.relation.references | S. S. Tripathy et al., «FedHealthFog: A federated learning-enabled approach towards healthcare analytics over fog computing platform», Heliyon, vol. 10, n.o 5, 2024, doi: 10.1016/j.heliyon.2024.e26416. | |
dc.relation.references | H. Yu et al., «Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis», J. Healthc. Inform. Res., vol. 8, n.o 4, pp. 658-711, 2024, doi: 10.1007/s41666-024-00171-8. | |
dc.relation.references | F. Rabbi, D. Banik, N. U. I. Hossain, y A. Sokolov, «Using process mining algorithms for process improvement in healthcare», Healthc. Anal., vol. 5, 2024, doi: 10.1016/j.health.2024.100305. | |
dc.relation.references | Y. Wu, M. Wu, C. Wang, J. Lin, J. Liu, y S. Liu, «Evaluating the Prevalence of Burnout Among Health Care Professionals Related to Electronic Health Record Use: Systematic Review and Meta-Analysis», JMIR Med. Inform., vol. 12, 2024, doi: 10.2196/54811. | |
dc.relation.references | B. Ansari y E. G. Martin, «Integrating human-centered design in public health data dashboards: Lessons from the development of a data dashboard of sexually transmitted infections in New York State», J. Am. Med. Inform. Assoc., vol. 31, n.o 2, pp. 298-305, 2024, doi: 10.1093/jamia/ocad102. | |
dc.relation.references | S. Chintala, «Iot and Ai Synergy: Remote Patient Monitoring for Improved Healthcare», presentado en 4th International Conference on Innovative Practices in Technology and Management 2024, ICIPTM 2024, 2024. doi: 10.1109/ICIPTM59628.2024.10563530. | |
dc.relation.references | H. Luo et al., «Drug-drug interactions prediction based on deep learning and knowledge graph: A review», iScience, vol. 27, n.o 3, 2024, doi: 10.1016/j.isci.2024.109148. | |
dc.relation.references | C. K. Leung, «Biomedical Informatics: State of the Art, Challenges, and Opportunities», BioMedInformatics, vol. 4, n.o 1, pp. 89-97, 2024, doi: 10.3390/biomedinformatics4010006. | |
dc.relation.references | U. Islam, G. Mehmood, A. A. Al-Atawi, F. Khan, H. S. Alwageed, y L. Cascone, «NeuroHealth guardian: A novel hybrid approach for precision brain stroke prediction and healthcare analytics», J. Neurosci. Methods, vol. 409, 2024, doi: 10.1016/j.jneumeth.2024.110210. | |
dc.relation.references | V. Dankan Gowda, S. M. Chaithra, S. S. Gujar, S. F. Shaikh, B. S. Ingole, y N. S. Reddy, «Scalable AI Solutions for IoT-based Healthcare Systems using Cloud Platforms», presentado en 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2024 - Proceedings, 2024, pp. 156-162. doi: 10.1109/I-SMAC61858.2024.10714810. | |
dc.relation.references | B. S. Glicksberg et al., «Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room», J. Am. Med. Inform. Assoc., vol. 31, n.o 9, pp. 1921-1928, 2024, doi: 10.1093/jamia/ocae103. | |
dc.relation.references | W. Ni, H. Ao, H. Tian, Y. C. Eldar, y D. Niyato, «FedSL: Federated Split Learning for Collaborative Healthcare Analytics on Resource-Constrained Wearable IoMT Devices», IEEE Internet Things J., vol. 11, n.o 10, pp. 18934-18935, 2024, doi: 10.1109/JIOT.2024.3370985. | |
dc.relation.references | J. G. Jeslin, K. Vijayalakshmi, C. C. Vignesh, G. Suresh, G. V. Kosuri, y S. Murugan, «Predicting Patient Disease Progression with Cloud-based Decision Trees and IoT Data Integration», presentado en 2nd International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2024 - Proceedings, 2024, pp. 1040-1045. doi: 10.1109/ICSSAS64001.2024.10760687. | |
dc.relation.references | X. Meng et al., «The application of large language models in medicine: A scoping review», iScience, vol. 27, n.o 5, 2024, doi: 10.1016/j.isci.2024.109713. | |
dc.relation.references | M. Hosseini, M. Hosseini, y R. Javidan, «Leveraging Large Language Models for Clinical Abbreviation Disambiguation», J. Med. Syst., vol. 48, n.o 1, 2024, doi: 10.1007/s10916-024-02049-z. | |
dc.relation.references | D. Halpern, Q. Lin, R. Wang, S. Yang, S. Goldstein, y M. Kolak, «Dimensions of uncertainty: a spatiotemporal review of five COVID-19 datasets», Cartogr. Geogr. Inf. Sci., vol. 51, n.o 2, pp. 200-221, 2024, doi: 10.1080/15230406.2021.1975311. | |
dc.relation.references | A. A. Mir y R. Sevukan, «Sentiment analysis of Indian Tweets about Covid-19 vaccines», J. Inf. Sci., vol. 50, n.o 5, pp. 1308-1320, 2024, doi: 10.1177/01655515221118049. | |
dc.relation.references | S. C. Christopoulou, «Machine Learning Models and Technologies for Evidence-Based Telehealth and Smart Care: A Review», BioMedInformatics, vol. 4, n.o 1, pp. 754-779, 2024, doi: 10.3390/biomedinformatics4010042. | |
dc.relation.references | M. Schuemie et al., «Health-Analytics Data to Evidence Suite (HADES): Open-Source Software for Observational Research», presentado en Studies in Health Technology and Informatics, 2024, pp. 966-970. doi: 10.3233/SHTI231108. | |
dc.relation.references | E. Ali, M. Angelova, y C. Karmakar, «Epileptic seizure detection using CHB-MIT dataset: The overlooked perspectives», R. Soc. Open Sci., vol. 11, n.o 6, 2024, doi: 10.1098/rsos.230601. | |
dc.relation.references | L. R. Namamula y D. Chaytor, «Effective ensemble learning approach for large-scale medical data analytics», Int. J. Syst. Assur. Eng. Manag., vol. 15, n.o 1, pp. 13-20, 2024, doi: 10.1007/s13198-021-01552-7. | |
dc.relation.references | R. Rabiei, P. Bastani, H. Ahmadi, S. Dehghan, y S. Almasi, «Developing public health surveillance dashboards: a scoping review on the design principles», BMC Public Health, vol. 24, n.o 1, 2024, doi: 10.1186/s12889-024-17841-2. | |
dc.relation.references | A. H. Van Der Vegt et al., «Systematic review and longitudinal analysis of implementing Artificial Intelligence to predict clinical deterioration in adult hospitals: What is known and what remains uncertain», J. Am. Med. Inform. Assoc., vol. 31, n.o 2, pp. 509-524, 2024, doi: 10.1093/jamia/ocad220. | |
dc.relation.references | D. Mendhe, A. Dogra, P. S. Nair, S. Punitha, K. S. Preetha, y S. B. G. T. Babu, «AI-Enabled Data-Driven Approaches for Personalized Medicine and Healthcare Analytics», presentado en Proceedings of 9th International Conference on Science, Technology, Engineering and Mathematics: The Role of Emerging Technologies in Digital Transformation, ICONSTEM 2024, 2024. doi: 10.1109/ICONSTEM60960.2024.10568722. | |
dc.relation.references | S. Rasheed, G. K. Kumar, D. M. Rani, M. V. V. P. Kantipudi, y M. Anila, «Heart Disease Prediction Using GridSearchCV and Random Forest», EAI Endorsed Trans. Pervasive Health Technol., vol. 10, 2024, doi: 10.4108/eetpht.10.5523. | |
dc.relation.references | M. Khalifa y M. Albadawy, «AI in diagnostic imaging: Revolutionising accuracy and efficiency», Comput. Methods Programs Biomed. Update, vol. 5, 2024, doi: 10.1016/j.cmpbup.2024.100146. | |
dc.relation.references | P. Bhambri, S. Rani, y M. Fahim, Computational Intelligence and Blockchain in Biomedical and Health Informatics. en Computational Intelligence and Blockchain in Biomedical and Health Informatics. 2024, p. 334. doi: 10.1201/9781003459347. | |
dc.relation.references | S. Elkefi, «Access and usage of mobile health (mHealth) for communication, health monitoring, and decision-making among patients with multiple chronic diseases (comorbidities)», IISE Trans. Healthc. Syst. Eng., vol. 14, n.o 3, pp. 179-192, 2024, doi: 10.1080/24725579.2023.2267085. | |
dc.relation.references | G. Prabhakar, V. R. Chintala, T. Reddy, y T. Ruchitha, «User-cloud-based ensemble framework for type-2 diabetes prediction with diet plan suggestion», E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 7, 2024, doi: 10.1016/j.prime.2024.100423. | |
dc.relation.references | M. M. Islam, S. Nooruddin, F. Karray, y G. Muhammad, «Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach», Biomed. Signal Process. Control, vol. 94, 2024, doi: 10.1016/j.bspc.2024.106241. | |
dc.relation.references | C. Han et al., «Evaluation of GPT-4 for 10-year cardiovascular risk prediction: Insights from the UK Biobank and KoGES data», iScience, vol. 27, n.o 2, 2024, doi: 10.1016/j.isci.2024.109022. | |
dc.relation.references | C.-H. Yang et al., «Global, regional and national burdens of depression in adolescents and young adults aged 10–24 years, from 1990 to 2019: findings from the 2019 Global Burden of Disease study», Br. J. Psychiatry, vol. 225, n.o 2, pp. 311-320, 2024, doi: 10.1192/bjp.2024.69. | |
dc.relation.references | M. M. Eltoukhy, M. Elhoseny, K. M. Hosny, y A. K. Singh, «Computer aided detection of mammographic mass using exact Gaussian–Hermite moments», J. Ambient Intell. Humaniz. Comput., vol. 15, n.o 1, pp. 1139-1147, 2024, doi: 10.1007/s12652-018-0905-1. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | |
dc.subject.ddc | 610 - Medicina y salud | |
dc.subject.lemb | Salud - Procesamiento de datos | |
dc.subject.lemb | Salud - Minería de datos | |
dc.subject.lemb | Inteligencia artificial - aplicaciones médicas | |
dc.subject.proposal | Healthcare analytics | eng |
dc.subject.proposal | Health informatics | eng |
dc.subject.proposal | Medical informatics | eng |
dc.subject.proposal | Digital health | eng |
dc.subject.proposal | Clinical decision support | eng |
dc.subject.proposal | mHealth | eng |
dc.subject.proposal | Analítica en salud | spa |
dc.subject.proposal | Informática en salud | spa |
dc.subject.proposal | Informática médica | spa |
dc.subject.proposal | Salud digital | spa |
dc.subject.proposal | Apoyo a la decisión clínica | spa |
dc.title | Advancing healthcare analytics : a thematic review of machine learning, health informatics, and real-world data applications | eng |
dc.title.translated | Avances en la analítica en salud : una revisión temática del aprendizaje automático, la informática en salud y las aplicaciones de datos del mundo real | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |