Diseño y preparación de catalizadores soportados en materiales carbonosos estructurados

dc.contributor.advisorAgamez Pertuz, Yazmin Yanethspa
dc.contributor.advisorOdriozola Gordon, Jose Antoniospa
dc.contributor.advisorCenteno Gallego, Miguel Angelspa
dc.contributor.authorRodríguez Riaño, Nicolásspa
dc.contributor.researchgroupLaboratorio de Investigación en Combustibles y Energíaspa
dc.date.accessioned2021-10-27T17:11:45Z
dc.date.available2021-10-27T17:11:45Z
dc.date.issued2021-04-15
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLa presente tesis desarrolla una nueva metodología de preparación de monolitos de carbono a partir de diversos materiales carbonosos abarcando desde carbones minerales hasta materiales diseñados con características específicas preparados a nivel laboratorio, empleando una solución de resorcinol - formaldehído con adición de almidón soluble como medio de suspensión de las materias primas carbonosas y asistiendo la formación de las múltiples geometrías logradas con moldes diseñados y elaborados mediante impresión 3D. En la exploración de materias primas que constituyeran los monolitos se prepararon y caracterizaron un coque derivado de un carbón mineral colombiano, diferentes carbones activados obtenidos a partir de un residuo agrícola denominado cuesco generado por la obtención de biodiesel a partir de aceite de palma africana, aerogeles de carbono y xerogeles de carbono en los que se incluyó de manera sistemática la adición de aglomerantes como glicerina y almidón como aditivos, los cuales mantuvieron la estructura microporosa que suele colapsar en el secado convectivo. Una vez estudiadas las posibles materias primas se presenta un sondeo para determinar los diferentes efectos de la variación de algunos parámetros en la novedosa metodología para la preparación de monolitos. Con el xerogel de carbono obtenido y estudiado en la exploración de materias primas que se empleó como medio de suspensión en la metodología de preparación de monolitos, se prepararon catalizadores para la reacción de desplazamiento de vapor de agua (WGSR) y se prepara un catalizador en polvo y uno estructurado para la cetonización de ácido acético, esto con le fin de aplicar el conocimiento desarrollado en este trabajo en como posibles soportes catalíticos de reacciones de interés medio ambiental. (Texto tomado de la fuente).spa
dc.description.abstractThis thesis develops a new methodology for the preparation of carbon monoliths from various carbonaceous materials, ranging from mineral coals to materials designed with specific characteristics prepared at the laboratory level, using a resorcinol-formaldehyde solution with the addition of soluble starch as a suspension medium of carbonaceous raw materials and assisting the formation of the multiple geometries achieved with molds designed and manufactured by 3D printing. In the exploration of raw materials that constituted the monoliths, a coke derived from a Colombian mineral coal was prepared and characterized, different activated carbons obtained from an agricultural residue called shell generated by obtaining biodiesel from African palm oil, aerogels of carbon and carbon xerogels in which the addition of binders such as glycerin and starch as additives was systematically included, which maintained the microporous structure that usually collapses in convective drying. Once the possible raw materials have been studied, a survey is presented to determine the different effects of the variation of some parameters in the novel methodology for the preparation of monoliths. With the carbon xerogel obtained and studied in the exploration of raw materials that was used as a suspension medium in the monolith preparation methodology, catalysts were prepared for the water gas shift reaction (WGSR) and a catalyst is prepared in powder and a structured one for acetic acid ketonization, this in order to apply the knowledge developed in this work as possible catalytic supports for reactions of environmental interest.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.methodsDesarrollo de tesis doctoralspa
dc.description.notesTesis de doctorado en cotutela con la Universidad de Sevillaspa
dc.description.researchareaMateriales y Energíaspa
dc.description.sponsorshipConvocatoria 617 Doctorados Nacionalesspa
dc.format.extentxxii, 197 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80626
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.references[1] H. Kayser, Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperatur, Annalen der Physik, 248 (1881) 526-537spa
dc.relation.references[2] R.K. Brandt, M.R. Hughes, L.P. Bourget, K. Truszkowska, R.G. Greenler, The interpretation of CO adsorbed on Pt/SiO2 of two different particle-size distributions, Surface Science, 286 (1993) 15-25spa
dc.relation.references[3] D.A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing and K. K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem., 66 (1994) 1739-1758spa
dc.relation.references[4] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.spa
dc.relation.references[5] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60 (1938) 309-319spa
dc.relation.references[6] I. Langmuir, THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM, J. Am. Chem. Soc., 40 (1918) 1361-1403.spa
dc.relation.referencesM. Faraldos, C. Goberna, Técnicas de analisis y caracterización de materiales, 2003.spa
dc.relation.references[8] Sir William Thomson F.R.S., On the equilibrium of vapor at a curved surface of liquid, Phil. Mag., 42 (1871) 448.spa
dc.relation.references9] W. Barlow, Probable Nature of the Internal Symmetry of Crystals, Nature, 29 (1883) 186- 188spa
dc.relation.references[10] A.H. Compton, A Quantum Theory of the Scattering of X-rays by Light Elements, Physical Review, 21 (1923) 483-502spa
dc.relation.references[11] G.E.M. Jauncey, The Scattering of X-Rays and Bragg's Law, Proceedings of the National Academy of Sciences, 10 (1924) 57-60spa
dc.relation.references12] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56 (1939) 978-982spa
dc.relation.references[13] Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34 (1996) 193-200.spa
dc.relation.references[14] D. Qu, Investigation of oxygen reduction on activated carbon electrodes in alkaline solution, Carbon, 45 (2007) 1296-1301spa
dc.relation.references[15] G.N. Okolo, H.W.J.P. Neomagus, R.C. Everson, M.J. Roberts, J.R. Bunt, R. Sakurovs, J.P. Mathews, Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques, Fuel, 158 (2015) 779-792.spa
dc.relation.references[16] J. Collins, D. Zheng, T. Ngo, D. Qu, M. Foster, Partial graphitization of activated carbon by surface acidification, Carbon, 79 (2014) 500-517.spa
dc.relation.references[17] C.V. Raman, K.S. Krishnan, The Negative Absorption of Radiation, Nature, 122 (1928) 12-13spa
dc.relation.references[18] J.W. Brault, New approach to high-precision Fourier transform spectrometer design, Appl. Opt., 35 (1996) 2891-2896spa
dc.relation.references[19] P.Y. Hou, J. Ager, J. Mougin, A. Galerie, Limitations and Advantages of Ram Spectroscopy for the Determination of Oxidation Stresses, Oxid. Met., 75 (2011) 229-245spa
dc.relation.references[20] Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, 23 (2014) 33-50.spa
dc.relation.references[21] R.M. Badger, A Relation Between Internuclear Distances and Bond Force Constants, The Journal of Chemical Physics, 2 (1934) 128-131spa
dc.relation.references[22] M.B. Mitchell, Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy, Structure-Property Relations in Polymers, American Chemical Society1993, pp. 351-375spa
dc.relation.references[23] M.P. Fuller, P.R. Griffiths, Diffuse reflectance measurements by infrared Fourier transform spectrometry, Anal. Chem., 50 (1978) 1906-1910.spa
dc.relation.references[24] K. Akhtar, S. Khan, S. Khan, A.M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, 2019.spa
dc.relation.references[25] O.P. Choudhary, P. Choudhary, Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components, International Journal of Current Microbiology and Applied Sciences, 6 (2017) 1877-1882.spa
dc.relation.references[26] M. Abd Mutalib, M.A. Rahman, M.H.D. Othman, A.F. Ismail, J. Jaafar, Chapter 9 - Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy, in: N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe (Eds.) Membrane Characterization, Elsevier2017, pp. 161-179.spa
dc.relation.references[27] X. Ke, C. Bittencourt, G. Van Tendeloo, Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials, Beilstein J Nanotechnol, 6 (2015) 1541-1557.spa
dc.relation.references[1] F. Rodríguez-reinoso, The role of carbon materials in heterogeneous catalysis, Carbon, 36 (1998) 159-175.spa
dc.relation.references[2] E. Antolini, Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells, Renewable and Sustainable Energy Reviews, 58 (2016) 34-51.spa
dc.relation.references[3] J.L. Figueiredo, M.F.R. Pereira, Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts, Journal of Energy Chemistry, 22 (2013) 195-201. [4] T. Fu, Z. Li, Review of recent development in Co-based catalysts supported on carbonspa
dc.relation.references[4] T. Fu, Z. Li, Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis, Chemical Engineering Science, 135 (2015) 3-20.spa
dc.relation.references[5] S. Tang, G. Sun, J. Qi, S. Sun, J. Guo, Q. Xin, G.M. Haarberg, Review of New Carbon Materials as Catalyst Supports in Direct Alcohol Fuel Cells, Chinese Journal of Catalysis, 31 (2010) 12-17.spa
dc.relation.references[6] D.R. Minett, J.P. O’Byrne, M.D. Jones, V.P. Ting, T.J. Mays, D. Mattia, One-step production of monolith-supported long carbon nanotube arrays, Carbon, 51 (2013) 327-334.spa
dc.relation.references[7] C. Moreno-castilla, F. Carrasco-marín, F.J. Maldonado-hódar, J. Rivera-utrilla, Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content, Carbon, 36 (1998) 145-151.spa
dc.relation.references[8] Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Separation and Purification Technology, 157 (2016) 141-161.spa
dc.relation.references[9] M.M. Zainol, N.A.S. Amin, M. Asmadi, Synthesis and characterization of carbon cryogel microspheres from lignin–furfural mixtures for biodiesel production, Bioresource Technology, 190 (2015) 44-50.spa
dc.relation.references[10] C.T. Alviso, R.W. Pekala, J. Gross, X. Lu, R. Caps, J. Fricke, Resorcinol-Formaldehyde and Carbon Aerogel Microspheres, MRS Online Proceedings Library Archive, 431 (1996) null-null.spa
dc.relation.references[11] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci., 24 (1989) 3221-3227.spa
dc.relation.references[12] S.D. Lakshmi, P.K. Avti, G. Hegde, Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review, Nano-Structures & Nano-Objects, 16 (2018) 306- 321.spa
dc.relation.references[13] X. Chang, D. Chen, X. Jiao, Starch-derived carbon aerogels with high-performance for sorption of cationic dyes, Polymer, 51 (2010) 3801-3807.spa
dc.relation.references[14] C. Xu, X. Luo, X. Lin, X. Zhuo, L. Liang, Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends, Polymer, 50 (2009) 3698-3705.spa
dc.relation.references[15] Z. Feng, Z. Shao, J. Yao, Y. Huang, X. Chen, Protein adsorption and separation with chitosan-based amphoteric membranes, Polymer, 50 (2009) 1257-1263.spa
dc.relation.references[16] A. Varzi, S. Passerini, Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder, Journal of Power Sources, 300 (2015) 216-222.spa
dc.relation.references[17] K. Drobíková, D. Plachá, O. Motyka, R. Gabor, K.M. Kutláková, S. Vallová, J. Seidlerová, Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel, Waste Management, 48 (2016) 471-477.spa
dc.relation.references[18] E.I. Nep, K. Asare-Addo, M.U. Ghori, B.R. Conway, A.M. Smith, Starch-free grewia gum matrices: Compaction, swelling, erosion and drug release behaviour, International Journal of Pharmaceutics, 496 (2015) 689-698.spa
dc.relation.references[19] S. Somboonchan, S. Lubbers, G. Roudaut, Water and temperature contribution to the structuration of starch matrices in the presence of flavour, Food Chemistry, 195 (2016) 79-86.spa
dc.relation.references[20] V. Selvanathan, M.H. Ruslan, M. Aminuzzaman, G. Muhammad, N. Amin, K. Sopian, M. Akhtaruzzaman, Resorcinol-Formaldehyde (RF) as a Novel Plasticizer for Starch-Based Solid Biopolymer Electrolyte, 12 (2020) 2170.spa
dc.relation.references[21] M. Bakierska, M. Molenda, D. Majda, R. Dziembaj, Functional Starch Based Carbon Aerogels for Energy Applications, Procedia Engineering, 98 (2014) 14-19.spa
dc.relation.references[22] M. Haghgoo, A.A. Yousefi, M.J. Zohuriaan Mehr, Nano porous structure of resorcinol– formaldehyde xerogels and aerogels: effect of sodium dodecylbenzene sulfonate, Iranian Polymer Journal, 21 (2012) 211-219.spa
dc.relation.references[23] K.T. Lee, S.M. Oh, Novel synthesis of porous carbons with tunable pore size by surfactanttemplated sol-gel process and carbonisation, Chemical Communications, (2002) 2722-2723.spa
dc.relation.references[24] N. Vera-Hincapié, E. Romero-Malagón, F. Carrasco-Marín, Y. Agámez-Pertuz, J. DíazVelásquez, Effect of the addition of a second phenol on the textural properties of carbon aerogels, Adsorption, 22 (2016) 81-87.spa
dc.relation.references[25] S. Marx, Glycerol-free biodiesel production through transesterification: a review, Fuel Process. Technol., 151 (2016) 139-147.spa
dc.relation.references[26] M.R. Monteiro, C.L. Kugelmeier, R.S. Pinheiro, M.O. Batalha, A. da Silva César, Glycerol from biodiesel production: Technological paths for sustainability, Renewable and Sustainable Energy Reviews, 88 (2018) 109-122.spa
dc.relation.references[27] L.-L. Xue, H.-H. Chen, J.-G. Jiang, Implications of glycerol metabolism for lipid production, Prog. Lipid Res., 68 (2017) 12-25.spa
dc.relation.references[28] M.S. Ardi, M.K. Aroua, N.A. Hashim, Progress, prospect and challenges in glycerol purification process: A review, Renewable and Sustainable Energy Reviews, 42 (2015) 1164- 1173.spa
dc.relation.references[29] A. Galadima, O. Muraza, A review on glycerol valorization to acrolein over solid acid catalysts, Journal of the Taiwan Institute of Chemical Engineers, 67 (2016) 29-44.spa
dc.relation.references[30] A.R. Trifoi, P.Ş. Agachi, T. Pap, Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols, Renewable and Sustainable Energy Reviews, 62 (2016) 804- 814.spa
dc.relation.references[31] E.-E. Oprescu, E. Stepan, R.E. Dragomir, A. Radu, P. Rosca, Synthesis and testing of glycerol ketals as components for diesel fuel, Fuel Process. Technol., 110 (2013) 214-217.spa
dc.relation.references[32] M. De Torres, G. Jiménez-osés, J.A. Mayoral, E. Pires, M. de los Santos, Glycerol ketals: Synthesis and profits in biodiesel blends, Fuel, 94 (2012) 614-616.spa
dc.relation.references[33] J.K. Brooks, N. Bashirelahi, M.A. Reynolds, Charcoal and charcoal-based dentifrices: A literature review, The Journal of the American Dental Association, 148 (2017) 661-670. [33] J.K. Brooks, N. Bashirelahi, M.A. Reynolds, Charcoal and charcoal-based dentifrices: A literature review, The Journal of the American Dental Association, 148 (2017) 661-670.spa
dc.relation.references[34] E. Burchacka, M. Łukaszewicz, M. Kułażyński, Determination of mechanisms of action of active carbons as a feed additive, Bioorg. Chem., (2019).spa
dc.relation.references[35] Y. Cao, K. Wang, X. Wang, Z. Gu, T. Ambrico, W. Gibbons, Q. Fan, A.-A. Talukder, Preparation of active carbons from corn stalk for butanol vapor adsorption, Journal of Energy Chemistry, 26 (2017) 35-41.spa
dc.relation.references[36] E. Stojanovska, M.D. Calisir, N.D. Ozturk, A. Kilic, 3 - Carbon-based foams: Preparation and applications, in: A. Khan, M. Jawaid, Inamuddin, A.M. Asiri (Eds.) Nanocarbon and its Composites, Woodhead Publishing2019, pp. 43-90.spa
dc.relation.references[37] J. Zhou, M. Wang, X. Li, Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors, Appl. Surf. Sci., 462 (2018) 444-452.spa
dc.relation.references[38] Z. Chen, K. Liu, S. Liu, L. Xia, J. Fu, X. Zhang, C. Zhang, B. Gao, Porous Active Carbon Layer Modified Graphene for High-performance Supercapacitor, Electrochim. Acta, 237 (2017) 102-108.spa
dc.relation.references[39] P.C. Vilella, J.A. Lira, D.C.S. Azevedo, M. Bastos-Neto, R. Stefanutti, Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes, Industrial Crops and Products, 109 (2017) 134-140.spa
dc.relation.references[40] G. Le Bozec, S. Giraudet, L. Le Polles, P. Le Cloirec, 1H NMR Investigations of Activated Carbon Loaded with Volatile Organic Compounds: Quantification, Mechanisms, and Diffusivity Determination, Langmuir, 33 (2017) 1605-1613.spa
dc.relation.references[41] J. Ma, C. Li, Y. Zhang, R. Ju, Combined Process of Ferrate Preoxidation and Biological Activated Carbon Filtration for Upgrading Water Quality, Ferrates, American Chemical Society2008, pp. 446-455.spa
dc.relation.references[42] J.A. Teixeira da Silva, F. Engelmann, Cryopreservation of oil palm (Elaeis guineensis Jacq.), Cryobiology, 77 (2017) 82-88.spa
dc.relation.references[43] V. Marin-Burgos, J.S. Clancy, J.C. Lovett, Contesting legitimacy of voluntary sustainability certification schemes: Valuation languages and power asymmetries in the Roundtable on Sustainable Palm Oil in Colombia, Ecological Economics, 117 (2015) 303-313.spa
dc.relation.references[44] L.E. Pardo, F.d.O. Roque, M.J. Campbell, N. Younes, W. Edwards, W.F. Laurance, Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia, Biological Conservation, 227 (2018) 65-73.spa
dc.relation.references[45] J.A. Garcia-Nunez, N.E. Ramirez-Contreras, D.T. Rodriguez, E. Silva-Lora, C.S. Frear, C. Stockle, M. Garcia-Perez, Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents, Resources, Conservation and Recycling, 110 (2016) 99-114.spa
dc.relation.references[46] E. Blanco, C. Sepulveda, K. Cruces, J.L. García-Fierro, I.T. Ghampson, N. Escalona, Conversion of guaiacol over metal carbides supported on activated carbon catalysts, Catalysis Today, (2019).spa
dc.relation.references[47] M. Matyjaszek, K. Wodarski, A. Krzemień, C. Escanciano García-Miranda, A. Suárez Sánchez, Coking coal mining investment: Boosting European Union's raw materials initiative, Resources Policy, 57 (2018) 88-97.spa
dc.relation.references[48] B.D. Flores, A.G. Borrego, M.A. Diez, G.L.R. da Silva, V. Zymla, A.C.F. Vilela, E. Osório, How coke optical texture became a relevant tool for understanding coal blending and coke quality, Fuel Process. Technol., 164 (2017) 13-23.spa
dc.relation.references[49] J.A. Nieves, A.J. Aristizábal, I. Dyner, O. Báez, D.H. Ospina, Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application, Energy, 169 (2019) 380-397.spa
dc.relation.references[50] N. Job, F. Sabatier, J.-P. Pirard, M. Crine, A. Léonard, Towards the production of carbon xerogel monoliths by optimizing convective drying conditions, Carbon, 44 (2006) 2534-2542.spa
dc.relation.references[51] N. Briceño, Aerogeles de carbono como soportes catalíticos para la síntesis Fischer - Tropsch, Tesis, Universidad Nacional de Colombia (2014) 131.spa
dc.relation.references[52] H. ShamsiJazeyi, T. Kaghazchi, Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal, Journal of Industrial and Engineering Chemistry, 16 (2010) 852-858.spa
dc.relation.references[53] Y. Gao, Q. Yue, B. Gao, A. Li, Insight into activated carbon from different kinds of chemical activating agents: A review, Sci. Total Environ., 746 (2020) 141094.spa
dc.relation.references[54] C. Moreno-Castilla, M.A. Ferro-Garcia, J.P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, J. Rivera-Utrilla, Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments, Langmuir, 11 (1995) 4386-4392.spa
dc.relation.references[55] G.C.S. García C., A.; Agámez P., Y.; Díaz V., J. de J. , Comportamiento térmico de carbones de Santander y Cundinamarca y sus mezclas en la producción de coque metalúrgico, Inventum, 10 (2015) 49-53.spa
dc.relation.references[56] V. Likodimos, T.A. Steriotis, S.K. Papageorgiou, G.E. Romanos, R.R.N. Marques, R.P. Rocha, J.L. Faria, M.F.R. Pereira, J.L. Figueiredo, A.M.T. Silva, P. Falaras, Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation, Carbon, 69 (2014) 311-326.spa
dc.relation.references[57] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon, 45 (2007) 1686-1695.spa
dc.relation.references[58] C. Moreno-Castilla, F.J. Maldonado-Hódar, Carbon aerogels for catalysis applications: An overview, Carbon, 43 (2005) 455-465spa
dc.relation.references[59] J. Collins, D. Zheng, T. Ngo, D. Qu, M. Foster, Partial graphitization of activated carbon by surface acidification, Carbon, 79 (2014) 500-517.spa
dc.relation.references[60] Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, 23 (2014) 33-50.spa
dc.relation.references[61] S. Goler, A. Hagadorn, D.M. Ratzan, R. Bagnall, A. Cacciola, J. McInerney, J.T. Yardley, Using Raman spectroscopy to estimate the dates of carbon-based inks from Ancient Egypt, Journal of Cultural Heritage, (2018).spa
dc.relation.references[62] H. Ge, Z. Ye, R. He, Raman spectroscopy of diesel and gasoline engine-out soot using different laser power, Journal of Environmental Sciences, (2018).spa
dc.relation.references[63] S. Takabayashi, R. Ješko, M. Shinohara, H. Hayashi, R. Sugimoto, S. Ogawa, Y. Takakuwa, Chemical structural analysis of diamondlike carbon films: II. Raman analysis, Surface Science, 668 (2018) 36-41.spa
dc.relation.references[64] J.J. Song, D.D.L. Chung, P.C. Eklund, M.S. Dresselhaus, Raman scattering in graphite intercalation compounds, Solid State Communications, 20 (1976) 1111-1115.spa
dc.relation.references[65] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61 (2000) 14095-14107.spa
dc.relation.references[66] K. Gao, Y. Wang, X. Wei, L. Qiang, B. Zhang, J. Zhang, Hydrogenated amorphous carbon films with different nanostructure: A comparative study, Chemical Physics Letters, 715 (2019) 330-334.spa
dc.relation.references[68] Y. Yu, M. Xu, H. Yao, D. Yu, Y. Qiao, J. Sui, X. Liu, Q. Cao, Char characteristics and particulate matter formation during Chinese bituminous coal combustion, Proceedings of the Combustion Institute, 31 (2007) 1947-1954.spa
dc.relation.references[69] E. Bar-Ziv, A. Zaida, P. Salatino, O. Senneca, Diagnostics of carbon gasification by raman microprobe spectroscopy, Proceedings of the Combustion Institute, 28 (2000) 2369-2374.spa
dc.relation.references[70] A. Zaida, E. Bar-Ziv, L.R. Radovic, Y.-J. Lee, Further development of Raman Microprobe spectroscopy for characterization of char reactivity, Proceedings of the Combustion Institute, 31 (2007) 1881-1887.spa
dc.relation.references[71] T. Livneh, E. Bar-Ziv, O. Senneca, P. Salatino, Evolution of Reactivity of Highly Porous Chars from Raman Microscopy, Combustion Science and Technology, 153 (2000) 65-82.spa
dc.relation.references[72] B. Dippel, J. Heintzenberg, Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy, Journal of Aerosol Science, 30 (1999) 907-908.spa
dc.relation.references[73] A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Raman microprobe studies on carbon materials, Carbon, 32 (1994) 1523-1532.spa
dc.relation.references[74] O. Beyssac, B. Goffe, J.P. Petitet, E. Froigneux, M. Moreau, J.N. Rouzaud, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 59 (2003) 2267-2276.spa
dc.relation.references[75] M. Enterría, F.J. Martín-Jimeno, F. Suárez-García, J.I. Paredes, M.F.R. Pereira, J.I. Martins, A. Martínez-Alonso, J.M.D. Tascón, J.L. Figueiredo, Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids, Carbon, 105 (2016) 474-483.spa
dc.relation.references[76] L. Bao, X. Zhu, H. Dai, Y. Tao, X. Zhou, W. Liu, Y. Kong, Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow, Int. J. Biol. Macromol., 89 (2016) 389-395.spa
dc.relation.references[77] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.spa
dc.relation.references[78] E. Bailón-García, F. Carrasco-Marín, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, Development of carbon xerogels as alternative Pt-supports for the selective hydrogenation of citral, Catalysis Communications, 58 (2015) 64-69.spa
dc.relation.references[79] N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Béguin, J.-P. Pirard, Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon, 43 (2005) 2481-2494.spa
dc.relation.references[80] E. Gallegos-Suárez, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes, Chemical Engineering Journal, 181-182 (2012) 851-855.spa
dc.relation.references[81] O. Czakkel, K. Marthi, E. Geissler, K. László, Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels, Microporous Mesoporous Mater, 86 (2005) 124- 133.spa
dc.relation.references[82] J. Wang, B. Shen, D. Kang, P. Yuan, C. Wu, Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA, Chemical Engineering Science, 195 (2019) 767-776.spa
dc.relation.references[83] P.E. Fanning, M.A. Vannice, A DRIFTS study of the formation of surface groups on carbon by oxidation, Carbon, 31 (1993) 721-730.spa
dc.relation.references[84] B.J. Meldrum, C.H. Rochester, Infrared spectra of carbonaceous chars under carbonization and oxidation conditions, Fuel, 70 (1991) 57-63.spa
dc.relation.references[85] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, CHAPTER 13 - Cumulated Double Bonds, in: D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli (Eds.) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991, pp. 213-223.spa
dc.relation.references[86] Y. Yamada, S. Gohda, K. Abe, T. Togo, N. Shimano, T. Sasaki, H. Tanaka, H. Ono, T. Ohba, S. Kubo, T. Ohkubo, S. Sato, Carbon materials with controlled edge structures, Carbon, 122 (2017) 694-701.spa
dc.relation.references[87] N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon, 42 (2004) 701-714.spa
dc.relation.references[88] J.J. Venter, M.A. Vannice, Applicability of “drifts” for the characterization of carbonsupported metal catalysts and carbon surfaces, Carbon, 26 (1988) 889-902.spa
dc.relation.references[89] J.M. O'Reilly, R.A. Mosher, Functional groups in carbon black by FTIR spectroscopy, Carbon, 21 (1983) 47-51. [90] C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marı́n, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38 (2000) 1995-2001.spa
dc.relation.references[1] S. Hosseini, H. Moghaddas, S. Masoudi Soltani, S. Kheawhom, Technological Applications of Honeycomb Monoliths in Environmental Processes: A review, Process Safety and Environmental Protection, 133 (2020) 286-300.spa
dc.relation.references[2] P.A. Goodman, H. Li, Y. Gao, Y.F. Lu, J.D. Stenger-Smith, J. Redepenning, Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes, Carbon, 55 (2013) 291-298.spa
dc.relation.references[3] S. Lawson, B. Adebayo, C. Robinson, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, The Effects of Cell Density and Intrinsic Porosity on Structural Properties and Adsorption Kinetics in 3DPrinted Zeolite Monoliths, Chemical Engineering Science, (2020) 115564.spa
dc.relation.references[4] D.F.M. Santos, O.S.G.P. Soares, J.L. Figueiredo, O. Sanz, M. Montes, M.F.R. Pereira, Preparation of ceramic and metallic monoliths coated with cryptomelane as catalysts for VOC abatement, Chemical Engineering Journal, 382 (2020) 122923.spa
dc.relation.references[5] E.D. Banús, V.G. Milt, E.E. Miró, M.A. Ulla, Catalytic coating synthesized onto cordierite monolith walls. Its application to diesel soot combustion, Applied Catalysis B: Environmental, 132–133 (2013) 479-486.spa
dc.relation.references[6] A. Bueno-López, D. Lozano-Castelló, I. Such-Basáñez, J.M. García-Cortés, M.J. IllánGómez, C. Salinas-Martínez de Lecea, Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis: Utilisation as Pt support for NOx abatement in diesel exhaust, Applied Catalysis B: Environmental, 58 (2005) 1-7.spa
dc.relation.references[7] J.C. Masini, F. Svec, Porous monoliths for on-line sample preparation: A review, Analytica Chimica Acta, 964 (2017) 24-44.spa
dc.relation.references[8] Z. Zhang, S. Zhao, G. Chen, J. Feng, J. Feng, Z. Yang, Influence of acid-base catalysis on the textural and thermal properties of carbon aerogel monoliths, Microporous and Mesoporous Materials, 296 (2020) 109997.spa
dc.relation.references[9] A. Galarneau, A. Sachse, B. Said, C.-H. Pelisson, P. Boscaro, N. Brun, L. Courtheoux, N. Olivi-Tran, B. Coasne, F. Fajula, Hierarchical porous silica monoliths: A novel class of microreactors for process intensification in catalysis and adsorption, Comptes Rendus Chimie, 19 (2016) 231-247.spa
dc.relation.references[10] M. Lee, Z. Wu, B. Wang, K. Li, Micro-structured alumina multi-channel capillary tubes and monoliths, Journal of Membrane Science, 489 (2015) 64-72.spa
dc.relation.references[11] G. Landi, P.S. Barbato, A. Di Benedetto, L. Lisi, Optimization of the preparation method of CuO/CeO2 structured catalytic monolith for CO preferential oxidation in H2-rich streams, Applied Catalysis B: Environmental, 181 (2016) 727-737.spa
dc.relation.references[12] O.H. Laguna, M.I. Domínguez, M.A. Centeno, J.A. Odriozola, Chapter 4 - Catalysts on Metallic Surfaces: Monoliths and Microreactors, New Materials for Catalytic Applications, Elsevier, Amsterdam, 2016, pp. 81-120.spa
dc.relation.references[13] Y. Zhu, K. Kanamori, N. Moitra, K. Kadono, S. Ohi, N. Shimobayashi, K. Nakanishi, Metal zirconium phosphate macroporous monoliths: Versatile synthesis, thermal expansion and mechanical properties, Microporous and Mesoporous Materials, 225 (2016) 122-127.spa
dc.relation.references[14] Q. Han, Q. Liang, X. Zhang, L. Yang, M. Ding, Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples, Journal of Chromatography A, 1447 (2016) 39-46.spa
dc.relation.references[15] J. Romanos, F. Barakat, S. Abou Dargham, Nanoporous Graphene Monolith for Hydrogen Storage, Materials Today: Proceedings, 5 (2018) 17478-17483.spa
dc.relation.references[16] V.N. Nguyen, R. Deja, R. Peters, L. Blum, D. Stolten, Study of the catalytic combustion of lean hydrogen-air mixtures in a monolith reactor, International Journal of Hydrogen Energy, 43 (2018) 17520-17530.spa
dc.relation.references[17] J. Gong, G. Zhao, G. Wang, L. Zhang, B. Li, Fabrication of macroporous carbon monoliths with controllable structure via supercritical CO2 foaming of polyacrylonitrile, Journal of CO2 Utilization, 33 (2019) 330-340.spa
dc.relation.references[18] K.B. Lynch, J. Ren, M.A. Beckner, C. He, S. Liu, Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications, Analytica Chimica Acta, 1046 (2019) 48-68.spa
dc.relation.references[19] M. Vergara-Barberán, E.J. Carrasco-Correa, M.J. Lerma-García, E.F. Simó-Alfonso, J.M. Herrero-Martínez, Current trends in affinity-based monoliths in microextraction approaches: A review, Analytica Chimica Acta, 1084 (2019) 1-20.spa
dc.relation.references[20] J.M. Gatica, G.A. Cifredo, G. Blanco, S. Trasobares, H. Vidal, Unveiling the source of activity of carbon integral honeycomb monoliths in the catalytic methane decomposition reaction, Catalysis Today, 249 (2015) 86-93.spa
dc.relation.references[21] J. Cue, McCueAlbert, J. Repik, C.E. Sumner, J. Miller, US4677086A, Shaped wood-based active carbon, EEUU, 1984.spa
dc.relation.references[22] H. Juntgen, H. Schumacher, J. Klein, K. Knoblauch, H.-J. Schroter, G. Kolling, I. Romey, US4124529A, Carbonaceous adsorbents and process for making same, EEUU, 1976.spa
dc.relation.references[23] B.D. C, D.E. M., J.R. E., US5389325, Activated carbon bodies having phenolic resin binder, EEUU, 1993.spa
dc.relation.references[24] P.D.A. Mccrae, T. Zhang, D.R.B. Walker, CA2442243C, Method of making shaped activated carbon, Canada, 2001.spa
dc.relation.references[25] Charles Edwan Sumner, J.R.C. Munjal, R. Seosamh, O'meadhraChester, W. SinkJerry, S. FauverGerald, C. Tustin, D.B. Compton, Robert Melvin Schisla, J.S. Bagrodia, CA2639955A1, Activated carbon monoliths and methods of making them, Canada, 2006, pp. 119.spa
dc.relation.references[26] FREECAD, FreeCAD Manual, www.freecadweb.org, 2020.spa
dc.relation.references[27] P. Dai, X. Zhao, D. Xu, C. Wang, X. Tao, X. Liu, J. Gao, Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor, International Journal of Hydrogen Energy, 44 (2019) 28463-28470.spa
dc.relation.references[28] A.B. Bourlinos, D.D. Jiang, R.N. Das, E.P. Giannelis, Engineering of silica monoliths and the effect of clay doping on their properties, Journal of Materials Chemistry, 14 (2004) 1995- 2000.spa
dc.relation.references[29] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.spa
dc.relation.references[30] P.E. Imoisili, K.O. Ukoba, T.-C. Jen, Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash, Boletín de la Sociedad Española de Cerámica y Vidrio, (2019).spa
dc.relation.references[31] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56 (1939) 978-982.spa
dc.relation.references[32] H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, Y. Sato, XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 83 (2004) 2427-2433.spa
dc.relation.references[33] H.-H. Bui, L. Wang, K.-Q. Tran, Ø. Skreiberg, A. Luengnaruemitchai, CO2 Gasification of Charcoals in the Context of Metallurgical Application, Energy Procedia, 105 (2017) 316-321.spa
dc.relation.references[1] D.B. Pal, R. Chand, S.N. Upadhyay, P.K. Mishra, Performance of water gas shift reaction catalysts: A review, Renewable and Sustainable Energy Reviews, 93 (2018) 549-565.spa
dc.relation.references[2] S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications, Renewable and Sustainable Energy Reviews, 43 (2015) 1151-1158.spa
dc.relation.references[3] J.A. Turner, Sustainable Hydrogen Production, Science, 305 (2004) 972-974.spa
dc.relation.references[4] J.R. Anstrom, K. Collier, 8 - Blended hydrogen–natural gas-fueled internal combustion engines and fueling infrastructure, in: F. Barbir, A. Basile, T.N. Veziroğlu (Eds.) Compendium of Hydrogen Energy, Woodhead Publishing, Oxford, 2016, pp. 219-232.spa
dc.relation.references[5] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 114 (2003) 32-53.spa
dc.relation.references[6] D. Hotza, J.C. Diniz da Costa, Fuel cells development and hydrogen production from renewable resources in Brazil, International Journal of Hydrogen Energy, 33 (2008) 4915-4935.spa
dc.relation.references[7] R.A. Dagle, Y. Wang, G.-G. Xia, J.J. Strohm, J. Holladay, D.R. Palo, Selective CO methanation catalysts for fuel processing applications, Applied Catalysis A: General, 326 (2007) 213-218.spa
dc.relation.references[8] R.J. Farrauto, Y. Liu, W. Ruettinger, O. Ilinich, L. Shore, T. Giroux, Precious Metal Catalysts Supported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy, Catalysis Reviews, 49 (2007) 141-196.spa
dc.relation.references[9] C. Song, Q. Liu, N. Ji, Y. Kansha, A. Tsutsumi, Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration, Applied Energy, 154 (2015) 392-401.spa
dc.relation.references[10] C.-C. Chen, H.-H. Tseng, Y.-L. Lin, W.-H. Chen, Hydrogen production and carbon dioxide enrichment from ethanol steam reforming followed by water gas shift reaction, Journal of Cleaner Production, 162 (2017) 1430-1441.spa
dc.relation.references[11] M. Antoniadou, S. Sfaelou, V. Dracopoulos, P. Lianos, Platinum-free photoelectrochemical water splitting, Catalysis Communications, 43 (2014) 72-74.spa
dc.relation.references[12] T.L. LeValley, A.R. Richard, M. Fan, The progress in water gas shift and steam reforming hydrogen production technologies – A review, International Journal of Hydrogen Energy, 39 (2014) 16983-17000.spa
dc.relation.references[13] M.A. Soria, P. Pérez, S.A.C. Carabineiro, F.J. Maldonado-Hódar, A. Mendes, L.M. Madeira, Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water–gas shift reaction, Applied Catalysis A: General, 470 (2014) 45- 55.spa
dc.relation.references[14] J. Li, H. Yoon, T.-K. Oh, E.D. Wachsman, SrCe0.7Zr0.2Eu0.1O3-based hydrogen transport water gas shift reactor, International Journal of Hydrogen Energy, 37 (2012) 16006- 16012.spa
dc.relation.references[15] D. Cameron, R. Holliday, D. Thompson, Gold’s future role in fuel cell systems, J. Power Sources, 118 (2003) 298-303.spa
dc.relation.references[16] H.F. Abbas, W.M.A. Wan Daud, Hydrogen production by methane decomposition: A review, International Journal of Hydrogen Energy, 35 (2010) 1160-1190.spa
dc.relation.references[17] A. Boisen, T.V.W. Janssens, N. Schumacher, I. Chorkendorff, S. Dahl, Support effects and catalytic trends for water gas shift activity of transition metals, J. Mol. Catal. A: Chem., 315 (2010) 163-170.spa
dc.relation.references[18] G. Jacobs, P.M. Patterson, L. Williams, E. Chenu, D. Sparks, G. Thomas, B.H. Davis, Water-gas shift: in situ spectroscopic studies of noble metal promoted ceria catalysts for CO removal in fuel cell reformers and mechanistic implications, Applied Catalysis A: General, 262 (2004) 177-187.spa
dc.relation.references[19] G.G. Olympiou, C.M. Kalamaras, C.D. Zeinalipour-Yazdi, A.M. Efstathiou, Mechanistic aspects of the water–gas shift reaction on alumina-supported noble metal catalysts: In situ DRIFTS and SSITKA-mass spectrometry studies, Catalysis Today, 127 (2007) 304-318.spa
dc.relation.references[20] S.C. Ammal, A. Heyden, Origin of the unique activity of Pt/TiO2 catalysts for the water– gas shift reaction, J. Catal., 306 (2013) 78-90.spa
dc.relation.references[21] G.N. Özyönüm, R. Yildirim, Water gas shift activity of Au–Re catalyst over microstructured cordierite monolith wash-coated by ceria, International Journal of Hydrogen Energy, 41 (2016) 5513-5521.spa
dc.relation.references[22] C. Wang, C. Liu, W. Fu, Z. Bao, J. Zhang, W. Ding, K. Chou, Q. Li, The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst, Catalysis Today, 263 (2016) 46-51.spa
dc.relation.references[23] S.K. Wilkinson, L.G.A. van de Water, B. Miller, M.J.H. Simmons, E.H. Stitt, M.J. Watson, Understanding the generation of methanol synthesis and water gas shift activity over copperbased catalysts – A spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO2/H2 feeds, Journal of Catalysis, 337 (2016) 208-220.spa
dc.relation.references[24] K. Chayakul, T. Srithanratana, S. Hengrasmee, Catalytic activities of Re–Ni/CeO2 bimetallic catalysts for water gas shift reaction, Catalysis Today, 175 (2011) 420-429.spa
dc.relation.references[25] M.V. Twigg, Progress and future challenges in controlling automotive exhaust gas emissions, Applied Catalysis B: Environmental, 70 (2007) 2-15.spa
dc.relation.references[26] V. Palma, D. Pisano, M. Martino, Structured noble metal-based catalysts for the WGS process intensification, International Journal of Hydrogen Energy, 43 (2018) 11745-11754.spa
dc.relation.references[27] L. Gradisher, B. Dutcher, M. Fan, Catalytic hydrogen production from fossil fuels via the water gas shift reaction, Applied Energy, 139 (2015) 335-349.spa
dc.relation.references[28] Y.I. Choi, H.J. Yoon, S.K. Kim, Y. Sohn, Crystal-facet dependent CO oxidation, preferential oxidation of CO in H2-rich, water-gas shift reactions, and supercapacitor application over Co3O4 nanostructures, Applied Catalysis A: General, 519 (2016) 56-67.spa
dc.relation.references[29] N. Ishito, K. Hara, K. Nakajima, A. Fukuoka, Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst, Journal of Energy Chemistry, 25 (2016) 306-310. [29] N. Ishito, K. Hara, K. Nakajima, A. Fukuoka, Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst, Journal of Energy Chemistry, 25 (2016) 306-310.spa
dc.relation.references[30] M.N. Moreira, A.M. Ribeiro, A.F. Cunha, A.E. Rodrigues, M. Zabilskiy, P. Djinović, A. Pintar, Copper based materials for water-gas shift equilibrium displacement, Applied Catalysis B: Environmental, 189 (2016) 199-209.spa
dc.relation.references[31] B. Liu, H. Xu, Z. Zhang, Platinum based core–shell catalysts for sour water–gas shift reaction, Catalysis Communications, 26 (2012) 159-163.spa
dc.relation.references[32] G.P. van der Laan, A.A.C.M. Beenackers, Intrinsic kinetics of the gas–solid Fischer– Tropsch and water gas shift reactions over a precipitated iron catalyst, Applied Catalysis A: General, 193 (2000) 39-53.spa
dc.relation.references[33] M. Zhu, I.E. Wachs, Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HTWGS) Reaction: A Review, ACS Catalysis, 6 (2016) 722-732.spa
dc.relation.references[34] R. Buitrago, J. Ruiz-Martínez, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. RodríguezReinoso, Water gas shift reaction on carbon-supported Pt catalysts promoted by CeO2, Catalysis Today, 180 (2012) 19-24.spa
dc.relation.references[35] Y. Ma, B. Liu, M. Jing, R. Zhang, J. Chen, Y. Zhang, J. Li, Promoted potassium salts based Ru/AC catalysts for water gas shift reaction, Chemical Engineering Journal, 287 (2016) 155- 161.spa
dc.relation.references[36] O. Arbeláez, T.R. Reina, S. Ivanova, F. Bustamante, A.L. Villa, M.A. Centeno, J.A. Odriozola, Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction, Applied Catalysis A: General, 497 (2015) 1-9.spa
dc.relation.references[37] J. Yu, F.J. Tian, L.J. McKenzie, C.Z. Li, Char-Supported Nano Iron Catalyst for WaterGas-Shift Reaction: Hydrogen Production from Coal/Biomass Gasification, Process Safety and Environmental Protection, 84 (2006) 125-130.spa
dc.relation.references[38] J.C. Serrano-Ruiz, E.V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Preparation and characterization of CeO2 highly dispersed on activated carbon, Mater. Res. Bull., 43 (2008) 1850-1857.spa
dc.relation.references[39] S.T. Oyama, P. Hacarlioglu, Y. Gu, D. Lee, Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors, International Journal of Hydrogen Energy, 37 (2012) 10444-10450.spa
dc.relation.references[40] N.M. Schweitzer, J.A. Schaidle, O.K. Ezekoye, X. Pan, S. Linic, L.T. Thompson, High Activity Carbide Supported Catalysts for Water Gas Shift, J. Am. Chem. Soc., 133 (2011) 2378- 2381.spa
dc.relation.references[41] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56 (1939) 978-982.spa
dc.relation.references[42] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.spa
dc.relation.references[43] Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, 23 (2014) 33-50.spa
dc.relation.references[44] B. Dippel, J. Heintzenberg, Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy, Journal of Aerosol Science, 30 (1999) 907-908.spa
dc.relation.references[45] M. Gonzalez Castaño, T.R. Reina, S. Ivanova, M.A. Centeno, J.A. Odriozola, Pt vs. Au in water–gas shift reaction, J. Catal., 314 (2014) 1-9.spa
dc.relation.references[46] N. García-Moncada, M. González-Castaño, S. Ivanova, M.Á. Centeno, F. Romero-Sarria, J.A. Odriozola, New concept for old reaction: Novel WGS catalyst design, Applied Catalysis B: Environmental, 238 (2018) 1-5.spa
dc.relation.references[1] T.N. Pham, T. Sooknoi, S.P. Crossley, D.E. Resasco, Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion, ACS Catalysis, 3 (2013) 2456-2473.spa
dc.relation.references[2] G.W. Huber, S. Iborra, A. Corma, Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev., 106 (2006) 4044-4098.spa
dc.relation.references[3] R. Hilten, J. Weber, J.R. Kastner, Continuous Upgrading of Fast Pyrolysis Oil by Simultaneous Esterification and Hydrogenation, Energy & Fuels, 30 (2016) 8357-8368.spa
dc.relation.references[4] T.P. Vispute, H. Zhang, A. Sanna, R. Xiao, G.W. Huber, Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils, Science, 330 (2010) 1222.spa
dc.relation.references[5] M.A. Jackson, S.C. Cermak, Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al, Applied Catalysis A: General, 431–432 (2012) 157-163.spa
dc.relation.references[6] E. Karimi, I.F. Teixeira, L.P. Ribeiro, A. Gomez, R.M. Lago, G. Penner, S.W. Kycia, M. Schlaf, Ketonization and deoxygenation of alkanoic acids and conversion of levulinic acid to hydrocarbons using a Red Mud bauxite mining waste as the catalyst, Catalysis Today, 190 (2012) 73-88.spa
dc.relation.references[7] Y. Lee, J.-W. Choi, D.J. Suh, J.-M. Ha, C.-H. Lee, Ketonization of hexanoic acid to dieselblendable 6-undecanone on the stable zirconia aerogel catalyst, Applied Catalysis A: General, 506 (2015) 288-293.spa
dc.relation.references[8] H.B. Goyal, D. Seal, R.C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12 (2008) 504-517.spa
dc.relation.references[9] S. Czernik, A.V. Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, Energy & Fuels, 18 (2004) 590-598.spa
dc.relation.references[10] P. McKendry, Energy production from biomass (part 2): conversion technologies, Bioresour. Technol., 83 (2002) 47-54.spa
dc.relation.references11] Q. Zhang, J. Chang, T. Wang, Y. Xu, Review of biomass pyrolysis oil properties and upgrading research, Energy Convers. Manage., 48 (2007) 87-92.spa
dc.relation.references[12] P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Applied Catalysis A: General, 407 (2011) 1-19.spa
dc.relation.references[13] R. Martinez, M.C. Huff, M.A. Barteau, Ketonization of acetic acid on titania-functionalized silica monoliths, J. Catal., 222 (2004) 404-409.spa
dc.relation.references[14] C. Doornkamp, V. Ponec, The universal character of the Mars and Van Krevelen mechanism, J. Mol. Catal. A: Chem., 162 (2000) 19-32.spa
dc.relation.references[15] W.-J. Liu, X.-S. Zhang, Y.-C. Qv, H. Jiang, H.-Q. Yu, Bio-oil upgrading at ambient pressure and temperature using zero valent metals, Green Chemistry, 14 (2012) 2226-2233.spa
dc.relation.references[16] M. Gliński, J. Kijeński, A. Jakubowski, Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems, Applied Catalysis A: General, 128 (1995) 209-217.spa
dc.relation.references[17] R.W. Snell, S.H. Hakim, J.A. Dumesic, B.H. Shanks, Catalysis with ceria nanocrystals: Biooil model compound ketonization, Applied Catalysis A: General, 464-465 (2013) 288-295.spa
dc.relation.references[18] G.A.H. Mekhemer, S.A. Halawy, M.A. Mohamed, M.I. Zaki, Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies, J. Catal., 230 (2005) 109-122.spa
dc.relation.references[19] M. Renz, Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope, Eur. J. Org. Chem., 2005 (2005) 979-988.spa
dc.relation.references[20] T.N. Pham, D. Shi, D.E. Resasco, Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase, Applied Catalysis B: Environmental, 145 (2014) 10-23.spa
dc.relation.references[21] D.E. Resasco, S.P. Crossley, Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel, Catalysis Today, 257 (2015) 185-199.spa
dc.relation.references[22] A. Oasmaa, D.C. Elliott, J. Korhonen, Acidity of Biomass Fast Pyrolysis Bio-oils, Energy & Fuels, 24 (2010) 6548-6554.spa
dc.relation.references[23] A. Gumidyala, T. Sooknoi, S. Crossley, Selective ketonization of acetic acid over HZSM-5: The importance of acyl species and the influence of water, J. Catal., 340 (2016) 76-84.spa
dc.relation.references[24] R.W. Snell, B.H. Shanks, Insights into the Ceria-Catalyzed Ketonization Reaction for Biofuels Applications, ACS Catalysis, 3 (2013) 783-789.spa
dc.relation.references[25] T.N. Pham, D. Shi, T. Sooknoi, D.E. Resasco, Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts, J. Catal., 295 (2012) 169-178.spa
dc.relation.references[26] R. Pestman, R.M. Koster, J.A.Z. Pieterse, V. Ponec, Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde, J. Catal., 168 (1997) 255- 264.spa
dc.relation.references[27] R. Pestman, R.M. Koster, A. van Duijne, J.A.Z. Pieterse, V. Ponec, Reactions of Carboxylic Acids on Oxides: 2. Bimolecular Reaction of Aliphatic Acids to Ketones, J. Catal., 168 (1997) 265-272.spa
dc.relation.references[28] R. Pestman, A. van Duijne, J.A.Z. Pieterse, V. Ponec, The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions, J. Mol. Catal. A: Chem., 103 (1995) 175-180.spa
dc.relation.references[29] S. Wan, T. Pham, S. Zhang, L. Lobban, D. Resasco, R. Mallinson, Direct catalytic upgrading of biomass pyrolysis vapors by a dual function Ru/TiO2 catalyst, AlChE J., 59 (2013) 2275- 2285.spa
dc.relation.references[30] R.W. Snell, B.H. Shanks, Ceria calcination temperature influence on acetic acid ketonization: Mechanistic insights, Applied Catalysis A: General, 451 (2013) 86-93.spa
dc.relation.references[31] A.V. Ignatchenko, J.S. DeRaddo, V.J. Marino, A. Mercado, Cross-selectivity in the catalytic ketonization of carboxylic acids, Applied Catalysis A: General, 498 (2015) 10-24.spa
dc.relation.references[32] V.N. Panchenko, Y.A. Zaytseva, M.N. Simonov, I.L. Simakova, E.A. Paukshtis, DRIFTS and UV–vis DRS study of valeric acid ketonization mechanism over ZrO2 in hydrogen atmosphere, Journal of Molecular Catalysis A: Chemical, 388–389 (2014) 133-140.spa
dc.relation.references[33] T.K. Phung, A.A. Casazza, P. Perego, P. Capranica, G. Busca, Catalytic pyrolysis of vegetable oils to biofuels: Catalyst functionalities and the role of ketonization on the oxygenate paths, Fuel Processing Technology, 140 (2015) 119-124.spa
dc.relation.references[36] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review, Energy & Fuels, 20 (2006) 848-889.spa
dc.relation.references[37] L. Deng, Y. Fu, Q.-X. Guo, Upgraded Acidic Components of Bio-oil through Catalytic Ketonic Condensation, Energy & Fuels, 23 (2009) 564-568.spa
dc.relation.references[38] K. Parida, J. Das, Mg/Al hydrotalcites: preparation, characterisation and ketonisation of acetic acid, J. Mol. Catal. A: Chem., 151 (2000) 185-192.spa
dc.relation.references[39] G. Busca, Acid Catalysts in Industrial Hydrocarbon Chemistry, Chem. Rev., 107 (2007) 5366-5410.spa
dc.relation.references[40] A. Altay, C.B. Carter, I. Arslan, M.A. Gülgün, Crystallization of CaAl4O7 and CaAl12O19 powders, Philosophical Magazine, 89 (2009) 605-621.spa
dc.relation.references[41] W. Staszak, M. Zawadzki, J. Okal, Solvothermal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion, J. Alloys Compd., 492 (2010) 500-507.spa
dc.relation.references[42] J. Wei, J. Ding, X. Zhang, D. Wu, Z. Wang, J. Luo, K. Wang, Coated double-walled carbon nanotubes with ceria nanoparticles, Mater. Lett., 59 (2005) 322-325.spa
dc.relation.references[43] S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect of nanosized CeO2 or ZnO loading on adsorption and catalytic properties of activated carbon, Adsorption Science & Technology, 35 (2017) 774-788.spa
dc.relation.references[34] S.D. Randery, J.S. Warren, K.M. Dooley, Cerium oxide-based catalysts for production of ketones by acid condensation, Applied Catalysis A: General, 226 (2002) 265-280. [35] J.C. Kuriacose, S.S. Jewur, Studies on the surface interaction of acetic acid on iron oxide, J. Catal., 50 (1977) 330-341.spa
dc.relation.references[44] Z. Zhou, X. Liu, Y. Hu, Z. Liao, S. Cheng, M. Xu, An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas, Fuel, 216 (2018) 356-363.spa
dc.relation.references[45] Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2–ZrO2 NH3–SCR catalysts, Applied Catalysis B: Environmental, 179 (2015) 380-394.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembCatalystseng
dc.subject.lembCatalizadoresspa
dc.subject.lembChemistry, Technicaleng
dc.subject.lembTecnología químicaspa
dc.subject.lembGelseng
dc.subject.lembGelesspa
dc.subject.proposalWGSReng
dc.subject.proposalMonolitheng
dc.subject.proposalMonolitospa
dc.subject.proposalXerogel de carbonospa
dc.subject.proposalAlmidónspa
dc.subject.proposalCetonización de ácido acéticospa
dc.subject.proposalCarbon xerogeleng
dc.subject.proposalStarcheng
dc.subject.proposalAcetic acid ketonizationeng
dc.titleDiseño y preparación de catalizadores soportados en materiales carbonosos estructuradosspa
dc.title.translatedDesign and preparation of catalysts supported on structured carbonaceous materialseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018429978.2021.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: