Estudio de la influencia de relación sílice/alúmina sobre algunas propiedades mecánicas de la cerámica tradicional
| dc.contributor.advisor | Restrepo Baena, Oscar Jaime | |
| dc.contributor.advisor | Tobón, Jorge Iván | |
| dc.contributor.author | Álvarez Díaz, Daniela | |
| dc.contributor.researchgroup | Grupo del Cemento y Materiales de Construcción | spa |
| dc.date.accessioned | 2024-11-20T17:43:23Z | |
| dc.date.available | 2024-11-20T17:43:23Z | |
| dc.date.issued | 2024 | |
| dc.description | Ilustraciones, fotografías | spa |
| dc.description.abstract | La mecánica de fractura en los cerámicos es un campo ampliamente estudiado debido a su inherente fragilidad. Los cerámicos, caracterizados por su alta dureza, resistencia al desgaste y estabilidad térmica, presentan desafíos significativos en términos de su comportamiento bajo tensión, debido a su tendencia a fracturarse de manera catastrófica. Factores como la microestructura, el tamaño y distribución de los granos, la presencia de defectos como la porosidad y las condiciones de carga influyen en la resistencia a la fractura de estos materiales. En este trabajo se evaluaron propiedades tremo mecánicas como la resistencia al choque térmico y la tenacidad a la fractura, en función de la relación sílice/alúmina, determinada a partir del cambio en la dosificación de materias primas en la formulación de la pasta. Se emplearon técnicas de caracterización química y mineralógica (FRX y DRX) y ensayos de nanoindentación para medir la tenacidad a la fractura, así como ciclos de calentamiento y enfriamiento para evaluar la resistencia al choque térmico. La pasta con mejor respuesta en ambas propiedades presentó una relación estequiométrica sílice/alúmina de 3.01, evidenciando mecanismos de aumento de la tenacidad debido a la formación de microgrietas alrededor de los límites de grano en la matriz que pueden ser causadas por la introducción de segundas fases con diferentes coeficientes de expansión térmica, que dificultan la propagación de las macrogrietas al aumentar su recorrido. (Tomado de la fuente) | spa |
| dc.description.abstract | Fracture mechanics in ceramics is a widely studied field due to its inherent brittleness. Ceramics, characterized by their high hardness, wear resistance, and thermal stability, present significant challenges in terms of their behavior under stress due to their tendency to fracture catastrophically. Factors such as microstructure, grain size and distribution, the presence of defects as porosities, and loading conditions influences the fracture resistance of these materials. In this work, thermomechanical properties such as thermal shock resistance and fracture toughness were evaluated based on the silica/alumina ratio, determined by adjusting the raw material composition in the paste formulation. Chemical and mineralogical characterization techniques (XRF and XRD) were used, through with nanoindentation tests to measure fracture toughness, and thermal cycling to assess thermal shock resistance. The paste with the best response in both properties had a stoichiometric ratio of 3.01, evidencing mechanisms of toughness enhancement due to the formation of microcracks around the grain boundaries in the matrix, which can be caused by the introduction of second phases with different thermal expansion coefficients, hindering the propagation of macrocracks by increasing their path length. | eng |
| dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | spa |
| dc.format.extent | 93 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87193 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.faculty | Facultad de Minas | spa |
| dc.publisher.place | Medellín, Colombia | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | spa |
| dc.relation.indexed | LaReferencia | spa |
| dc.relation.references | T. T. Shih and J. Opoku, “APPLICATION OF FRACTURE MECHANICS TO CERAMIC MATERIALS-A STATE-OF-THE-ART REVIEW,” 1995. | spa |
| dc.relation.references | R. J. Torrecillas S Moya, “MECÁNICA DE FRACTURA EN MATERIALES CERÁMICOS FRAGILES. I: PRINCIPIOS FUNDAMENTALES,” 1988. | spa |
| dc.relation.references | J. M. Pérez and M. Romero, “Microstructure and technological properties of porcelain stoneware tiles moulded at different pressures and thicknesses,” Ceram Int, vol. 40, no. 1, pp. 1365–1377, Jan. 2014, doi: 10.1016/j.ceramint.2013.07.018. | spa |
| dc.relation.references | C. T. G. Knight, R. J. Balec, and S. D. Kinrade, “The structure of silicate anions in aqueous alkaline solutions,” Angewandte Chemie - International Edition, vol. 46, no. 43, pp. 8148–8152, 2007, doi: 10.1002/anie.200702986. | spa |
| dc.relation.references | C. Zanelli, M. Raimondo, G. Guarini, and M. Dondi, “The vitreous phase of porcelain stoneware: Composition, evolution during sintering and physical properties,” J Non Cryst Solids, vol. 357, no. 16–17, pp. 3251–3260, Aug. 2011, doi: 10.1016/j.jnoncrysol.2011.05.020. | spa |
| dc.relation.references | F. Wakai, K. Chihara, and M. Yoshida, “Anisotropic shrinkage induced by particle rearrangement in sintering,” Acta Mater, vol. 55, no. 13, pp. 4553–4566, Aug. 2007, doi: 10.1016/j.actamat.2007.04.027. | spa |
| dc.relation.references | P. Henrique, A. Wanderlind, and A. de Noni, “Curvature Evolution of Porcelain Tile during Firing,” Materials Science Forum, vol. 820, pp. 218–224, Jun. 2015, doi: 10.4028/www.scientific.net/MSF.820.218. | spa |
| dc.relation.references | S. Ray, M. Haque, Md. N. Sakib, A. F. Mita, M. D. M. Rahman, and B. B. Tanmoy, “Use of ceramic wastes as aggregates in concrete production: A review,” Journal of Building Engineering, vol. 43, p. 102567, Nov. 2021, doi: 10.1016/j.jobe.2021.102567. | spa |
| dc.relation.references | P.J Adams, “Geology and ceramics : a brief review of the nature, geological occurrence processing, and principle industrial applications of the rocks and minerals used in British ceramic manufacture,” Geology and Ceramics, 1961. | spa |
| dc.relation.references | M. M. Jordan, M. A. Montero, S. Meseguer, and T. Sanfeliu, “Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies,” Appl Clay Sci, vol. 42, no. 1–2, pp. 266–271, Dec. 2008, doi: 10.1016/j.clay.2008.01.005. | spa |
| dc.relation.references | A. S. Wagh, J. P. Singh, and R. B. Poeppel, “Dependence of ceramic fracture properties on porosity,” J Mater Sci, vol. 28, no. 13, pp. 3589–3593, 1993, doi: 10.1007/BF01159841. | spa |
| dc.relation.references | Y. Sawadogo, L. Zerbo, M. Sawadogo, M. Seynou, M. Gomina, and P. Blanchart, “Characterization and use of raw materials from Burkina Faso in porcelain formulations,” Results in Materials, vol. 6, p. 100085, Jun. 2020, doi: 10.1016/j.rinma.2020.100085. | spa |
| dc.relation.references | R. J. Galán-Arboledas, M. T. Cotes-Palomino, C. Martínez-García, J. M. Moreno Maroto, M. Uceda-Rodríguez, and S. Bueno, “Ternary diagrams as a tool for developing ceramic materials from waste: relationship between technological properties and microstructure,” Environmental Science and Pollution Research, vol. 26, no. 35, pp. 35574–35587, Dec. 2019, doi: 10.1007/s11356-019-05343-3. | spa |
| dc.relation.references | C. Bartuli, L. Lusvarghi, T. Manfredini, and T. Valente, “Thermal spraying to coat traditional ceramic substrates: Case studies,” J Eur Ceram Soc, vol. 27, no. 2–3, pp. 1615–1622, Jan. 2007, doi: 10.1016/j.jeurceramsoc.2006.05.049. | spa |
| dc.relation.references | J. Espinosa, D. E. Los, M. S. De Aza, M. A. Del Rio, and E. Criado, “Aplicación de los diagramas de fases ternarios a los productos de cerámica blanca Í*^,” Madrid, 2000. | spa |
| dc.relation.references | M. Aloisi, A. Karamanov, G. Taglieri, F. Ferrante, and M. Pelino, “Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes,” J Hazard Mater, vol. 137, no. 1, pp. 138–143, Sep. 2006, doi: 10.1016/j.jhazmat.2005.12.056. | spa |
| dc.relation.references | J. Hostaša, F. Picelli, S. Hříbalová, and V. Nečina, “Sintering aids, their role and behaviour in the production of transparent ceramics,” Open Ceramics, vol. 7, Sep. 2021, doi: 10.1016/j.oceram.2021.100137. | spa |
| dc.relation.references | A. E. Lavat, M. C. Grasselli, and J. E. Tasca, “Phase changes of ceramic whiteware slip-casting bodies studied by XRD and FTIR,” Ceram Int, vol. 33, no. 6, pp. 1111 1117, Aug. 2007, doi: 10.1016/j.ceramint.2006.03.016. | spa |
| dc.relation.references | Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, “Spark Plasma Sintering of Alumina,” Journal of the American Ceramic Society, vol. 85, no. 8, pp. 1921–1927, Aug. 2002, doi: 10.1111/j.1151-2916.2002.tb00381.x. | spa |
| dc.relation.references | H. Schneider, J. Schreuer, and B. Hildmann, “Structure and properties of mullite—A review,” J Eur Ceram Soc, vol. 28, no. 2, pp. 329–344, Jan. 2008, doi: 10.1016/j.jeurceramsoc.2007.03.017. | spa |
| dc.relation.references | E. Tkalcec et al., “Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry,” J Non Cryst Solids, vol. 223, no. 1 2, pp. 57–72, Jan. 1998, doi: 10.1016/S0022-3093(97)00429-8. | spa |
| dc.relation.references | Y. Meng, G. Gong, Z. Wu, Z. Yin, Y. Xie, and S. Liu, “Fabrication and microstructure investigation of ultra-high-strength porcelain insulator,” J Eur Ceram Soc, vol. 32, no. 12, pp. 3043–3049, Sep. 2012, doi: 10.1016/j.jeurceramsoc.2012.04.015. | spa |
| dc.relation.references | K. M. Sree Manu, T. P. D. Rajan, and B. C. Pai, “Structure and properties of squeeze infiltrated zirconia grade-aluminosilicate short fiber reinforced aluminum composites,” J Alloys Compd, vol. 688, pp. 489–499, Dec. 2016, doi: 10.1016/j.jallcom.2016.07.135. | spa |
| dc.relation.references | Y.-M. Sung, “KINETICS ANALYSIS OF MULLITE FORMATION REACTION AT HIGH TEMPERATURES,” Acta Mater, vol. 48, pp. 2157–2162, 2001. | spa |
| dc.relation.references | Y. CHEN, “Kinetics of secondary mullite formation in kaolin?Al2O3 ceramics,” Scr Mater, vol. 51, no. 3, pp. 231–235, Aug. 2004, doi: 10.1016/j.scriptamat.2004.04.013. | spa |
| dc.relation.references | C. Zanelli, M. Raimondo, G. Guarini, and M. Dondi, “The vitreous phase of porcelain stoneware: Composition, evolution during sintering and physical properties,” J Non Cryst Solids, vol. 357, no. 16–17, pp. 3251–3260, Aug. 2011, doi: 10.1016/j.jnoncrysol.2011.05.020. | spa |
| dc.relation.references | A. De Noni Junior, S. B. Canever, P. Henrique, and R. R. da Silva, “Microstructure oriented porcelain stoneware tile composition design,” Ceram Int, vol. 49, no. 14, pp. 24558–24565, Jul. 2023, doi: 10.1016/j.ceramint.2022.11.067. | spa |
| dc.relation.references | E. Garzón, L. Pérez-Villarejo, D. Eliche-Quesada, S. Martínez-Martínez, and P. J. Sánchez-Soto, “Vitrification rate and estimation of the optimum firing conditions of ceramic materials from raw clays: A review,” Ceram Int, vol. 48, no. 11, pp. 15889 15898, Jun. 2022, doi: 10.1016/j.ceramint.2022.02.129. | spa |
| dc.relation.references | J. Shi, F. He, J. Han, J. Xie, S. Mei, and M. Jin, “Influence of Al2O3 on the structure and the physical properties of low-temperature ceramic vitrified bond,” Materials Science and Engineering A, vol. 673, pp. 587–594, Sep. 2016, doi: 10.1016/j.msea.2016.07.113. | spa |
| dc.relation.references | Asociación Española técnicos cerámicos, “Tecnología cerámica aplicada,” Castellón, 2004. | spa |
| dc.relation.references | Y. Iqbal and W. E. Lee, “Microstructural Evolution in Triaxial Porcelain,” The American Ceramic Society, vol. 83, pp. 3121–3127, 2004. | spa |
| dc.relation.references | J. B. Wachtman, W. Roger Cannon, and M. J. Matthewson, MECHANICAL PROPERTIES OF CERAMICS Second Editon, 2nd ed., vol. 2. 2008. | spa |
| dc.relation.references | M. P. G. Tena, J. Gilabert, J. Toledo, M. J. Ibáñez, and A. Muñoz, “Determination of the wear resistance of traditional ceramic tile glazes using a pin-on-disk tribometer,” International Journal of Surface Science and Engineering, vol. 5, no. 4, p. 272, 2011, doi: 10.1504/IJSURFSE.2011.044277. | spa |
| dc.relation.references | W. M. Cam and U. Senapati, “Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior,” vol. 81, pp. 3–20, 2005. | spa |
| dc.relation.references | T. J. Lu and N. A. Fleck, “The thermal shock resistance of solids,” Acta Mater, vol. 46, no. 13, pp. 4755–4768, Aug. 1998, doi: 10.1016/S1359-6454(98)00127-X. | spa |
| dc.relation.references | I. González, P. Campos, C. Barba-Brioso, A. Romero, E. Galán, and E. Mayoral, “A proposal for the formulation of high-quality ceramic ‘green’ materials with traditional raw materials mixed with Al-clays,” Appl Clay Sci, vol. 131, pp. 113–123, Oct. 2016, doi: 10.1016/j.clay.2015.12.035. | spa |
| dc.relation.references | I. Allegretta, G. Eramo, D. Pinto, and A. Hein, “The effect of temper on the thermal conductivity of traditional ceramics: Nature, percentage and granulometry,” Thermochim Acta, vol. 581, pp. 100–109, Apr. 2014, doi: 10.1016/j.tca.2014.02.024. | spa |
| dc.relation.references | S. R. Bragança, C. P. Bergmann, and H. Hübner, “Effect of quartz particle size on the strength of triaxial porcelain,” J Eur Ceram Soc, vol. 26, no. 16, pp. 3761–3768, Jan. 2006, doi: 10.1016/j.jeurceramsoc.2006.01.012. | spa |
| dc.relation.references | M. F. Majid, A. F. Essa, and S. S. Batros, “EFFECT OF COMPOSITION RATIO AND SINTERING PROCESS ON MECHANICAL PROPERTIES AND STRESSES IN HA:Al2O3:SiO2 CERAMIC SYSTEMS,” JP Journal of Heat and Mass Transfer, vol. 17, no. 1, pp. 227–242, Jun. 2019, doi: 10.17654/HM017010227. | spa |
| dc.relation.references | H. A. Lutpi, H. Mohamad, T. K. Abdullah, and H. Ismail, “Effect of ZnO on the structural, physio-mechanical properties and thermal shock resistance of Li2O Al2O3–SiO2 glass-ceramics,” Ceram Int, vol. 48, no. 6, pp. 7677–7686, Mar. 2022, doi: 10.1016/j.ceramint.2021.11.315. | spa |
| dc.relation.references | K. Traoré, G. V. Ouédraogo, P. Blanchart, J. P. Jernot, and M. Gomina, “Influence of calcite on the microstructure and mechanical properties of pottery ceramics obtained from a kaolinite-rich clay from Burkina Faso,” J Eur Ceram Soc, vol. 27, no. 2–3, pp. 1677–1681, 2007, doi: 10.1016/j.jeurceramsoc.2006.04.147. | spa |
| dc.relation.references | A. E. Lavat, M. C. Grasselli, and J. E. Tasca, “Phase changes of ceramic whiteware slip-casting bodies studied by XRD and FTIR,” Ceram Int, vol. 33, no. 6, pp. 1111 1117, Aug. 2007, doi: 10.1016/j.ceramint.2006.03.016. | spa |
| dc.relation.references | J. García Ten, M. J. Orts, A. Saburit, and G. Silva, “Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature,” Ceram Int, vol. 36, no. 6, pp. 1951–1959, Aug. 2010, doi: 10.1016/j.ceramint.2010.05.012. | spa |
| dc.relation.references | N. Tayebi, A. A. Polycarpou, and T. F. Conry, “Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques,” J Mater Res, vol. 19, no. 6, pp. 1791–1802, Jun. 2004, doi: 10.1557/JMR.2004.0233. | spa |
| dc.relation.references | W. M. Carty and U. Senapati, “Porcelain?Raw Materials, Processing, Phase Evolution, and Mechanical Behavior,” Journal of the American Ceramic Society, vol. 81, no. 1, pp. 3–20, Jan. 2005, doi: 10.1111/j.1151-2916.1998.tb02290.x. | spa |
| dc.relation.references | F. Gridi-Bennadji, D. Chateigner, G. Di Vita, and P. Blanchart, “Mechanical properties of textured ceramics from muscovite–kaolinite alternate layers,” J Eur Ceram Soc, vol. 29, no. 11, pp. 2177–2184, Aug. 2009, doi: 10.1016/j.jeurceramsoc.2009.01.004. | spa |
| dc.relation.references | J.-M. Brazier, A.-D. Schmitt, S. Gangloff, E. Pelt, F. Chabaux, and E. Tertre, “Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite),” Geochim Cosmochim Acta, vol. 250, pp. 324–347, Apr. 2019, doi: 10.1016/j.gca.2019.02.017. | spa |
| dc.relation.references | H. M. Zhou, X. C. Qiao, and J. G. Yu, “Influences of quartz and muscovite on the formation of mullite from kaolinite,” Appl Clay Sci, vol. 80–81, pp. 176–181, Aug. 2013, doi: 10.1016/j.clay.2013.04.004. | spa |
| dc.relation.references | G. L. Lecomte, J. P. Bonnet, and P. Blanchart, “A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1,100 °C,” J Mater Sci, vol. 42, no. 20, pp. 8745–8752, Aug. 2007, doi: 10.1007/s10853-006-0192-7. | spa |
| dc.relation.references | L. Yang et al., “Effects of the stearic acid modified mica powder on hydrophobic properties and salt freezing resistance of mortar: Experimental study and microscopic mechanism analysis,” Constr Build Mater, vol. 416, p. 135188, Feb. 2024, doi: 10.1016/j.conbuildmat.2024.135188. | spa |
| dc.relation.references | H. Shendy, G. A. Khater, M. G. Shahien, and A. M. Zayed, “Preparation of innovative glass-ceramic materials based on mica schist within the CaO–MgO Al2O3–SiO2 system,” Open Ceramics, vol. 17, p. 100545, Mar. 2024, doi: 10.1016/j.oceram.2024.100545. | spa |
| dc.relation.references | R. Papšík, O. Ševeček, J. Schlacher, and R. Bermejo, “Prediction of thermal shock induced cracking in multi-material ceramics using a stress-energy criterion,” Eng Fract Mech, vol. 303, p. 110121, Jun. 2024, doi: 10.1016/j.engfracmech.2024.110121. | spa |
| dc.relation.references | C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: A review,” Materials Science and Engineering, vol. 95, pp. 303–308, Nov. 1987, doi: 10.1016/0025-5416(87)90523-4. | spa |
| dc.relation.references | D. H. A. Besisa, E. M. M. Ewais, E. A. Mohamed, N. H. A. Besisa, and Y. M. Z. Ahmed, “Inspection of thermal stress parameters of high temperature ceramics and energy absorber materials,” Solar Energy Materials and Solar Cells, vol. 203, p. 110160, Dec. 2019, doi: 10.1016/j.solmat.2019.110160. | spa |
| dc.relation.references | Y. Shuai et al., “Residual strength of porous alumina ceramics and fractal characterization of their crack patterns after thermal shocks,” Ceram Int, Aug. 2024, doi: 10.1016/j.ceramint.2024.08.038. | spa |
| dc.relation.references | S. Sarker, H. T. Mumu, Md. Al-Amin, Md. Zahangir Alam, and M. A. Gafur, “Impacts of inclusion of additives on physical, microstructural, and mechanical properties of Alumina and Zirconia toughened alumina (ZTA) ceramic composite: A review,” Mater Today Proc, vol. 62, pp. 2892–2918, 2022, doi: 10.1016/j.matpr.2022.02.481. | spa |
| dc.relation.references | S. Bharani kumar et al., “Examining the mechanical behaviour of B4C/SiC reinforced Al-Si alloy hybrid composites using solid state processing method,” Mater Today Proc, Apr. 2024, doi: 10.1016/j.matpr.2024.04.014. | spa |
| dc.relation.references | P. J. Sánchez-Soto, E. Garzón, L. Pérez-Villarejo, and D. Eliche-Quesada, “Sintering behaviour of a clay containing pyrophyllite, sericite and kaolinite as ceramic raw materials: Looking for the optimum firing conditions,” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 62, no. 1, pp. 26–39, Jan. 2023, doi: 10.1016/j.bsecv.2021.09.001. | spa |
| dc.relation.references | L. Shafei, P. Adhikari, and W.-Y. Ching, “DFT Study of Electronic Structure and Optical Properties of Kaolinite, Muscovite, and Montmorillonite,” Crystals (Basel), vol. 11, no. 6, p. 618, May 2021, doi: 10.3390/cryst11060618. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | spa |
| dc.subject.lemb | Cerámica - Propiedades mecánicas | |
| dc.subject.lemb | Resistencia de materiales | |
| dc.subject.lemb | Fractura de cerámicas | |
| dc.subject.lemb | Esfuerzos y deformaciones | |
| dc.subject.proposal | Cerámicos | spa |
| dc.subject.proposal | Propiedades mecánicas | spa |
| dc.subject.proposal | Tenacidad a la fractura | spa |
| dc.subject.proposal | Materiales cerámicos | spa |
| dc.subject.proposal | Fractura frágil | spa |
| dc.subject.proposal | Porosidad | spa |
| dc.subject.proposal | Choque térmico | spa |
| dc.subject.proposal | Ceramic materials | eng |
| dc.subject.proposal | Brittle fracture | eng |
| dc.subject.proposal | Thermal shock | eng |
| dc.title | Estudio de la influencia de relación sílice/alúmina sobre algunas propiedades mecánicas de la cerámica tradicional | spa |
| dc.title.translated | Study of the influence of the silica/alumina ratio on some mechanical properties of traditional ceramics | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036399075.2024.pdf
- Tamaño:
- 3.55 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

