Modelamiento de la transferencia de masa multicomponente basado en las ecuaciones de Maxwell-Stefan para el análisis de reactores industriales empacados

dc.contributor.advisorGómez García, Miguel Ángel
dc.contributor.advisorDobrosz-Gómez, Izabela
dc.contributor.authorZuluaga Botero, Santiago
dc.contributor.googlescholarZuluaga Botero, Santiagospa
dc.contributor.researchgroupGrupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma)spa
dc.date.accessioned2023-06-26T20:41:47Z
dc.date.available2023-06-26T20:41:47Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractEl modelamiento de reactores industriales empacados ha sido objeto de estudio permanente durante el desarrollo de la ingeniería química. Dependiendo el tipo de reacción y la complejidad de modelos cinéticos, los balances macroscópicos del sistema pueden verse modificados. Existen modelos pseudo-homogéneos, heterogéneos, unidimensionales, bidimensionales, isotérmicos, no isotérmicos, con pérdida de carga, sin pérdida de carga, etc. A pesar de la amplia gama de alternativas disponibles, muchos sistemas reactivos requieren de modelos más rigurosos para la correcta representación de los fenómenos físico-químicos lo que se traducirá en un correcto diseño y/o herramienta de análisis de su desempeño. En esta tesis se propone una metodología sistemática y bien fundamentada para el análisis de los reactores industriales heterogéneos (gas-sólido) considerando los sistemas reactivos como sistemas multicomponentes. Para ello se desarrollaron herramientas de análisis, reportando paso a paso la deducción de los modelos involucrados, sus parámetros asociados y las posibles modificaciones dependiendo la complejidad del problema bajo estudio. Se definieron estrategias de solución por medio de algoritmos de cálculo para diferentes catalizadores (porosos y no porosos) y para diferentes disposiciones del reactor. Como objetivo principal de este estudio, se evalúo el efecto de la transferencia de masa extra- e intra-partícula, fundamentalmente con base al modelo de Maxwell-Stefan multicomponente, en el cálculo de la resistencia a la transferencia de masa multicomponente. Sin embargo, con fines comparativos, también se solucionaron modelos simplificados propuestos en la literatura (v. g., modelo pseudo-homogéneo y multicomponente con difusividad efectiva de Fick). De esta manera, se propusieron algoritmos detallados para el análisis y diseño reactores tubulares empacados. Los modelos fueron implementados y solucionados en el software MatLab® para el estudio de tres casos de relevancia industrial: la oxidación parcial de o-xileno; la síntesis de amoníaco; y el reformado de metano con vapor de agua. Cada uno de ellos se analizó con base en: (i) el examen de la partícula aislada (v.g., los efectos difusionales externos y/o internos para la transferencia de masa multicomponente y de calor) y (ii) el desempeño de un reactor a condiciones industriales (v.g., comparación de las predicciones de los modelos y datos de planta). (Texto tomado de la fuente)spa
dc.description.abstractThe modeling of packed-bed industrial reactors has been the object of permanent study during the development of chemical engineering. Depending on the type of reaction and the complexity of kinetic models, the macroscopic balances of the system can be modified. Different type of models are available: pseudo-homogeneous, heterogeneous, one-dimensional, two-dimensional, isothermal, non-isothermal, with head loss, without head loss, etc. Despite the wide range of existing alternatives, many reactive systems require the most rigorous models for the correct representation of the physical-chemical phenomena, which will result in a correct design and/or performance analysis tool. In this thesis, a systematic and well-founded methodology is proposed for the analysis of heterogeneous industrial reactors (gas-solid) considering reactive systems as multicomponent systems. For this, analysis tools were developed, reporting step by step the deduction of the models involved, their associated parameters and possible modifications depending on the complexity of the problem under study. Solution strategies were defined by means of calculation algorithms for different catalysts (porous and non-porous) and for different reactor arrangements. As the main objective of this study, the effect of extra- and intra-particle mass transfer is evaluated, mainly based on the multicomponent Maxwell-Stefan model, in the calculation of multicomponent mass transfer resistance. However, for comparative purposes, simplified models proposed in the literature were also solved (e.g., pseudo-homogeneous and multicomponent model with effective Fick diffusivity). In this way, detailed algorithms for the analysis and design of packed tubular reactors are proposed. The models were implemented and solved in the MatLab® software for the study of three cases of industrial relevance: the partial oxidation of o-xylene; the synthesis of ammonia; and steam methane reforming. Each of them was analyzed based on: (i) examination of the isolated particle (e.g., external and/or internal diffusional effects for heat and multicomponent mass transfer) and (ii) the performance of a reactor at industrial conditions (e.g., comparison of model predictions and plant data).eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extent199 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84074
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAnnable, D. (1952). Application of the Temkin kinetic equation to ammonia synthesis in large-scale reactors.spa
dc.relation.referencesAris, R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Volume I. Clarendon Press Oxford.spa
dc.relation.referencesArsuaga, J. L. & Martínez, I. (2019). La especie elegida. Ediciones Destino. España.spa
dc.relation.referencesBelfiore, L. A. & Gómez-García, M. Á. (2018). Transport Phenomena for Chemical Reactor Design. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons.spa
dc.relation.referencesBird, R. B., Stewart, W. E. & Lightfoot, E. N. (2002). Transport Phenomena. 2nd ed. Wiley. United States of America.spa
dc.relation.referencesBorowiecki, T., Golbiowski, A., Ryczkowski, J. & Stasinka, N. (1998). The Influence of Promoters on the Coking Rate of Nickel Catalysts in the Steam Reforming of Hydrocarbons. Studies in Surface Science and Catalysis, 119, 711 – 716.spa
dc.relation.referencesBuzzi-Ferraris, G., Donati, G., Rejna, F. & Carrá, S. (1974). An Investigation of Kinetic Models for Ammonia Synthesis. Chemical Engineering Science, 29, 1621 – 1627.spa
dc.relation.referencesCarcassi, M. N. & Fineschi, F. (2005). Deflagrations of H2-air and CH4-air lean mixtures in a vented multi-compartment environment. Energy, 30, 1439 – 1451.spa
dc.relation.referencesChandrasekharan, K. & Calderbank, P. (1979). Prediction of packed-bed catalytic reactor performance for a complex reaction (oxidation of o-xylene to phthalic anhydride). Chemical Engineering Science, 34, 1323 – 1331.spa
dc.relation.referencesChilton, T. H. & Colburn, A. P. (1934). Mass Transfer (absorption) Coefficients – Production from Data on Heat Transfer and Fluid Friction. Industrial & Engineering Chemistry, 24, 1183 – 1185.spa
dc.relation.referencesChung, T. H., Ajlan, M., Lee, L. L. & Starling, K. E. (1988). Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties. Industrial & Engineering Chemistry Research, 27, 671 – 679.spa
dc.relation.referencesClump, C. W. (1975). A Study of High-Temperature Methane Reforming. Industrial & Engineering Chemistry Process Design and Development, 14 (4), 433 – 441.spa
dc.relation.referencesCresswell, D. L. & Paterson, W. R. (1970). Mathematical modelling of the exothermic packed bed reactor: application to o-xylene partial oxidation. Chemical Engineering Science, 25, 1405 – 1414.spa
dc.relation.referencesCreten, G., Kopine, F. D. & Froment, G. F. (1997). Investigation of the oxidation of o-xylene over Vanadia/Titania Catalyst by means of the TAP Reactor. The Canadian Journal of Chemical Engineering, 15, 882 – 891.spa
dc.relation.referencesCrosland, M. P. Historical Studies in the Language of Chemistry. Dover Publications, INC. United States of America.spa
dc.relation.referencesCurtiss, C. F. & Hirschfelder, J. O. (1949). Transport Properties of Multicomponent Gas Mixtures. The Journal of Chemical Physics, 17, 550 – 555.spa
dc.relation.referencesDalton, J. (1802). Essay IV. On the expansion of elastic fluids by heat. Memoirs of the Literary and Philosophical Society of Manchester, 5, 595 – 602.spa
dc.relation.referencesDenbigh, K. G. (1944). Velocity and Yield in Continuous Reaction Systems. Transactions of the Faraday Society, 40, 352 – 373.spa
dc.relation.referencesDenbigh, K. G. (1961). Instantaneous and Overall Reaction Yields. Chemical Engineering Science, 14 (1), 25 – 38.spa
dc.relation.referencesDe Falco, M., Di Paola, L. & Marrelli, L. (2007). Heat Transfer and Hydrogen Permeability in Modelling Industrial Membrane Reactors for Methane Steam Reforming. International Journal of Hydrogen Energy, 32, 2902 – 2913.spa
dc.relation.referencesDe Lasa, H. (1983). Application of the Pseudoadiabatic Operation to Catalytic Fixed Bed Reactors. The Canadian Journal of Chemical Engineering, 61, 710 – 718.spa
dc.relation.referencesDixon, A. G. (1996). An Improved Equation for the Overall Heat Transfer Coefficient in Packed Beds. Chemical Engineering and Processing, 35, 323 – 331.spa
dc.relation.referencesDwidevi, P. N. & Upadhyay, S. N. (1977). Particle-Fluid Mass Transfer in Fixed and Fluidized Beds. Industrial & Engineering Chemistry Process Design and Development, 16 (2), 157 – 165.spa
dc.relation.referencesEiroa, J. J. (2017). Nociones de Prehistoria General. Editorial Ariel. Tercera edición. España.spa
dc.relation.referencesElnashaie, S. S. E. H., Abashar, M. E. & Al-Ubaid, A. S. (1988). Simulation and Optimization of an Industrial Ammonia Reactor, 27 (1), 2015 – 2022.spa
dc.relation.referencesElnashaie, S. S. E. H & Elshishini, S. S. (1993). Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors. Gordon and Breach Science Publishers. United States of America.spa
dc.relation.referencesElnashaie, S. S. E. H, Soliman, M. A & Abashar, M. E. (1992). Mathematical modelling of diffusion and reaction for gas-solid catalytic systems with complex reaction networks. Negative effectiveness factors. Mathematical and Computer Modelling, 12 (16), 41 – 53.spa
dc.relation.referencesErgun, S. & Orning, A. A. (1949). Fluid Flow through Randomly Packed Columns and Fluidized Beds. Industrial and Engineering Chemistry, 41 (5), 1179 – 1184.spa
dc.relation.referencesFlórez-Orrego, D. & de Olivera Junior, S. (2017). Modeling and Optimization of an Industrial Ammonia Synthesis unit: An Exergy Approach, 137, 234 – 250.spa
dc.relation.referencesFogler, H. S. (2008). Elementos de Ingeniería de las Reacciones Químicas. Prentice Hall. Tercera Edición. México.spa
dc.relation.referencesFogler, H. S. (2018). Essentials of Chemical Reaction Engineering. Prentice Hall. Second Edition. United States of America.spa
dc.relation.referencesFroment, G. F., Bischoff, K. B. & De Wilde, J. (2011). Chemical Reactor Analysis and Design. John Wiley & Sons, Inc. Third Edition. United States of America.spa
dc.relation.referencesFuller, E. N., Schettler, P. D. & Giddings, J. C. (1966). A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients. Industrial and Engineering Chemistry, 58 (5), 18 – 27.spa
dc.relation.referencesGeankoplis, C. J., Hersel, A. A. & Lepek, D. H. (2018). Transport Processes and Separation Process Principles. Prentice Hall Professional Technical Reference. Fifth Edition. United States of America.spa
dc.relation.referencesGómez-García, M. Á., Fontalvo-Alzate, J. & García-Cárdenas, J. A. (2008). Difusión y Reacción en Medios Porosos. Teoría y experimentos. UNILIBROS. Colombia.spa
dc.relation.referencesGómez-García, M. Á., Fontalvo-Alzate, J. & Osorio-Viana, W. (2012). Elementos para el Análisis y Diseño de Reactores Químicos. UNILIBROS. Colombia.spa
dc.relation.referencesGrevskott, S., Rusten, T., Hillestad, M., Edwin, E. & Olsvik, O. (2011). Modelling and Simulation of a Steam Reforming Tube with Furnance. Chemical Engineering Science, 56, 597 – 603.spa
dc.relation.referencesGutiérrez-Hernández, J. P. & Guapacha-Martínez, J. A. (2005). Influencia de la Transferencia de Masa y Calor en la Destilación de Mezclas Multicomponentes. Trabajo de grado. Universidad Nacional de Colombia – sede Manizales.spa
dc.relation.referencesHaq, S. N. (1994). Names, Natures and Things. Springer Science and Bussiness Media Dordrecht. United States of America.spa
dc.relation.referencesHardy, W. N. (2003). From H2 to cryogenic H masers to HiTc superconductors: An unlikely but rewarding path. Physica C, 1 – 6.spa
dc.relation.referencesHigbie, R. (1935). The rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure. Transactions of the AICHE, 31, 365 – 389.spa
dc.relation.referencesHolladay, J., Hu, J., King, D. & Wang, Y. (2009). An Overview of hydrogen production technologies. Review Article Catalysis Today, 139, 244 – 260.spa
dc.relation.referencesHou, K. & Hughes, R. (2001). The Kinetics of Methane Steam Reforming over a Ni/α-Al2O Catalyst. Chemical Engineering Science, 82, 311 – 328.spa
dc.relation.referencesHougen, O. A. & Watson, K. M. (1947). Chemical Process Principles. John Wiley & Sons, Inc. United States of America.spa
dc.relation.referencesHuber, P. W. & Kantrowitz, A. (1947). Heat-Capacity Lag Measurements in Various Gases. The Journal of Chemical Physics, 15 (5), 275 – 284.spa
dc.relation.referencesIordanidis, A. A. (2002). Mathematical Modeling of Catalytic Fixed Bed Reactors. Ph. D. thesis. University of Twente.spa
dc.relation.referencesKlaewkla, R., Arend, M. & Hoelderich, W. F. (2011). A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems, Mass Transfer – Advanced Aspects. IntechOpen. United Kingdom.spa
dc.relation.referencesKragh, H. (2013). What’s in a Name: History and Meanings of the Term “Big Bang”. History of Philosophy of Physics, 1 – 47.spa
dc.relation.referencesKripfer, B. A. (2000). Encyclopedic Dictionary of Archaeology. Plenum Publishers. United States of America.spa
dc.relation.referencesKrishna, R. (1977). A Note on the Film and Penetration Models for Multicomponent Mass Transfer. Chemical Engineering Science, 33, 765 – 767.spa
dc.relation.referencesKrishna, R. (1979). A Simplified Mass Transfer Analysis for Multicomponent Condensation. Letters in Heat and Mass Transfer, 6, 137 – 147.spa
dc.relation.referencesKrishna, R. (1993). Problems and pitfalls in the use of the Fick formulations for intraparticle diffusion. Chemical Engineering Science, 48, 1217 – 1222.spa
dc.relation.referencesKrishna, R. & Standart, G. L. (1976). A Multicomponent Film Model Incorporating an Exact Matrix Method of Solution to the Maxwell-Stefan Equations. AIChE Journal, 22, 383 – 389.spa
dc.relation.referencesKrishna, R. & Standart, G. L. (1979). Mass and Energy Transfer in Multicomponent Systems. Chemical Engineering Communications, 3, 201 – 275.spa
dc.relation.referencesKuncharam, B. V. R. & Dixon, A. G. (2020). Multi-scale two-dimensional Packed Bed Reactor Model for Industrial Steam Methane Reforming. Fuel Processing Technology, 200, 1 – 14.spa
dc.relation.referencesLe Comber, P. G., Jones, D. I. & Spear, W. E. (1977). Hall effect and impurity conduction in substitutionally doped amorphous silicon. Philosophical Magazine, 35 (5), 1173 – 1187.spa
dc.relation.referencesLoffler, D. G. & Schmidt, L. D. (1975). Catalytic Activity and Selectivity on Heterogeneous Surfaces with Mass Transfer. AIChE Journal, 21 (4), 786 – 791.spa
dc.relation.referencesLothongkum, A. W., Sethapokin, P. & Ouraipryvan, P. (2015). Simulation of V2O5/TiO2 catalyst activity by central composite design for optimal operating conditions and catalyst life in phthalic anhydride production. Journal of Industrial and Engineering Chemistry, 25, 288 – 294.spa
dc.relation.referencesLucas, K. (1980). Phase Equilibria and Fluid Properties in the Chemical Industry. Dechema. Germany.spa
dc.relation.referencesMarx, R., Wolk, H.J., Mestl, G. & Turek, T. Reaction Scheme of o-xylene oxidation on vanadia catalyst. (2011). Applied Catalysis A: General, 398, 37 – 43.spa
dc.relation.referencesMason, E. A. & Saxena, S. C. (1959). Thermal Conductivity of Multicomponent Gas Mixture II. The Journal of Chemical Physics, 31 (2), 511 – 514.spa
dc.relation.referencesMore, A. (2021). Phtalic Anhydride Market Size 2021 Global Trend, Segmentation, Business Growth, Top Key Players Analysis Industry, Opportunities and Forecast to 2026. Market Watch. Recuperado 4 de marzo de 2022 de https://tinyurl.com/4z2wtw7x.spa
dc.relation.referencesMurase, A., Roberts, H. L. & Converse, A. O. (1970). Optimal Thermal Design of an Autothermal Ammonia Synthesis Reactor. Industrial & Engineering Chemistry Process Design and Development, 5 (4), 503 – 513.spa
dc.relation.referencesNielsen, A., Kjaer J. & Hansen, B. (1964). Rate Equation and Mechanism of Ammonia Synthesis at Industrial Conditions. Journal of Catalysis, 3, 68 – 79.spa
dc.relation.referencesNumaguchi, T. & Kikuchi, K. (1988). Intrinsic Kinetics and Design Simulation in a Complex Reaction Network: Steam-Methane Reforming. Chemical Engineering Science, 43 (8), 2295 – 2301.spa
dc.relation.referencesOzaki, A., & Taylor, H. (1960). Kinetics and Mechanism of the Ammonia Synthesis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 258, 47 – 62.spa
dc.relation.referencesPantoleontos, G., Kikkinides, E. S. & Georgiadis, M. C. (2012). A Heterogeneous Dynamic Model for the Simulation and Optimization of the Steam Methane Reforming Reactor. International Journal of Hydrogen Energy, 37, 16346 – 16358.spa
dc.relation.referencesPapageorgiou, J. N. & Froment, G. F. (1996). Phthalic Anhydride synthesis. Reactor optimization aspects. Chemical Engineering Science, 15 (10), 2091 – 2098.spa
dc.relation.referencesPeng, D. Y. & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15 (1), 59 – 64.spa
dc.relation.referencesPerkins, J. D. (2003). Chemical Engineering – the First 100 Years. Chemical Engineering: Visions of the World, 11 – 40.spa
dc.relation.referencesPerry, R. H. (2001). Manual del Ingeniero Químico. McGraw-Hill. Séptima edición. España.spa
dc.relation.referencesPetersen, E. E. (1965). Chemical Reaction Analysis. Prentice – Hall, Inc. United States of America.spa
dc.relation.referencesPoling, B. E., Prausnitz, J. M. & O’connell, J. P. (2001). The Properties of Gases and Liquids. McGraw Hill. Fifth Edition. United States of America.spa
dc.relation.referencesPrausnitz, J. M., Lichtenthaler, R. N. & de Azevedo, E. G. (2000). Termodinámica Molecular de los Equilibrios de Fases. Prentice Hall. Tercera Edición. España.spa
dc.relation.referencesQuirino, P. P. S., Amaral, A., Pontes, K. V., Rossi F. & Manenti, F. (2021). Impact of Kinetic Models in the Prediction Accuracy of an Industrial Steam Methane Reforming Unit. Computers and Chemical Engineering, 152, 1 – 17.spa
dc.relation.referencesRedlich, O. & Kwong, J. N. S. (1949). An Equation of State. Fugacities of Gaseous Solutions. Thermodynamics of Solutions, 5, 233 – 244.spa
dc.relation.referencesReuben, B. G. & Burstall, M. L. (1973). The Chemical Economy. Longman. United Kingdom.spa
dc.relation.referencesRichter, O. & Mestl, G. (2019). Deactivation of Commercial, High-Load o-xylene Feed VOx/TiO2 Phtalic Anhydride Catalyst by Unusual Over-Reduction. Catalysts, 9 (5), 435.spa
dc.relation.referencesRosendall, B. & Finlayson, B. (1995). Transport effects in packed-bed oxidation reactors. Computers & Chemical Engineering, 11 (19), 1207 – 1218.spa
dc.relation.referencesSandler, S. I. (2007). Chemical, Biochemical, and Engineering Thermodynamics. Wiley. Fifth Edition. United States of America.spa
dc.relation.referencesSethapokin, P., Kunatippapong, S. & Lothongkum, A. W. (2015). Estimation of kinetic parameters for the reactor model of the phthalic anhydride production by the design of experiments. Journal of Industrial and Engineering Chemistry, 24, 51 – 58.spa
dc.relation.referencesShah, M. J. (1967). Control Simulation in Ammonia Production. Industrial and Engineering Chemistry, 59 (1), 72 – 83.spa
dc.relation.referencesSherwood, T. K., Pigford, R. L. & Wilke, C. R. (1975). Mass Transfer. McGrawHill. United States of America.spa
dc.relation.referencesSingh, C. P. P. & Saraf, D. N. (1979). Simulation of Ammonia Synthesis Reactors. Industrial & Engineering Chemistry Process Design and Development, 18 (3), 364 – 370.spa
dc.relation.referencesSing, C. P. P. & Saraf, D. N. (1979). Simulation of Side Fired Steam-Hydrocarbon Reformers. Industrial & Engineering Chemistry Process Design and Development, 18 (1), 1 – 7.spa
dc.relation.referencesSkrzypek, J., Grzesik, M., Galantowicz, M. & Solinski, J. (1985). Kinetics of the Catalytic air oxidation of o-xylene over a commercial V2O5-TiO2 Catalyst. Chemical Engineering Science, 40 (4), 611 – 620.spa
dc.relation.referencesSmith, J. M., Van Ness, H. C., Abbott, M. M. & Swihart, M. T. (2018). Introduction to Chemical Engineering Thermodynamics. McGraw Hill. Eighth Edition. United States of America.spa
dc.relation.referencesSoave, G. (1972). Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chemical Engineering Science, 27, 1197 – 1203.spa
dc.relation.referencesStatista. (31 de mayo de 2022). Ammonia production worldwide from 2010 to 2021. Disponible en: https://www.statista.com/statistics/1266378/global-ammonia-production/spa
dc.relation.referencesStephen, L. (1885). Dictionary of National Biography. Smith, Elder & Co. United Kingdom.spa
dc.relation.referencesStewart, W. E. & Prober, R. (1964). Matrix Calculation of Multicomponent Mass Transfer in Isothermal Systems. Industrial & Engineering Chemistry Fundamentals, 3, 224 – 235.spa
dc.relation.referencesSuhan, Md. B. K., Hemal, Md. N. R., Choudhury, M. A. A. S. & Mazumder, Md. A. A. (2020). Optimal Design of Ammonia Synthesis Reactor for a Process Industry, 34 (1), 23 – 30.spa
dc.relation.referencesTang, M. J., Cox, R. A. & Kalberer, M. (2014). Compilation and evaluation of gas phase diffusion coefficients of reactive trace in the atmosphere: volume 1. Inorganic compounds. Atmospheric Chemistry and Physics, 14, 9233 – 9247.spa
dc.relation.referencesTaylor, R. & Krishna, R. (1993). Multicomponent Mass Transfer. John Wiley & Sons, Inc. United States of America.spa
dc.relation.referencesTaylor, R. & Webb, R. (1981). Film Models for Multicomponent Mass Transfer: Computational Methods – the Exact Solution of the Maxwell-Stefan Equations. Computers and Chemical Engineering, 5 (2), 61 – 73.spa
dc.relation.referencesTerlouw, Y., Bauer, C., McKenna, R. & Mazzotti, M. (2022). Large-scale Hydrogen Production Via Water Electrolysis: a Techno-economic and Environmental Assessment. Energy & Environmental Science, 15, 3583 – 3602.spa
dc.relation.referencesThiele, E. W. (1939). Relation between catalytic activity and size of particle. Industrial and Engineering Chemistry, 31, 916 – 920.spa
dc.relation.referencesToor, H. L. (1964). Prediction of Efficiencies and Mass Transfer on a Stage with Multicomponent Systems. AIche Journal, 10 (4), 545 – 548.spa
dc.relation.referencesTsotsas, E. & Schlunder, E. U. (1990). Heat Transfer in Packed Beds with Fluid Flow: Remarks on the Meaning and the Calculation of a Heat Transfer Coefficient at the Wall. Chemical Engineering Science, 45, 819 – 837.spa
dc.relation.referencesTurevskii, E. N., Aleksandrov, A. I. & Gorechenkov, V. G. (1974). An Approximate Method for Calculating Nonequimolar Diffusion in Multicomponent Mixtures. Chemistry and Technology of Fuels and Oils, 9 (5), 368 – 371.spa
dc.relation.referencesTwu, C. H., Coon, J. E. & Cunningham, J. R. (1995). A New Generalized Alpha Function for a Cubic Equation of State. Part I. Peng-Robinson equation. Fluid Phase Equilibria, 105, 49 – 59.spa
dc.relation.referencesVan der Waals, J. D. (1890). Molecular Theory of s Substance Composed of two Different Species. Zeitschrift fur Physikalische Chemie, 5, 133 – 173.spa
dc.relation.referencesVan Welsenaere, R. J. & Froment, G. F. (1970). Parametric sensitivity and runaway in fixed bed catalytic reactors, 25, 1503 – 1516.spa
dc.relation.referencesVenkatesan, R. & Fogler, H. S. (2004). Comments on Analogies for Correlated Heat and Mass Transfer in Turbulent Flow. AIche Journal, 50 (7), 1623 – 1626.spa
dc.relation.referencesViswanath, D. S., Ghosh, T. K., Prasad, D. H. L., Dutt, N. V. K. & Rani, K. Y. (2007). Viscosity of Liquids. Theory, Estimation, Experiment, and Data. Springer. Netherlands.spa
dc.relation.referencesWalas, S. M. (1985). Phase Equilibria in Chemical Engineering. Butterworth-Heinemann. United States of America.spa
dc.relation.referencesWeisz, P. B. & Hicks, J. S. (1962). The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects. Chemical Engineering Science, 17, 265 – 275.spa
dc.relation.referencesWilke, C. R. & Lee, C. Y. (1955). Estimation of Diffusion Coefficients for Gases and Vapors. Industrial and Engineering Chemistry, 47 (6), 1253 – 1257.spa
dc.relation.referencesWilson, G. M. (1964). Calculation of Enthalpy Data from a Modified Redlich-Kwong Equation of State. Air Products and Chemicals, Inc. United States of America.spa
dc.relation.referencesXu, J. & Froment, G. F. (1989 a). Methane steam reforming I, methanation and water – gas shift: I. Intrinsic kinetics. AICHE Journal, 35, 88 – 96.spa
dc.relation.referencesXu, J. & Froment, G. F. (1989 b). Methane steam reforming II. Diffusional Limitations and Reactor Simulation. AICHE Journal, 35, 97 – 103.spa
dc.relation.referencesYaws, C. L. (2015). Transport Properties of Chemicals and Hydrocarbons. Elsevier Inc. United Kingdom.spa
dc.relation.referencesYoung, H. D & Freedman, R. A. (2015). University Physics with Modern Physics. Pearson Editorial. 14th Edition. United States of America.spa
dc.relation.referencesYoung, T. C. & Stewart, W. E. (1986). Comparison of Matrix Approximations for Multicomponent Transfer Calculations. Industrial & Engineering Chemistry Fundamentals, 25, 476 – 482.spa
dc.relation.referencesZuluaga-Botero, S. Z., Dobrosz-Gómez, I. & Gómez-García, M. Á. (2020). Parametric Sensitivity Analysis for the Industrial Case of O-xylene Oxidation to Phthalic Anhydride in a Packed Bed Catalytic Reactor. Catalysts, 6 (10), 1 – 16.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalModelo de Maxwell-Stefanspa
dc.subject.proposalReactores tubulares a escala industrialspa
dc.subject.proposalReactores tubulares empacadosspa
dc.subject.proposalTeoría de películaspa
dc.subject.proposalTransferencia de masa multicomponentespa
dc.subject.proposalFilm theoryeng
dc.subject.proposalIndustrial scale tubular reactorseng
dc.subject.proposalMaxwell-Stefan modeleng
dc.subject.proposalMulticomponent mass transfereng
dc.subject.proposalPacked tubular reactorseng
dc.titleModelamiento de la transferencia de masa multicomponente basado en las ecuaciones de Maxwell-Stefan para el análisis de reactores industriales empacadosspa
dc.title.translatedMulticomponent mass transfer modeling based on the Maxwell-Stefan equations for the analysis of industrial packed reactorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053834316.2023.pdf
Tamaño:
5.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: