Estudio biomecánico de la articulación coxofemoral con y sin displasia de cadera mediante el método de los elementos finitos

dc.contributor.advisorNarváez Tovar, Carlos Albertospa
dc.contributor.advisorLópez Vaca, Oscar Rodrigospa
dc.contributor.authorHomez Lopez, Oswaldo Ivánspa
dc.contributor.researchgroupModelado y Métodos Numéricos en Ingeniería (GNUM)spa
dc.date.accessioned2025-09-12T20:13:22Z
dc.date.available2025-09-12T20:13:22Z
dc.date.issued2025-04-21
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa displasia del desarrollo de cadera es una patología biomecánica que altera la morfología y función de la articulación coxofemoral. Comprender su impacto en la biomecánica de la cadera es fundamental para desarrollar estrategias de diagnóstico y tratamiento. En este estudio, se analizó la biomecánica de la articulación coxofemoral con y sin displasia mediante reconstrucciones tridimensionales basadas en imágenes diagnósticas de infantes con una edad aproximada de 4 años, considerando variaciones en el índice acetabular y el ángulo centro-borde para representar distintos grados de displasia. Se desarrolló un modelo musculoesquelético para evaluar la distribución de esfuerzos y presiones en la cavidad acetabular, con especial énfasis en el comportamiento del cartílago trirradiado, mediante simulaciones por el método de elementos finitos. Los resultados indicaron que los modelos con valores patológicos de índice acetabular y ángulo centro-borde presentaron mayores concentraciones de esfuerzo en la región superior de la cavidad acetabular. Además, se identificó una reducción en la estimulación osteogénica en el frente de osificación ilion para valores patológicos, lo que podría afectar el desarrollo del acetábulo. Estos hallazgos permiten comprender mejor la relación entre la morfología acetabular y la mecanobiología del cartílago en pacientes con displasia de cadera, proporcionando una base para futuras investigaciones sobre la biomecánica de esta patología y su tratamiento. (Texto tomado de la fuente).spa
dc.description.abstractDevelopmental dysplasia of the hip is a biomechanical pathology that alters the morphology and function of the coxofemoral joint. Understanding its impact on hip biomechanics is fundamental to develop diagnostic and treatment strategies. In this study, the biomechanics of the coxofemoral joint with and without dysplasia was analyzed using three-dimensional reconstructions based on diagnostic images of infants aged approximately 4 years, considering variations in acetabular index and center-edge angle to represent different degrees of dysplasia. A musculoskeletal model was developed to evaluate the distribution of stresses and contact pressure in the acetabular cavity, with special emphasis on the behavior of the triradiate cartilage, by means of finite element method simulations. The results indicated that the models with pathological values of acetabular index and center-edge angle presented higher stress concentrations in the superior region of the acetabular cavity. In addition, a reduction in osteogenic stimulation at the ilion osification front was identified for pathological values, which could affect the development of the acetabulum. These findings provide a better understanding of the relationship between acetabular morphology and cartilage mechanobiology in patients with hip dysplasia, providing a basis for future research on the biomechanics of this pathology and its treatment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngeniería biomecánicaspa
dc.format.extentxi, 90 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88749
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedBiremespa
dc.relation.referencesAbraham, C. L., S. J. Knight, C. L. Peters, J. A. Weiss y A. E. Anderson (2017). “Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy”. En: Osteoarthritis and cartilage 25.5, págs. 676-684.
dc.relation.referencesAhn, A. C. y A. J. Grodzinsky (2009). “Relevance of collagen piezoelectricity to Wolff’s Law: a critical review”. En: Medical engineering & physics 31.7, págs. 733-741.
dc.relation.referencesAlvarez, J. V. (2001). “CARTILAGO ARTICULAR: ESTADO ACTUAL DEL PROBLEMA”. En
dc.relation.referencesAmerican Academy of Orthopaedic Surgeons (2022). https://orthoinfo.aaos.org/, Noviembre 2022.
dc.relation.referencesAnderson, A. E., C. L. Peters, B. D. Tuttle y J. A. Weiss (2005). “Subject-specific finite element model of the pelvis: development, validation and sensitivity studies”. En
dc.relation.referencesAponte Cruzado, N. Y. (2020). “Evolución del índice acetabular en caderas normales de niños de 4 meses a 5 años”. En.
dc.relation.referencesArdila, O. J., E. A. Divo, F. A. Moslehy, G. T. Rab, A. J. Kassab y C. T. Price (2013). “Mechanics of hip dysplasia reductions in infants using the Pavlik harness: a physics-based computational model”. En: Journal of biomechanics 46.9, págs. 1501-1507
dc.relation.referencesArmand, M., J. Lepistö, K. Tallroth, J. Elias y E. Chao (2005). “Outcome of periacetabular osteotomy”. En: Acta Orthopaedica 76, págs. 303-313. doi: 10.1080/00016470510030742.
dc.relation.referencesBanerjee, P., R. R. Karri, A. Mukhopadhyay y P. Das (2021). “Review of soft computing techniques for modeling, design, and prediction of wastewater removal performance”. En: Soft Computing Techniques in Solid Waste and Wastewater Management, págs. 55-73.
dc.relation.referencesBeaupre, G. S., S. S. Stevens y D. R. Carter (2000). “Mechanobiology in the development, maintenance, and degeneration of articular cartilage”. En: Journal of rehabilitation research and development 37.2, págs. 145-152
dc.relation.referencesBerman, L. y L. Klenerman (1986). “Ultrasound screening for hip abnormalities: preliminary findings in 1001 neonates.” En: Br Med J (Clin Res Ed) 293.6549, págs. 719-722.
dc.relation.referencesBetzabé Oropeza-Soria, E., J. Aurora Cornejo-López y H. Teófilo Camacho-Conchucos (2023). “Displasia y luxación de cadera en niños con alteraciones congénitas atendidos en un instituto nacional de rehabilitación”. En: Revista Habanera de Ciencias Médicas 22.1
dc.relation.referencesBoudriot, U., J. Hilgert y F. Hinrichs (2006). “Determination of the rotational center of the hip”. En: Archives of orthopaedic and trauma surgery 126, págs. 417-420.
dc.relation.referencesBraidotti, P., F. P. Branca, E. Sciubba y L. Stagni (1995). “An elastic compound tube model for a single osteon.” En: Journal of biomechanics 28 4, págs. 439-44. doi: 10.1016/0021-9290(94)00082-F
dc.relation.referencesBrinckmann, P., W. Frobin y E. Hierholzer (1981). “Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint”. En: Journal of Biomechanics 14.3, págs. 149-156
dc.relation.referencesBrown, T. D. y D. T. Shaw (1983). “In vitro contact stress distributions in the natural human hip”. En: Journal of biomechanics 16.6, págs. 373-384
dc.relation.referencesBueno-Palomeque, F. L., C. J. Cortés-Rodríguez y C. D. García-Sarmiento (2014). “Comparación de esfuerzos pre y post quirúrgicos sobre articulación de cadera con secuelas de displasia”. En: Revista Cubana de Investigaciones Biomédicas 33.2, págs. 110-118
dc.relation.referencesBull, A. (2016). “Biomechanics in Blast”. En: págs. 17-31. doi: 10.1007/978-3-319-21867-0_2.
dc.relation.referencesCaballero Alemán, P. J. (2012). “Análisis computacional del comportamiento mecánico de cartílago articular basado en un modelo viscoelástico”. Tesis doct
dc.relation.referencesCallaghan, J. J., A. G. Rosenberg y H. E. Rubash (2007). The adult hip. Vol. 1. Lippincott Williams & Wilkins.
dc.relation.referencesCarrera-Pinzón, A. F. et al. (s.f.). “Diseño de un modelo computacional que permita identificar la influencia de las cargas mecánicas en la morfogénesis de articulaciones sinoviales”. En: ().
dc.relation.referencesCarter, D. R., G. S. Beaupré, N. J. Giori y J. A. Helms (1998). “Mechanobiology of skeletal regeneration.” En: Clinical Orthopaedics and Related Research (1976-2007) 355, S41-S55.
dc.relation.referencesCarter, D. R., D. J. Rapperport, D. P. Fyhrie y D. J. Schurman (1987). “Relation of coxarthrosis to stresses and morphogenesis: A finite element analysis”. En: Acta Orthopaedica Scandinavica 58.6, págs. 611-619.
dc.relation.referencesCarter, D. R. y M. Wong (1988). “The role of mechanical loading histories in the development of diarthrodial joints”. En: Journal of Orthopaedic Research 6.6, págs. 804-816.
dc.relation.references(2003). “Modelling cartilage mechanobiology”. En: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358.1437, págs. 1461-1471.
dc.relation.referencesChegini, S., M. Beck y S. J. Ferguson (2009). “The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis”. En: Journal of Orthopaedic Research 27.2, págs. 195-201.
dc.relation.referencesCirdi, Y., R. Ozturk, M. Demirel, H. Kafadar y M. Oner (2024). “Hybrid Therapy of Hip-Spica Cast Followed by Static Abduction Orthosis Provides a Similar Successful Outcome as Hip-Spica Cast Only in Infants with Late-Presenting Developmental Dysplasia of the Hip”. En: Journal of clinical practice and research 46.2.
dc.relation.referencesCommittee on Quality Improvement, S. o. D. D. o. t. H. (2000). “Clinical practice guideline: early detection of developmental dysplasia of the hip”. En: Pediatrics 105.4, págs. 896-905.
dc.relation.referencesCowin, S. y W. C. Buskirk (1986). “Thermodynamic restrictions on the elastic constants of bone.” En: Journal of biomechanics 19 1, págs. 85-7. doi: 10.1016/0021-9290(86)90112-0.
dc.relation.referencesCuevas, J. G. L. (2013). “Basic measurements in the developmental dysplasia of the hip”. En: Revista Mexicana de Ortopedia Pediátrica 15.1, págs. 53-56.
dc.relation.referencesCymet-Ramírez, J., M. Álvarez-Martínez, G. García-Pinto, R. Frías-Austria, A. Meza-Vernis, M. RosalesMuñoz, A. Isunza-Ramírez, O. Isunza-Alonso, J. Brito-Ramírez, M. Anaya-Garcia et al. (2011). “El diagnóstico oportuno de la displasia de cadera. Enfermedad discapacitante de por vida. Consenso del Colegio Mexicano de Ortopedia y Traumatología.” En: Acta ortopédica mexicana 25.5.
dc.relation.referencesDalstra, M., R. Huiskes y L. van Erning (1995). “Development and validation of a three-dimensional finite element model of the pelvic bone”. En.
dc.relation.referencesDanso, E., P. Julkunen y R. Korhonen (2018). “Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression”. En: Journal of biomechanics 77, págs. 233-237.
dc.relation.referencesDe Pieri, E., M. E. Lund, A. Gopalakrishnan, K. P. Rasmussen, D. E. Lunn y S. J. Ferguson (2018). “Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction”. En: PloS one 13.9, e0204109.
dc.relation.referencesDellán, A., M. V. Dorrego y A. Hernández-Andara (2015). “Aplicación de las unidades hounsfield en tomografía computarizada como herramienta diagnóstica de las lesiones intra-óseas del complejo maxilomandibular: estudio clínico de diagnóstico”. En: Revista de Odontologia Da Universidade Cidade de São Paulo 27.2, págs. 100-111
dc.relation.referencesDEM, H. G. e Y. T. RKIRAN (2013). “Türkiyede 6 ay ile 8 yafl aras> saď l> kl> çocuklarda asetabular indeks deď erleri: Kesitsel radyolojik çal> flma”. En: Acta Orthop Traumatol Turc 47.1, págs. 38-42.
dc.relation.referencesDíaz, J. y H. Barriga (2012). “Guía de práctica clínica de manejo de la displasia del desarrollo de la cadera”. En: Instituto nacional de salud del niño, servicio de traumatología y ortopedia, págs. 1-27
dc.relation.referencesDostal, W. F. y J. G. Andrews (1981a). “A three-dimensional biomechanical model of hip musculature.” En: Journal of biomechanics 14 11, págs. 803-12. doi: 10.1016/0021-9290(81)90036-1.
dc.relation.referencesDostal, W. F., G. L. Soderberg y J. G. Andrews (1986). “Actions of hip muscles.” En: Physical therapy 66 3, págs. 351-61. doi: 10.1093/PTJ/66.3.351.
dc.relation.referencesDostal, W. F. y J. G. Andrews (1981b). “A three-dimensional biomechanical model of hip musculature”. En: Journal of biomechanics 14.11, págs. 803-812.
dc.relation.referencesEvans, F. (1973). “Mechanical Properties of Bone. Thomas”. En: Springfield, IL, pág. 97.
dc.relation.referencesFederico, S., A. Grillo, G. L. Rosa, G. Giaquinta y W. Herzog (2005). “A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage.” En: Journal of biomechanics 38 10, págs. 2008-18. doi: 10.1016/J.JBIOMECH.2004.09.020
dc.relation.referencesFish, J. y T. Belytschko (2007). A first course in finite elements. Vol. 1. Wiley New York.
dc.relation.referencesFord, C. A., N. C. Nowlan, S. Thomopoulos y M. L. Killian (2017). “Effects of imbalanced muscle loading on hip joint development and maturation”. En: Journal of Orthopaedic Research 35.5, págs. 1128-1136.
dc.relation.referencesForriol Campos, F. (2002). “El cartílago articular: aspectos mecánicos y su repercusión en la reparación tisular”. En: Rev. ortop. traumatol.(Madr., Ed. impr.), págs. 380-390.
dc.relation.referencesGamboa Márquez, M. A. (2013). “Modelamiento computacional de la enfermedad de Legg-Calvé-Perthes”. Tesis doct
dc.relation.referencesGarcía, J. J. y D. H. Cortés (2006). “A nonlinear biphasic viscohyperelastic model for articular cartilage”. En: Journal of Biomechanics 39.16, págs. 2991-2998.
dc.relation.referencesGarzón Alvarado, D. A., M. A. Roa Garzón y A. M. Ramírez Martínez (2008). “Factores que influyen en el crecimiento endocondral: experimentos y modelos”. En: Revista Cubana de Ortopedia y Traumatología 22.1, págs. 0–0.
dc.relation.referencesGenda, E., N. Iwasaki, G. Li, B. A. MacWilliams, P. J. Barrance y E. Y. Chao (2001). “Normal hip joint contact pressure distribution in single-leg standingeffect of gender and anatomic parameters”. En: Journal of biomechanics 34.7, págs. 895-905.
dc.relation.referencesGonçalves, C. A., J. A. Araújo y E. N. Mamiya (2005). “Multiaxial fatigue: a stress based criterion for hard metals”. En: International Journal of Fatigue 27.2, págs. 177-187.
dc.relation.referencesGoren, A. Y., Y. K. Recepolu y A. Khataee (2022). “Language of response surface methodology as an experimental strategy for electrochemical wastewater treatment process optimization”. En: artificial intelligence and data science in environmental sensing. Elsevier, págs. 57-92.
dc.relation.referencesGutiérrez, J. M. (2000). Atlas de mediciones radiográficas en ortopedia y traumatología . McGraw-Hill Interamericana.
dc.relation.referencesHartel, M. J., A. Petersik, A. Schmidt, D. Kendoff, J. Nüchtern, J. M. Rueger, W. Lehmann y L. G. Grossterlinden (2016). “Determination of femoral neck angle and torsion angle utilizing a novel threedimensional modeling and analytical technology based on CT datasets”. En: PloS one 11.3, e0149480.
dc.relation.referencesHenak, C. R., B. J. Ellis, M. D. Harris, A. E. Anderson, C. L. Peters y J. A. Weiss (2011). “Role of the acetabular labrum in load support across the hip joint”. En: Journal of biomechanics 44.12, págs. 2201-2206
dc.relation.referencesHoy, M. G., F. E. Zajac y M. E. Gordon (1990). “A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle”. En: Journal of biomechanics 23.2, págs. 157-169
dc.relation.referencesIbarra Zavala, A. C. (2021). “Valor predictivo de la Escala de Graf para diagnóstico de displasia del desarrollo de cadera en lactantes de 1 a 6 meses de edad”. En
dc.relation.referencesbrahim, A., M. Songur, S. Karahan, G. Yilmaz, H. G. Demirkiran e Y. Tumer (2013). “Acetabular index values in healthy Turkish children between 6 months and 8 years of age: a cross-sectional radiological study”. En: Acta Orthopaedica et Traumatologica Turcica 47.1, págs. 38-42.
dc.relation.referencesIke, H., Y. Inaba, N. Kobayashi, Y. Yukizawa, Y. Hirata, M. Tomioka y T. Saito (2015). “Effects of rotational acetabular osteotomy on the mechanical stress within the hip joint in patients with developmental dysplasia of the hip: a subject-specific finite element analysis”. En: The bone & joint journal 97.4, págs. 492-497.
dc.relation.referencesIncze-Bartha, Z., S. Incze-Bartha, Z. Simon Szabó, A. M. Feier, V. Vunvulea, I. A. Nechifor-Boil, Y. Pastorello, D. Szasz y L. Dénes (2023). “Finite element analysis of normal and dysplastic hip joints in children”. En: Journal of Personalized Medicine 13.11, pág. 1593
dc.relation.referencesIsaac, B., S. Vettivel, R. Prasad, L. Jeyaseelan y G. Chandi (1997). “Prediction of the femoral neck-shaft angle from the length of the femoral neck”. En: Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists 10.5, págs. 318-323
dc.relation.referencesIsmiarto, Y., P. Agradi y Z. Helmi (2019). “Comparison of interobserver reliability between junior and senior resident in assessment of developmental dysplasia of the hip severity using Tonnis and international hip dysplasia institute radiological classification”. En: Malaysian orthopaedic journal 13.3, pág. 60.
dc.relation.referencesIssin, A., A. Öner, N. Koçkara e Y. Çamurcu (2016). “Comparison of open reduction alone and open reduction plus Dega osteotomy in developmental dysplasia of the hip”. En: Journal of Pediatric Orthopaedics B 25.1, págs. 1-6.
dc.relation.referencesJara-Paredes, M. A. y J. Jara-Atencia (2022). “Propuesta metodológica para la obtención de datos geométricos en imágenes radiográficas digitales con probable displasia de caderas en lactantes.” En: Revista Experiencia en Medicina del Hospital Regional Lambayeque 8.3.
dc.relation.referencesJorge, J., F. Simões, E. Pires, P. Rego, D. Tavares, D. Lopes y A. Gaspar (2014). “Finite element simulations of a hip joint with femoroacetabular impingement”. En: Computer methods in biomechanics and biomedical engineering 17.11, págs. 1275-1284.
dc.relation.referencesJulkunen, P., T. Harjula, J. Marjanen, H. Helminen y J. Jurvelin (2009). “Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.” En: Journal of biomechanics 42 5, págs. 652-6. doi: 10.1016/j.jbiomech.2008.12.010.
dc.relation.referencesKabel, J., B. Rietbergen, M. Dalstra, A. Odgaard y R. Huiskes (1999). “The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.” En: Journal of biomechanics 32 7, págs. 673-80. doi: 10.1016/S0021-9290(99)00045-7.
dc.relation.referencesKatz, J. L. y A. Meunier (1987). “The elastic anisotropy of bone.” En: Journal of biomechanics 20 11-12, págs. 1063-70. doi: 10.1016/0021-9290(87)90024-8.
dc.relation.referencesKim, S.-H., H.-K. Yoon, H. Han, S. Cho e Y.-k. Seo (2019). “Ossification of the triradiate cartilage and posterior acetabulum”. En: Journal of the Korean Society of Radiology 80.3, págs. 503-512.
dc.relation.referencesKitamura, K., M. Fujii, M. Iwamoto, S. Ikemura, S. Hamai, G. Motomura e Y. Nakashima (2022). “Effect of coronal plane acetabular correction on joint contact pressure in Periacetabular osteotomy: a finiteelement analysis”. En: BMC Musculoskeletal Disorders 23.1, pág. 48
dc.relation.referencesKitamura, K., M. Fujii, T. Utsunomiya, M. Iwamoto, S. Ikemura, S. Hamai, G. Motomura, M. Todo e Y. Nakashima (2020). “Effect of sagittal pelvic tilt on joint stress distribution in hip dysplasia: a finite element analysis”. En: Clinical Biomechanics 74, págs. 34-41.
dc.relation.referencesKlets, O., M. Mononen, P. Tanska, M. Nieminen, R. Korhonen y S. Saarakkala (2016). “Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI).” En: Journal of biomechanics 49 16, págs. 3891-3900. doi: 10.1016/j. jbiomech.2016.10.025.
dc.relation.referencesKo, J., C.-J. Wang, C. Lin y C. Shih (2002). “Periacetabular Osteotomy Through a Modified Ollier Transtrochanteric Approach for Treatment of Painful Dysplastic Hips”. En: The Journal of Bone Joint Surgery 84, págs. 1594-1604. doi: 10.2106/00004623-200209000-00012.
dc.relation.referencesKorhonen, R. K. y S. Saarakkala (2011). “Biomechanics and modeling of skeletal soft tissues”. En: Theoretical biomechanics. IntechOpen.
dc.relation.referencesKuczmarski, R. J. (2002). 2000 CDC growth charts for the United States: methods and development. 246. Department of Health y Human Services, Centers for Disease Control and
dc.relation.referencesLee, C. B. e Y.-J. Kim (2012). “Imaging hip dysplasia in the skeletally mature”. En: Orthopedic Clinics 43.3, págs. 329-342.
dc.relation.referencesLee, M. C. y C. P. Eberson (2006). “Growth and development of the child’s hip”. En: Orthopedic Clinics 37.2, págs. 119-132
dc.relation.referencesLeveau, B. F. y D. B. Bernhardt (1984). “Developmental biomechanics: effect of forces on the growth, development, and maintenance of the human body”. En: Physical Therapy 64.12, págs. 1874-1882.
dc.relation.referencesLi, J. (2020). “Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait.” En: Journal of the mechanical behavior of biomedical materials 113, pág. 104136. doi: 10.1016/j.jmbbm.2020.104136.
dc.relation.referencesLiqun, D. (2007). “Establecimiento de un modelo tridimensional de elementos finitos de la articulación de la cadera de niños normales y análisis biomecánico preliminar”. Tesis de mtría. Universidad Central Sur.
dc.relation.referencesLiu, J., T. Gao, J. Li, H. Shan y S. Pan (2022). “Evaluation of the short-term curative effect of closed reduction in the treatment of developmental dysplasia of the hip based on three-dimensional magnetic resonance imaging finite element analysis”. En: BMC Musculoskeletal Disorders 23.1, pág. 455.
dc.relation.referencesLiu, L., T. Ecker, L. Xie, S. Schumann, K. Siebenrock y G. Zheng (2015). “Biomechanical validation of computer assisted planning of periacetabular osteotomy: a preliminary study based on finite element analysis”. En: Medical engineering & physics 37.12, págs. 1169-1173.
dc.relation.referencesLiu, L., T. M. Ecker, S. Schumann, K.-A. Siebenrock y G. Zheng (2016). “Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy”. En: PLoS One 11.1, e0146452.
dc.relation.referencesLópez-Vaca, O. R., C. A. Narváez-Tovar y D. A. Garzón-Alvarado (2012). “Modelos computacionales del comportamiento del cartílago articular”. En: Revista Cubana de investigaciones biomédicas 31.3, págs. 373-385.
dc.relation.referencesLostado Lorza, R., F. Somovilla Gomez, M. Corral Bobadilla, S. Íñiguez Macedo, A. Rodríguez San Miguel, E. Fernández Martínez, M. Rubio Sampedro, Á. Pérez Sala, R. P. Cristóbal e I. M. Larráyoz (2021). “Comparative analysis of healthy and cam-type femoroacetabular impingement (FAI) human hip joints using the finite element method”. En: Applied Sciences 11.23, pág. 11101.
dc.relation.referencesLuo, X., G. Cai, K. Ma y A. Cai (2022). “Construction and Simulation of Biomechanical Model of Human Hip Joint Muscle-Tendon Assisted by Elastic External Tendon by Hill Muscle Model”. En: Computational Intelligence and Neuroscience 2022. doi: 10.1155/2022/1987345
dc.relation.referencesMárquez-Flórez, K. M., O. Silva, C. A. Narváez-Tovar y D. A. Garzón-Alvarado (2016). “A comparison of the contact force distributions on the acetabular surface due to orthopedic treatments for developmental hip dysplasia”. En: Journal of Biomechanical Engineering 138.7, pág. 074501.
dc.relation.referencesMavi, B., A. Igli, V. Kralj-Igli, R. A. Brand y R. Vengust (2008). “Cumulative hip contact stress predicts osteoarthritis in DDH”. En: Clinical orthopaedics and related research 466, págs. 884-891.
dc.relation.referencesMazzi Gonzales De Prada, E. (2011). “Displasia del desarrollo de la cadera”. En: Revista de la Sociedad Boliviana de Pediatría 50.1, págs. 57-64.
dc.relation.referencesMéndez, M. B., A. F. Castro y A. M. Martínez (2020). “Actualización en displasia del desarrollo de la cadera”. En: Revista Médica Sinergia 5.09, págs. 1-18
dc.relation.referencesMichaeli, D. A., S. B. Murphy y J. A. Hipp (1997). “Comparison of predicted and measured contact pressures in normal and dysplastic hips”. En: Medical engineering & physics 19.2, págs. 180-186.
dc.relation.referencesMiranda, G., J. Díaz y V. Schonstedt (2009). “Medidas radiológicas útiles en patología músculo esquelética cotidiana”. En: Revista Hospital Clínico Universidad de Chile 20, pág. 138.
dc.relation.referencesModenese, L. y J. Kohout (2020). “Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models”. En: Annals of Biomedical Engineering 48, págs. 1793-1804. doi: 10.1007/s10439-020-02490-4.
dc.relation.referencesModenese, L., E. Ceseracciu, M. Reggiani y D. G. Lloyd (2016). “Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique”. En: Journal of biomechanics 49.2, págs. 141-148.
dc.relation.referencesMoncayo Donoso, M. (2015). “Estudio del entorno mecanico de huesos largos enfoque computacional y exprimental”. Tesis doct.
dc.relation.referencesMontgomery, D. (2005). Diseño y análisis de experimentos. Limusa Wiley. isbn: 9789681861568. url: https: //books.google.com.co/books?id=TJFoAAAACAAJ.
dc.relation.referencesMontgomery, D. C. et al. (2007). Diseño y análisis de experimentos. Vol. 2. Limusa Wiley Méxicoˆ eDF. DF
dc.relation.referencesMoraleda, L., J. Albiñana, M. Salcedo y G. Gonzalez-Moran (2013). “Displasia del desarrollo de la cadera”. En: Revista Española de Cirugía Ortopédica y Traumatología 57.1, págs. 67-77.
dc.relation.referencesMow, V. C., S. Kuei, W. M. Lai y C. G. Armstrong (1980). “Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments”. En
dc.relation.referencesMulpuri, K., K. M. Song, M. J. Goldberg y K. Sevarino (2015). “Detection and nonoperative management of pediatric developmental dysplasia of the hip in infants up to six months of age”. En: JAAOS-Journal of the American Academy of Orthopaedic Surgeons 23.3, págs. 202-205
dc.relation.referencesNarayanan, U., K. Mulpuri, W. N. Sankar, N. M. Clarke, H. Hosalkar, C. T. Price et al. (2015). “Reliability of a new radiographic classification for developmental dysplasia of the hip”. En: Journal of Pediatric Orthopaedics 35.5, págs. 478-484.
dc.relation.referencesNarváez-Tovar, C. A. y D. A. Garzón-Alvarado (2012). “Computational modeling of the mechanical modulation of the growth plate by sustained loading”. En: Theoretical Biology and Medical Modelling 9, págs. 1-10.
dc.relation.referencesNazer, J., M. Hübner, L. Cifuentes, C. Mardones, C. Pinochet, M. L. Sandoval et al. (2009). “Luxación congénita de cadera. Displasia evolutiva de la cadera (DEC)”. En: Rev Hosp Clín Univ Chile 20.2, págs. 112-8
dc.relation.referencesNoordin, S., M. Umer, K. Hafeez y H. Nawaz (2010). “Developmental dysplasia of the hip”. En: Orthopedic reviews 2.2, e19.
dc.relation.referencesNordin, M. (2004). y Frankel, V., Biomecánica básica del sistema musculoesquelético
dc.relation.referencesNovais, E. N., Z. Pan, P. T. Autruong, M. L. Meyers y F. M. Chang (2018). “Normal percentile reference curves and correlation of acetabular index and acetabular depth ratio in children”. En: Journal of Pediatric Orthopaedics 38.3, págs. 163-169.
dc.relation.referencesNuki, G., J. Ferguson, J. A. Boyle y K. Boddy (1969). “Rheological Simulation of Synovial Fluid by a Synthetic Polymer Solution”. En: Nature 224, págs. 1118-1119. doi: 10.1038/2241118A0
dc.relation.referencesOgston, A., J. Stanier, B. Toms y D. Strawbridge (1950). “Elastic properties of ox synovial fluid”. En: Nature 165.4197, págs. 571-571
dc.relation.referencesOkumura, M., A. Ishikawa, T. Aoyama, S. Yamada, C. Uwabe, H. Imai, T. Matsuda, A. Yoneyama, T. Takeda y T. Takakuwa (2017). “Cartilage formation in the pelvic skeleton during the embryonic and early-fetal period”. En: PLoS One 12.4, e0173852.
dc.relation.referencesÖmeroglu, H., A. Biçimoglu, H. Agu e Y. Tümer (2002). “Measurement of center-edge angle in developmental dysplasia of the hip: a comparison of two methods in patients under 20 years of age”. En: Skeletal Radiology 31, págs. 25-29.
dc.relation.referencesOrtolani, M. (1976). “The classic: congenital hip dysplasia in the light of early and very early diagnosis”. En: Clinical Orthopaedics and Related Researchő 119, págs. 6-10.
dc.relation.referencesPeñaherrera Cabezas, L. F. (2013). “Factores de riesgo de displasia del desarrollo de la cadera (ddc) en pacientes atendidos en la Novaclínica Santa Cecilia en el servicio de ortopedia de la ciudad Quito entre el periodo de enero del 2010 a diciembre del 2012.” En.
dc.relation.referencesPérez Hernández, L. M., A. Mesa Olán, R. Calzado Calderón y C. Pérez Charbonier (2003). “Displasia del desarrollo de la cadera en la atención primaria”. En: Revista Cubana de Ortopedia y Traumatología 17.1-2, págs. 73-78.
dc.relation.referencesPetersen, B. D., B. Wolf, J. R. Lambert, C. W. Clayton, D. H. Glueck, M. K. Jesse y O. Mei-Dan (2016). “Lateral acetabular labral length is inversely related to acetabular coverage as measured by lateral center edge angle of Wiberg”. En: Journal of Hip Preservation Surgery 3.3, págs. 190-196.
dc.relation.referencesPhillips, A. (2009). “The femur as a musculo-skeletal construct: a free boundary condition modelling approach”. En: Medical engineering & physics 31.6, págs. 673-680.
dc.relation.referencesPhillips, A., P. Pankaj, C. Howie, A. S. Usmani y A. Simpson (2007). “Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions”. En: Medical engineering & physics 29.7, págs. 739-748.
dc.relation.referencesPipa-Muñiz, I., M. de los Llanos Rodríguez-Rodríguez, M. B. Felgueroso-Juliana, M. Riera-Campillo y P. González-Herranz (2016). “Displasia del desarrollo de la cadera en niños con trastorno psicomotor.¿ Factor de riesgo para un mal resultado?” En: Anales de Pediatría. Vol. 85. 3. Elsevier, págs. 142-148.
dc.relation.referencesPollet, V., R. Castelein, M. Van de Sande, M. Witbreuk, A. Mostert, A. Besselaar, C. van Bergen, E. Beek, C. Uiterwaal y R. Sakkers (2020). “Abduction treatment in stable hip dysplasia does not alter the acetabular growth: results of a randomized clinical trial”. En: Scientific Reports 10.1, pág. 9647.
dc.relation.referencesRaimann, R. y D. Aguirre (2021). “Displasia del desarrollo de la cadera: tamizaje y manejo en el lactante”. En: Revista Médica Clínica Las Condes 32.3, págs. 263-270
dc.relation.referencesRapperport, D., D. Carter y D. Schurman (1985). “Contact finite element stress analysis of the hip joint”. En: Journal of orthopaedic research 3.4, págs. 435-446.
dc.relation.referencesReilly, D. y A. Burstein (1975). “The elastic and ultimate properties of compact bone tissue.” En: Journal of biomechanics 8 6, págs. 393-405. doi: 10.1016/0021-9290(75)90075-5.
dc.relation.referencesRen, N., Z. Zhang, Y. Li, P. Zheng, H. Cheng, D. Luo, J. Zhang y H. Zhang (2023). “Effect of hip dysplasia on the development of the femoral head growth plate”. En: Frontiers in Pediatrics 11.
dc.relation.referencesRequeiro Molina, J. J., A. M. Machado Consuegra, L. Alonso Leiva, O. Paz Urrechaga, P. Conde Bermúdez y L. K. Pardiñas de León (2022). “Plantilla para medir la cadera con desarrollo displásico en el lactante”. En: MediSur 20.4, págs. 780-798.
dc.relation.referencesRivas, D. J., H. D. Aitken, K. N. Dibbern, M. C. Willey, R. W. Westermann y J. E. Goetz (2024). “Incorporating patient-specific hip orientation from weightbearing computed tomography affects discrete element analysis-computed regional joint contact mechanics in individuals treated with periacetabular osteotomy for hip dysplasia”. En: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 238.2, págs. 237-249.
dc.relation.referencesRushfeldt, P., R. Mann y W. Harris (1981). “Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulumI. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness”. En: Journal of biomechanics 14.4, págs. 253-260.
dc.relation.referencesRussell, M. E., K. H. Shivanna, N. M. Grosland y D. R. Pedersen (2006). “Cartilage contact pressure elevations in dysplastic hips: a chronic overload model”. En: Journal of orthopaedic surgery and research 1, págs. 1-11.
dc.relation.referencesSadd, M. H. (2009). Elasticity: theory, applications, and numerics. Academic Press.
dc.relation.referencesSari, A. S., O. Karakus, M. Z. Gultekin y H. Senaran (2023). “Acetabular index and acetabular depth ratio in newborns and infants aged 6 months or less with the healthy development of hips: A retrospective cross-sectional study”. En: Medicine 102.16, e33631.
dc.relation.referencesScheys, L., A. V. Campenhout, A. Spaepen, P. Suetens e I. Jonkers (2008). “Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths.” En: Gait posture 28 3, págs. 358-65. doi: 10.1016/j.gaitpost. 2008.05.002.
dc.relation.referencesSeireg, A. y R. Arvikar (1975). “The prediction of muscular load sharing and joint forces in the lower extremities during walking”. En: Journal of biomechanics 8.2, págs. 89-102.
dc.relation.referencesSerna, W. S., J. P. T. Lemus y J. H. R. Piedrahita (2010). “Descripción del estándar DICOM para un acceso confiable a la información de las imágenes médicas”. En: Scientia et technica 16.45, págs. 289-294.
dc.relation.referencesShefelbine, S. J. y D. R. Carter (2004). “Mechanobiological predictions of growth front morphology in developmental hip dysplasia”. En: Journal of Orthopaedic Research 22.2, págs. 346-352.
dc.relation.referencesShefelbine, S. y A. Carriero (2010). “Combining musculoskeletal modelling and finite element analysis to predict skeletal growth”. En: IUTAM Symposium on Analysis and simulation of human motion in Leuven, Belgium
dc.relation.referencesShin, C. H., W. J. Yoo, M. S. Park, J. H. Kim, I. H. Choi y T.-J. Cho (2016). “Acetabular remodeling and role of osteotomy after closed reduction of developmental dysplasia of the hip”. En: JBJS 98.11, págs. 952-957.
dc.relation.referencesShipman, S. A., M. Helfand, V. A. Moyer y B. P. Yawn (2006). “Screening for developmental dysplasia of the hip: a systematic literature review for the US Preventive Services Task Force”. En: Pediatrics 117.3, e557-e576.
dc.relation.referencesSilva-Caicedo, O. y D. A. Garzón-Alvarado (2011). “Antecedentes, historia y pronóstico de la displasia del desarrollo de la cadera”. En: Revista cubana de investigaciones biomédicas 30.1, págs. 141-162.
dc.relation.referencesSomovilla Gómez, F., R. Lostado Lorza, M. Corral Bobadilla y R. Escribano García (2017). “Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method”. En: Materials 10.10, pág. 1116.
dc.relation.referencesStevens, S. S., G. S. Beaupré y D. R. Carter (1999). “Computer model of endochondral growth and ossification in long bones: biological and mechanobiological influences”. En: Journal of orthopaedic research 17.5, págs. 646-653
dc.relation.referencesTallroth, K. y J. Lepistö (2006). “Computed tomography measurement of acetabular dimensions: normal values for correction of dysplasia”. En: Acta Orthopaedica 77.4, págs. 598-602.
dc.relation.referencesThompson, J. C. (2015). Netter’s Concise Orthopaedic Anatomy E-Book, Updated Edition: Netter’s Concise Orthopaedic Anatomy E-Book. Elsevier Health Sciences.
dc.relation.referencesTschauner, C., C. Fock, S. Hofmann y J. Raith (2002). “Rotationsfehler des Hüftgelenks”. En: Der Radiologe 42, págs. 457-466
dc.relation.referencesVafaeian, B., D. Zonoobi, M. Mabee, A. Hareendranathan, M. El-Rich, S. Adeeb y J. Jaremko (2017). “Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review”. En: Osteoarthritis and cartilage 25.4, págs. 438-447
dc.relation.referencesValera, M., N. Ibañez, R. Sancho y M. Tey (2016). “Reliability of Tönnis classification in early hip arthritis: a useless reference for hip-preserving surgery”. En: Archives of orthopaedic and trauma surgery 136, págs. 27-33.
dc.relation.referencesVara Salazar, R. de la (2004). Análisis y diseño de experimentos.
dc.relation.referencesWerner, C. M., L. E. Ramseier, T. Ruckstuhl, J. Stromberg, C. E. Copeland, C. H. Turen, K. Rufibach y S. Bouaicha (2012). “Normal values of Wibergs lateral center-edge angle and Lequesnes acetabular index–a coxometric update”. En: Skeletal radiology 41, págs. 1273-1278.
dc.relation.referencesWiberg, G. (1939). “Studies on dysplastic acetabula and congenital subluxation of the hip joint”. En: Acta Chir Scand 58, págs. 5-135
dc.relation.referencesWilson, W., C. Van Donkelaar, B. Van Rietbergen y R. Huiskes (2005). “A fibril-reinforced poroviscoelastic swelling model for articular cartilage”. En: Journal of biomechanics 38.6, págs. 1195-1204.
dc.relation.referencesWinters, J. M. (1990). “Hill-based muscle models: a systems engineering perspective”. En: Multiple muscle systems: biomechanics and movement organization. Springer, págs. 69-93.
dc.relation.referencesYadav, P., M. P. Fernández y E. M. Gutierrez-Farewik (2021). “Influence of loading direction due to physical activity on proximal femoral growth tendency”. En: Medical Engineering & Physics 90, págs. 83-91
dc.relation.referencesYadav, P., S. J. Shefelbine y E. M. Gutierrez-Farewik (2016). “Effect of growth plate geometry and growth direction on prediction of proximal femoral morphology”. En: Journal of biomechanics 49.9, págs. 1613-1619.
dc.relation.referencesYadav, P., S. J. Shefelbine, E. Pontén y E. M. Gutierrez-Farewik (2017). “Influence of muscle groups activation on proximal femoral growth tendency”. En: Biomechanics and modeling in mechanobiology 16.6, págs. 1869-1883.
dc.relation.referencesYilar, S. y M. Topal (2023). “Tönnis and the Novel IHDI Radiographic Classification Systems for the Developmental Dysplasia of The Hip (DDH): Evaluation of 406 hips with DDH”. En: acta orthopaedica belgica 89.1, págs. 21-27.
dc.relation.referencesZhang, Z., D. Sui, H. Qin, H. Li y Z. Zhang (2020). “Contact pressure distribution of the hip joint during closed reduction of developmental dysplasia of the hip: a patient-specific finite element analysis”. En: BMC Musculoskeletal Disorders 21, págs. 1-12.
dc.relation.referencesZhao, X., E. Chosa, K. Totoribe y G. Deng (2010). “Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis”. En: Journal of orthopaedic science 15, págs. 632-640.
dc.relation.referencesZienkiewicz, O. C. y R. L. Taylor (2005). The finite element method for solid and structural mechanics. Elsevier.
dc.relation.referencesZou, Z., A. Chávez-Arreola, P. Mandal, T. N. Board y T. Alonso-Rasgado (2013). “Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis”. En: Journal of Orthopaedic Research 31.3, págs. 472-479.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsAnálisis de Elementos Finitosspa
dc.subject.decsFinite Element Analysiseng
dc.subject.decsDisplasia del Desarrollo de la Caderaspa
dc.subject.decsDevelopmental Dysplasia of the Hipeng
dc.subject.decsFenómenos Biomecánicosspa
dc.subject.decsBiomechanical Phenomenaeng
dc.subject.proposalCartílago trirradiadospa
dc.subject.proposalDisplasia del desarrollo de caderaspa
dc.subject.proposalÍndice osteogénicospa
dc.subject.proposalModelo de elementos finitosspa
dc.subject.proposalÍndice acetabularspa
dc.subject.proposalÁngulo centro-bordespa
dc.subject.proposalTriradiate cartilageeng
dc.subject.proposalDevelopmental dysplasia of the hipeng
dc.subject.proposalOsteogenic indexeng
dc.subject.proposalFinite elements modeleng
dc.subject.proposalAcetabular indexeng
dc.subject.proposalCenter-edge angleeng
dc.titleEstudio biomecánico de la articulación coxofemoral con y sin displasia de cadera mediante el método de los elementos finitosspa
dc.title.translatedBiomechanical study of the hip joint with and without hip dysplasia using the finite element methodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documentofinal1030605996.pdf
Tamaño:
8.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: