Uso de nanopartículas de óxido de cinc como control de Omphalia flavida, agente causal de “la gotera”; enfermedad del cafeto (Coffea arábica L)

dc.contributor.advisorMuñoz Florez, Jaime Eduardospa
dc.contributor.advisorGuerra Sierra, Beatriz Elenaspa
dc.contributor.advisorMosquera Sánchez, Lyda Patriciaspa
dc.contributor.authorArciniegas Grijalba, Paola Andreaspa
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológicaspa
dc.date.accessioned2021-01-19T04:56:03Zspa
dc.date.available2021-01-19T04:56:03Zspa
dc.date.issued2021-01-18spa
dc.description.abstractSince the 19th century, coffee has been the main agricultural export product in Colombia, guaranteeing an important contribution to the country's economic development. The disease called "The leak", caused by the fungus O. flavida (anamorphic phase of M. citricolor), occurs very frequently in coffee plants, whose main damage is defoliation. In the present study the in vitro characterization of the morphological and molecular variation of 16 and seven isolates of O. flavida, respectively; from four coffee producing municipalities in Cauca. Likewise, the in vitro pathogenicity of seven isolates in healthy coffee leaves of the Castillo® El Tambo Variety was determined, and finally the antifungal effect of ZnO-NPs was evaluated, specifically on two O. flavida isolates that presented a high level of pathogenicity. The results showed that the isolates were grouped into 4 morphotypes, according to the geographical area and the similarity of their morphological and cultural characteristics; accordingly, significant differences were found for the mycelial growth rate index (IVCM) except between the El Tambo and Bolívar isolates and (P = 0.351), there was no significant difference for the percentage of gems among the isolates evaluated by municipality (P=0.355), the vegetative and reproductive structures presented typical characteristics of the fungus, in addition significant differences were observed for the diameter of the head for both La Sierra and Caloto (P = 0.026), isolates, there were no differences in the length of the total pedicel of the gem for those isolates (P = 0.835) and there were differences in the total length of the gem for El Tambo and Caloto (P = 0.001) isolates. The high percentage of identity and the general BLASTn results indicated that the isolates would correspond to O. flavida. Regarding the evaluation of pathogenicity, the morphotypes of El Tambo and La Sierra had the highest levels of pathogenicity. The NPs based on ZnO showed an antifungal activity on the isolates that presented the highest levels of pathogenicity, the most efficient treatment was with 12 mmol.Lspa
dc.description.abstractDesde el siglo XIX el café ha sido el principal producto agrícola de exportación en Colombia, garantizando un importante aporte al desarrollo económico del país. La enfermedad denominada “La gotera”, causada por el hongo Omphalia flavida (fase anamorfa de Mycena citricolor), se presenta muy frecuentemente en las plantas de café, cuyo daño principal es la defoliación. En el presente estudio se realizó la caracterización in vitro de la variación morfológica y molecular de 16 y 7 aislamientos de O. flavida, respectivamente; provenientes de cuatro municipios productores de café en el Cauca. Así mismo, se determinó la patogenicidad in vitro de 7 aislamientos en hojas sanas de café de la variedad Castillo® El Tambo, para evaluar el efecto antifúngico de las ZnO- NPs, específicamente sobre 2 aislamientos de O. flavida que presentaron un alto nivel de patogenicidad. Los resultados mostraron que los aislamientos fueron agrupados en 4 morfotipos, de acuerdo al área geográfica y la similitud de sus características morfológicas y culturales; de acuerdo a ello se encontraron diferencias significativas para el índice de velocidad de crecimiento micelial (IVCM) excepto entre los aislamientos de El Tambo y Bolívar, no hubo diferencia significativa para el porcentaje de gemas entre los aislamientos evaluados por municipio, las estructuras vegetativas y reproductivas presentaron características propias reportadas en la literatura, se observaron diferencias significativas para el diámetro de la cabezuela de los aislamientos de La Sierra y Caloto, no hubo diferencias en la longitud del pedicelo y si hubo diferencias en la longitud total de la gema para los de El Tambo y Caloto. El alto porcentaje de identidad y los resultados generales del BLASTn indicaron que los aislamientos corresponden a O. flavida. En cuanto a la evaluación de la patogenicidad, los morfotipos de El Tambo y La Sierra presentaron los niveles más altos de patogenicidad. Las nanopartículas con base en ZnO mostraron una actividad antifúngica sobre los aislamientos que presentaron los niveles más altos de patogenicidad, el tratamiento más eficiente fue con 12 mmol. L -1.spa
dc.description.degreelevelMaestríaspa
dc.format.extent84spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78811
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentMaestría en Ciencias Biológicasspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAbd-Elsalam, K. A., & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the next-generation of fungicides. J Nanotech Mater Sci, 2, 1–3. https://doi.org/10.15436/2377-1372.15.0spa
dc.relation.referencesAnderson, I. C., & Cairney, J. W. G. (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology, 6(8), 769–779. https://doi.org/10.1111/j.1462-2920.2004.00675.xspa
dc.relation.referencesAngel Calle, C. A., Rivillas Osorio, C. A., Arciniegas Basante, N. del C., & López Vásquez, J. M. (2018). Bases para el manejo de la gotera u ojo de gallo del cafeto en Colombia. In Cenicafe, Boletín tecnico No 490. https://doi.org/10.13140/RG.2.2.11934.38728spa
dc.relation.referencesArciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerrero-Vargas, J. A., & Rodríguez-Páez, J. E. (2017). ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Applied Nanoscience, 7(5), 225–241. https://doi.org/10.1007/s13204-017-0561-3spa
dc.relation.referencesAslam, S., Tahir, A., Aslam, M. F., Alam, M. W., Shedayi, A. A., & Sadia, S. (2017). Recent advances in molecular techniques for the identification of phytopathogenic fungi – a mini review. Journal of Plant Interactions, 12(1), 493–504. https://doi.org/10.1080/17429145.2017.1397205spa
dc.relation.referencesAvin, F. A., Bhassu, S., Shin, T. Y., & Sabaratnam, V. (2012). Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Molecular Biology Reports, 39(7), 7355–7364.spa
dc.relation.referencesBadotti, F., de Oliveira, F. S., Garcia, C. F., Vaz, A. B. M., Fonseca, P. L. C., Nahum, L. A., Oliveira, G., & Góes-Neto, A. (2017). Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology, 17(1), 42.spa
dc.relation.referencesBago, B., Chamberland, H., Goulet, A., Vierheilig, H., Lafontaine, J.-G., & Piché, Y. (1996). Effect of Nikkomycin Z, a chitin-synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular-mycorrhizal fungi. Protoplasma, 192(1–2), 80–92.spa
dc.relation.referencesBaldrian, P. (2010a). Effect of Heavy Metals on Saprotrophic Soil Fungi (pp. 263–279). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8_12spa
dc.relation.referencesBegerow, D., Nilsson, H., Unterseher, M., & Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87(1), 99–108. https://doi.org/10.1007/s00253-010-2585-4spa
dc.relation.referencesBellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), 189. https://doi.org/10.1186/1471-2180-10-189spa
dc.relation.referencesBeyers, T. Vos, C. Aerts, R. Heyens, K. Vogels, L. Seels, B. Höfte, M. Cammue, B. P A De Coninck, B. (2014). Resistance against Botrytis cinerea in smooth leaf pruning wounds of tomato does not depend on major disease signalling pathways. Plant Pathology, 63(1), 165–173. https://doi.org/10.1111/ppa.12075spa
dc.relation.referencesBickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. In Trends in Ecology and Evolution (Vol. 22, Issue 3, pp. 148–155). https://doi.org/10.1016/j.tree.2006.11.004spa
dc.relation.referencesBlackwell, M., Hibbett, D. S., Taylor, J. W., & Spatafora, J. W. (2006). Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia, 98(6), 829–837. https://doi.org/10.1080/15572536.2006.11832613spa
dc.relation.referencesBonilla, G. (1980). Estudio del ojo de gallo causado por el hongo Mycena citricolor. III Simposio Latinoamericano sobre caficultura,. III Simposio Latinoamericano Sobre Caficultura, 177–188.spa
dc.relation.referencesBowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28(8), 799–808.spa
dc.relation.referencesBrown, J. A., & Catley, B. J. (1992). Monitoring polysaccharide synthesis in Candida albicans. Carbohydrate Research, 227, 195–202.spa
dc.relation.referencesBuller, A. H. R. (1934). Omphalia flavida, a gemmiferous and luminous leaf-spot fungus. Researches on Fungi, 6, 397–443.spa
dc.relation.referencesCanet Brenes, G., Soto Víquez, C., Ocampo Tomason, P., Rivera Ramírez, J., Navarro Hurtado, A., Guatemala Morales, G., & Villanueva Rodríguez, S. (2016). La situación y tendencias de la producción de café en América Latina y el Caribe. In Iica. http://www.iica.int/sites/default/files/publications/files/2017/BVE17048805e.pdf.spa
dc.relation.referencesCarvajal, F. (1939). Ojo de gallo (Omphalia flavida). Revista Del Instituto de Defensa Del Café de Costa Rica., 7(52), 535–549.spa
dc.relation.referencesCassaignon, S., & Colbeau, C. D. (2013). Nanomaterials: a danger or a promise?: a chemical and biological perspective. Springer Verlag, London.spa
dc.relation.referencesCastaño A, J. J. (1951a). Principales causas predisponentes para la enfermedad de la gotera en nuestro cafetales. Revista Cafetera de Colombia (Colombia), 10(122), 3750–3756. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=orton.xis&method=post&formato=2&cantidad=1&expresion=mfn=039877.spa
dc.relation.referencesCastaño A, J. J. (1951b). Principales causas predisponentes para la enfermedad de la gotera en nuestro cafetales. Revista Cafetera de Colombia (Colombia), 10(122), 3750–3756.spa
dc.relation.referencesCenicafé. (1958). Manual del cafetero colombiano (Editorial ARGRA Ltda (ed.); pp. 1–28).spa
dc.relation.referencesCenicafé. (2019). Revista del Centro Nacional de Investigaciones del café. In Cenicafé (Vol. 69, Issue 2).spa
dc.relation.referencesCentre for Agricultural Bioscience International (CABI). (2019). American leaf spot of coffee Mycena citricolor. https://www.plantwise.org/knowledgebank/datasheet/35243#DistributionSection.spa
dc.relation.referencesChase, M. W., & Fay, M. F. (2009). Barcoding of Plants and Fungi. Science, 325(5941), 682–683. https://doi.org/10.1126/science.1176906.spa
dc.relation.referencesClemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., & Lindahl, B. D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127), 1615–1618.spa
dc.relation.referencesConrad L. Schoch, Keith A. Seifert, Sabine Huhndorf, Vincent Robert, John L. Spouge, C. André Levesque, Wen Chen, and F. B. C. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109.spa
dc.relation.referencesCowan, R. S., Chase, M. W., Kress, W. J., & Savolainen, V. (2006). 300,000 Species to identify: Problems, progress, and prospects in DNA barcoding of land plants. Taxon, 55(3), 611–616. https://doi.org/10.2307/25065638spa
dc.relation.referencesDel Milagro Granados Montero, M. (2015). Estudio de la epidemiología y alternativas de manejo agroecológico del ojo de gallo (Mycena citricolor) en cafeto bajo sistemas agroforestales en Costa Rica [Universidad de Costa Rica]. http://agritrop.cirad.fr/580115/.spa
dc.relation.referencesDennis, R. W. G. (1950). An Earlier Name for Omphalia flavida Maubl. and Rangel. Kew Bulletin, 5(3), 434. https://doi.org/10.2307/4109441.spa
dc.relation.referencesDesjardin, D. E., Oliveira, A. G., & Stevani, C. V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7(2), 170. https://doi.org/10.1039/b713328f.spa
dc.relation.referencesDoorley, G. W., & Payne, C. K. (2012). Nanoparticles act as protein carriers during cellular internalization. Chemical Communications, 48(24), 2961–2963.spa
dc.relation.referencesDuarte, B. (2012). Estudio y descripción de las Bacterias y Hongos. https://es.scribd.com/doc/109735805/Estudio-y-descripcion-de-las-Bacterias-y-Hongos#scribd estudio y descripción de las baterías y hongos.spa
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.spa
dc.relation.referencesEmamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies, 11(4), 742–748. https://doi.org/10.1016/j.ifset.2010.06.003.spa
dc.relation.referencesEPPO Global Database. (1970). Mycena citricolor, Distribution.spa
dc.relation.referencesFelsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791.spa
dc.relation.referencesFeofilova, E. P. (2010). The fungal cell wall: Modern concepts of its composition and biological function. Microbiology, 79(6), 711–720. https://doi.org/10.1134/S0026261710060019spa
dc.relation.referencesFiévet, F., & Brayner, R. (2013). Nanomaterials: A Danger or a Promise? (R. Brayner, F. Fiévet, & T. Coradin (eds.)). Springer London. https://doi.org/10.1007/978-1-4471-4213-3.spa
dc.relation.referencesFleischer, C. C., & Payne, C. K. (2014). Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Accounts of Chemical Research, 47(8), 2651–2659. https://doi.org/10.1021/ar500190qspa
dc.relation.referencesFloyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11(4), 839–850. https://doi.org/10.1046/j.1365-294X.2002.01485.xspa
dc.relation.referencesFNC. (2010a). Historíia del Café. Federación Nacional de Cafeteros de Colombia. http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/el_cafe/el_cafe/spa
dc.relation.referencesFNC. (2010b). Nuestras regiones cafeteras. Federación Nacional de Cafeteros de Colombia. http://www.cafedecolombia.com/particulares/es/la_tierra_del_cafe/regiones_cafeteras/spa
dc.relation.referencesFNC. (2017a). Avancemos en la estrategia por la rentabilidad del caficultor.spa
dc.relation.referencesFNC. (2017b). INFORME DEL GERENTE GENERAL Avancemos en la estrategia por la rentabilidad del caficultor.spa
dc.relation.referencesFNC. (2017c). Reseña del libro : “ 90 Años , Vivir el Café y Sembrar el Futuro.” In EAFIT (Ed.), “ 90 Años , Vivir el Café y Sembrar el Futuro” (pp. 9–17).spa
dc.relation.referencesFNC. (2019a). Còmite de cafeteros del Cauca. https://cauca.federaciondecafeteros.org/fnc/nuestro_cafe/category/118spa
dc.relation.referencesFNC. (2019b). FNC. https://federaciondecafeteros.org/app/uploads/2019/12/Informe-del-Gerente-al-87-Congreso-Nacional-de-Cafeteros-2019.pdfspa
dc.relation.referencesGarcia Túchez, J. W. (2012). Caracterización biológica del hongo Mycena citricolor Berk & Curt, Con aislamientos obtenidos de cultivares de café (Coffea arabica L.) provenientes de las diferentes zonas cafetaleras de Giatemala, C.A. 1–69. http://www.repositorio.usac.edu.gt/6486/1/TESIS JORGE WALDEMAR GARCÍA TÚCHEZ.pdfspa
dc.relation.referencesGil-Vallejo, L. F., Castro Caicedo, B. L., & Cadena Gómez, G. (2003). Enfermedades del cafeto en Colombia. http://biblioteca.cenicafe.org/handle/10778/993spa
dc.relation.referencesGonzales, V. M. (2003). Cultivo in vitro de ojo de gallo. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato=2&cantidad=1&expresion=mfn=011758spa
dc.relation.referencesGoodwin, S. B., Dunkle, L. D., & Zismann, V. L. (2001). Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology, 91(7), 648–658.spa
dc.relation.referencesGow, N. A. R., Latge, J.-P., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 5(3). https://doi.org/10.1128/microbiolspec.FUNK-0035-2016spa
dc.relation.referencesGriffin, D. H. (1994). Fungal Physiology (Wiley-Liss (ed.); 2 ed). https://books.google.com/books?hl=es&lr=&id=lBYWQaKzrFkC&oi=fnd&pg=PR9&ots=cOmd5sPYmE&sig=qWnQCBf1ZSzugiNMyFmesNG9KQcspa
dc.relation.referencesGuozhong, C. (2004). Nanostructures and Nanomaterials: synthesis, properties and applications. World scientificspa
dc.relation.referencesHe, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215 https://doi.org/10.1016/j.micres.2010.03.003spa
dc.relation.referencesHebert P, Cywinska A, Ball S, D. J. (2003). Barcode of Life: Identifying Species with DNA Barcoding Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 313–321spa
dc.relation.referencesHebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321 https://doi.org/10.1098/rspb.2002.2218spa
dc.relation.referencesHebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). https://doi.org/10.1098/rsbl.2003.0025spa
dc.relation.referencesHebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of Birds through DNA Barcodes. PLoS Biology, 2(10), e312. https://doi.org/10.1371/journal.pbio.0020312spa
dc.relation.referencesHirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T., & Sugimoto, H. (2010). Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics International, 36(2), 497–506 https://doi.org/10.1016/j.ceramint.2009.09.026spa
dc.relation.referencesHorton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 10(8), 1855–1871. https://doi.org/10.1046/j.0962-1083.2001.01333.xspa
dc.relation.referencesJaimes, M. J. del C., Ríos, D. I. C., & Severiche, S. C. A. (2017). Nanotecnologia y sus aplicaciones en la industria de alimentos Nanotechnology and its applications in the food industry. Revista Alimentos Hoy, 25(41), 51–76. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/viewFile/448/366%0Ahttp://alimentoshoy.acta.org.co/index.php/hoy/article/download/448/366%0Dspa
dc.relation.referencesJames, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A., Stajich, J. E., Hosaka, K., Sung, G.-H., Johnson, D., … Vilgalys, R. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443(7113), 818–822. https://doi.org/10.1038/nature05110spa
dc.relation.referencesJayaram, D. T., Runa, S., Kemp, M. L., & Payne, C. K. (2017). Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale, 9(22), 7595–7601. https://doi.org/10.1039/c6nr09500cspa
dc.relation.referencesJiménez, L. A., & Muñoz, J. C. (2017). Valoración financiera a la empresa cooperativa de caficultores del Cauca a travéz de flujo de caja descontado. 1–64.spa
dc.relation.referencesKairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 128(July), 78–84. https://doi.org/10.1016/j.jphotobiol.2013.07.017spa
dc.relation.referencesKapteyn, J. C., Van Den Ende, H., & Klis, F. M. (1999). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochimica et Biophysica Acta (BBA) - General Subjects, 1426(2), 373–383. https://doi.org/10.1016/S0304-4165(98)00137-8spa
dc.relation.referencesKhot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70. https://doi.org//10.1016/j.cropro.2012.01.007spa
dc.relation.referencesKim, S., Ahn, I., Rho, H., & Lee, Y. (2005). MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 57(5), 1224–1237.spa
dc.relation.referencesKimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.spa
dc.relation.referencesKirk, PM; Cannon, JC; Stalpers, J. (2008). Ainsworth & Bisbys dictionary of the fungi (CAB (ed.)).spa
dc.relation.referencesKlabunde, K. J., & Richards, R. M. (2009). Nanoscale materials in chemistry. John Wiley & Sons.spa
dc.relation.referencesKlis, F. M., Groot, P. De, & Hellingwerf, K. (2001). Molecular organization of the cell wall of Candida albicans. Medical Mycology, 39(1), 1–8. https://doi.org/10.1080/mmy.39.1.1.8-0spa
dc.relation.referencesKoneman, E. . (2001). Diagnóstico microbiológico: texto y atlas en color (6th ed.). Médica Panameicana.spa
dc.relation.referencesKopp, M., Kollenda, S., & Epple, M. (2017). Nanoparticle–Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry. Accounts of Chemical Research, 50(6), 1383–1390. https://doi.org/10.1021/acs.accounts.7b00051spa
dc.relation.referencesKress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8369–8374. https://doi.org/10.1073/pnas.0503123102spa
dc.relation.referencesKumar, R. ; Sharon, M. ; Choudhary, A. . (2010). Nanotechnology in Agricultural Diseases and Food Safety. Journal of Phytology, 2(4), 83–92.spa
dc.relation.referencesKumar, A., & Kumar, J. (2008). Defect and adsorbate induced infrared modes in sol–gel derived magnesium oxide nano-crystallites. Solid State Communications, 147(9–10), 405–408. https://doi.org/10.1016/j.ssc.2008.06.014spa
dc.relation.referencesKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054spa
dc.relation.referencesLarkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404spa
dc.relation.referencesLibrado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187spa
dc.relation.referencesLili He, Yang Liu, Azlin Mustapha, M. L. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003spa
dc.relation.referencesLinder, M. B. (2009). Hydrophobins: proteins that self assemble at interfaces. Current Opinion in Colloid & Interface Science, 14(5), 356–363. https://doi.org/10.1016/j.cocis.2009.04.001spa
dc.relation.referencesLira-Saldivar, R.H., Hernandez, M., Leon, E., Barajas, N., Villarreal, S. (2008). Antimicrobial properties of resinous plant extracts from Mexico with agrochemical and pharmaceutical potential. Planta Medica, 74, 1136–1140.spa
dc.relation.referencesLiu, J., Provan, J., Gao, L.-M., & Li, D.-Z. (2012). Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. International Journal of Molecular Sciences, 13(7), 8740–8751.spa
dc.relation.referencesLópez Arguedas, A. (2001a). Caracterización molecular y morfológica de aislamientos del hongo Mycena citricolor colectados en diferentes zonas cafetaleras de Costa Rica [CATIE, Turrialba (Costa Rica)]. http://repositorio.bibliotecaorton.catie.ac.cr/handle/11554/3169spa
dc.relation.referencesLópez Arguedas, A. (2001b). Caracterización molecular y morfológica de aislamientos del hongo Mycena citricolor colectados en diferentes zonas cafetaleras de Costa Rica. CATIE, Turrialba (Costa Rica).spa
dc.relation.referencesLópez, C., & Rodríguez-Páez, J. E. (2017). Synthesis and characterization of ZnO nanoparticles: effect of solvent and antifungal capacity of NPs obtained in ethylene glycol. Applied Physics A, 123(12), 748. https://doi.org/10.1007/s00339-017-1339-xspa
dc.relation.referencesLundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265–14270.spa
dc.relation.referencesLuo, A., Zhang, A., Ho, S. Y., Xu, W., Zhang, Y., Shi, W., Cameron, S. L., & Zhu, C. (2011). Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics, 12(1), 84. https://doi.org/10.1186/1471-2164-12-84spa
dc.relation.referencesLynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S., & Dawson, K. A. (2007). The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 134–135, 167–174. https://doi.org/10.1016/j.cis.2007.04.021spa
dc.relation.referencesMa, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C., & Williams, P. L. (2011). Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size. Environmental Pollution, 159(6), 1473–1480. https://doi.org/10.1016/j.envpol.2011.03.013spa
dc.relation.referencesMarly., G. M., J. E. y Anacona, R., M., G. M., & J. E. y Anacona, R. (2012). El óxido de cinc (ZnO): Síntesis y usos tecnológicos. En: Capacidad fotodegradante de las nanopartículas de ZnO. (1st ed.).spa
dc.relation.referencesMaublanc, A., & Rangel, E. (1914). Le Stilbum flavidum Cooke, forme avorteé de l’Omphalia flavida. Bulletín de La Sociedad Mycológica, 30, 41–47.spa
dc.relation.referencesMészáros, B., Simon, I., & Dosztányi, Z. (2009a). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5(5), e1000376. https://doi.org/10.1371/journal.pcbi.1000376spa
dc.relation.referencesMeyer, C. P., & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3(12), 1–10. https://doi.org/10.1371/journal.pbio.0030422spa
dc.relation.referencesMoore, D. (2003). Fungal morphogenesis (1ed ed.). Cambridge University Press. https://books.google.com/books?hl=en&lr=&id=WUcYZNggBecC&oi=fnd&pg=PR13&ots=uKU4fXU8f2&sig=UATH3ay1NXeTd5fSogSnhMykBlIspa
dc.relation.referencesMu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., & Yan, B. (2014). Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews, 114(15), 7740–7781. https://doi.org/10.1021/cr400295aspa
dc.relation.referencesNair, R. ; Varghese, S.H. ; Nair, B.G. ; Maekawa, T. Yoshida, Y. Kumar, D. . (2010). Nanoparticulate material delivery to plants. Plant Science., 179 (3), 154–163.spa
dc.relation.referencesNel, A. Xia, T. Madler, L. Li, N. (2006). Toxic Potential of Materials at the Nanolevel. Science, 311(5761), 622–627. https://doi.org/10.1126/science.1114397spa
dc.relation.referencesNel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543–557. https://doi.org/10.1038/nmat2442spa
dc.relation.referencesNilsson, R. H., Ryberg, M., Abarenkov, K., Sjakvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97–101. https://doi.org/10.1111/j.1574-6968.2009.01618.xspa
dc.relation.referencesOliva Pinzón, C. . (2009). Caracterización morfológica, patogénica, y bioquímica de aislamiento de Colletotrichum spp. asociado al cultivo de café (Coffea arabica) en Guatemala. Universidad de San Carlos de Guatemala.spa
dc.relation.referencesPadial, J. y, & De la Riva, I. (2007). Integrative taxonomists should use and produce DNA barcodes. Zootaxa, 1586(1), 67–68. https://doi.org/10.11646/zootaxa.1586.1.7spa
dc.relation.referencesPevsner, J. (2015). Bioinformatics and functional genomics. John Wiley & Sons.spa
dc.relation.referencesPliakhnevich, M., & Ivaniuk, V. (2008). Aggressiveness and metalaxyl sensitivity of Phytophthora infestans strains in belarus. Zemdirbyste-Agriculture, 95(3), 379–387.spa
dc.relation.referencesPorras-Alfaro, A. (2000). Evaluación de la actividad in vitro del género Hypocrea contra dos hongos fitopatógenos de importancia agrícola (Fusarium sp y Mycena citricolor) [Instituto Tecnológico de Costa Rica. Escuela de Biología]. https://repositoriotec.tec.ac.cr/handle/2238/53spa
dc.relation.referencesPrasad, R. (2016). Advances and Applications Through Fungal Nanobiotechnology (R. Prasad (ed.)). Springer International Publishing. https://doi.org/10.1007/978-3-319-42990-8spa
dc.relation.referencesPrasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705–713.spa
dc.relation.referencesRahman, M., Laurent, S., Tawil, N., Yahia, L., & Mahmoudi, L. (2013). Protein-Nanoparticles Interactions. The Bio-Nano Interface. The Bio-Nano Interface.spa
dc.relation.referencesRaja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. In Journal of Natural Products (Vol. 80, Issue 3, pp. 756–770). American Chemical Society. https://doi.org/10.1021/acs.jnatprod.6b01085spa
dc.relation.referencesRasband, W. (2011a). Fiji. In National Institutes of Health (1.52n). http://imagej.nih.gov/ijspa
dc.relation.referencesRay, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. Journal of Environmental Science and Health, Part C, 27(1), 1–35. https://doi.org/10.1080/10590500802708267spa
dc.relation.referencesRentaria Alcántara, M. (2007). Ecología molecular (L. E. Eguiarte, V. Souza, & X. Aguirre (eds.)). Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología. https://books.google.es/books?hl=es&lr=&id=KT7YILvV6YMC&oi=fnd&pg=PP8&dq=Breve+revisión+de+los+marcadores+moleculares&ots=4xNhDscVHw&sig=NzSlf9nbzpPrWiKgpL39W3blF1E#v=onepage&q=Capitul 18&f=falsespa
dc.relation.referencesRivillas Osorio, C. A., & Castro Toro, A. M. (2011). Ojo de gallo o gotera del cafeto Omphalia flavida. In Intergovernmental Panel on Climate Change (Ed.), Cenicafé, Boletín técnico No 37 (Issue 9). https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_partspa
dc.relation.referencesRomashchenko, A. V, Kan, T.-W., Petrovski, D. V, Gerlinskaya, L. A., Moshkin, M. P., & Moshkin, Y. M. (2017). Nanoparticles Associate with Intrinsically Disordered RNA-Binding Proteins. ACS Nano, 11(2), 1328–1339. https://doi.org/10.1021/acsnano.6b05992spa
dc.relation.referencesSaitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.spa
dc.relation.referencesSalas, J. ., & Hancock, J. . (1972). Production of the Perfect Stage of Mycena citricolor (Berk. and Curt) Sacc. Hilgardia, 41(9), 213–234. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato=2&cantidad=1&expresion=mfn=011756spa
dc.relation.referencesSardella, D., Gatt, R., & Valdramidis, V. P. (2017). Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Research International, 101, 274–279. https://doi.org/10.1016/J.FOODRES.2017.08.019spa
dc.relation.referencesSchoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., & Consortium, F. B. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246.spa
dc.relation.referencesSeas-Carvajal, C., & Avalos, G. (2013). Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica. Revista de Biología Tropical, 61(2), 531–537. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442013000300004spa
dc.relation.referencesSeifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83–89. https://doi.org/10.1111/j.1755-0998.2009.02635.xspa
dc.relation.referencesSharma, D., Rajput, J., Kaith, B. S., Kaur, M., & Sharma, S. (2010). Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films, 519(3), 1224–1229. https://doi.org/10.1016/j.tsf.2010.08.073spa
dc.relation.referencesSharma, R. K., & Ghose, R. (2015). Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceramics International, 41(1), 967–975. https://doi.org/10.1016/j.ceramint.2014.09.016spa
dc.relation.referencesSimpson, J. (1997). Amplified fragment length polymorphisms (AFLP’s). Botanical Sciences., 60, 119–122. http://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1524spa
dc.relation.referencesSlepecky, R. A., & Starmer, W. T. (2009). Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia, 101(6), 823–832. https://doi.org/10.3852/08-197spa
dc.relation.referencesStankic, S., Sternig, A., Finocchi, F., Bernardi, J., & Diwald, O. (2010). Zinc oxide scaffolds on MgO nanocubes. Nanotechnology, 21(35), 355603. https://doi.org/10.1088/0957-4484/21/35/355603spa
dc.relation.referencesStepien, G., Moros, M., Perez-Hernandez, M., Monge, M., Gutiérrez, L., Fratila, R. M. M., Las Heras, M., Menao Guillen, S., Puente Lanzarote, J. J., & Solans, C. (2018). Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Applied Materials & Interfaces.spa
dc.relation.referencesSudbery, P. (2002). Human Molecular Genetics (Pearson Education (ed.); (2nd ed.)).spa
dc.relation.referencesTedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., & Suija, A. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688.spa
dc.relation.referencesTripathi, D. K., Ahmad, P., Sharma, S., Chauhan, D. K., & Dubey, N. K. (2017). Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies (Vol. 1). Elsevier Inc.spa
dc.relation.referencesValencia, A. I., Comercio, M. De, Fernando, J., Ortega, M., Alirio, J., Buitrago, B., Uribe, E. V., Reinaldo, D., Ramos, V., Gonzalo, P., Urariyu, C., Bohorquez, J. B., Collazos, O. O., Rafael, E., Pineda, A., Alberto, C., Cardona, C., Escobar, A. C., Javier, L., … Orrego, H. D. (2016). Informe Anual Cenicafe.spa
dc.relation.referencesVargas, E., González L, M., Umaña R, G., & Vargas V, A. L. (1990). Nuevas alternativas de combate químico del ojo de gallo (Mycena citricolor). Boletín de PROMECAFE (IICA)(No.47) p. 9-14.spa
dc.relation.referencesVerma, S. K., Jha, E., Panda, P. K., Das, J. K., Thirumurugan, A., Suar, M., & Parashar, S. K. S. (2018). Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine, 13(1), 43–68.spa
dc.relation.referencesVidal Correa, L. E. (2016). Análisis comparativo de la regulación en nanotecnología en estados Unidos y la Unión Europea. Boletín Mexicano de Derecho Comparado, 49(147), 277–301. https://doi.org/10.22201/IIJ.24484873E.2016.147.10647spa
dc.relation.referencesVillanueva L, Miranda N, Castro N, F. S. (2015). Inhibición de Hongos Fitopatógenos de Cultivos Comerciales por Extractos Vegetales de Plantas Popularmente Usadas en Guatemala. PhD Proposal, 1. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesWang, A.; Avelino, J. (1999). El ojo de gallo del cafeto. 243–260.spa
dc.relation.referencesWang, A. (1988). Variation in Mycena citricolor on coffee in Costa Rica [University of Alberta]. https://idl-bnc-idrc.dspacedirect.org/handle/10625/2689spa
dc.relation.referencesWhite, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylgenetics. PCR protocols : a guide to methods and applications (J. S. and T. W. M.. Innis, DH Gelfand (ed.); pp. 315–322).spa
dc.relation.referencesXu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y., & Hui, D. (2013). Antimicrobial Mechanism Based on H 2 O 2 Generation at Oxygen Vacancies in ZnO Crystals. Langmuir, 29(18), 5573–5580. https://doi.org/10.1021/la400378tspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalMycena citricoloreng
dc.subject.proposalMorfologíaspa
dc.subject.proposalPathogenicityeng
dc.subject.proposalAntifungicaleng
dc.titleUso de nanopartículas de óxido de cinc como control de Omphalia flavida, agente causal de “la gotera”; enfermedad del cafeto (Coffea arábica L)spa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_93fcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10859218562021.pdf
Tamaño:
5.66 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: