Estudio de la influencia de relación sílice/alúmina sobre algunas propiedades mecánicas de la cerámica tradicional

dc.contributor.advisorRestrepo Baena, Oscar Jaime
dc.contributor.advisorTobón, Jorge Iván
dc.contributor.authorÁlvarez Díaz, Daniela
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcciónspa
dc.date.accessioned2024-11-20T17:43:23Z
dc.date.available2024-11-20T17:43:23Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractLa mecánica de fractura en los cerámicos es un campo ampliamente estudiado debido a su inherente fragilidad. Los cerámicos, caracterizados por su alta dureza, resistencia al desgaste y estabilidad térmica, presentan desafíos significativos en términos de su comportamiento bajo tensión, debido a su tendencia a fracturarse de manera catastrófica. Factores como la microestructura, el tamaño y distribución de los granos, la presencia de defectos como la porosidad y las condiciones de carga influyen en la resistencia a la fractura de estos materiales. En este trabajo se evaluaron propiedades tremo mecánicas como la resistencia al choque térmico y la tenacidad a la fractura, en función de la relación sílice/alúmina, determinada a partir del cambio en la dosificación de materias primas en la formulación de la pasta. Se emplearon técnicas de caracterización química y mineralógica (FRX y DRX) y ensayos de nanoindentación para medir la tenacidad a la fractura, así como ciclos de calentamiento y enfriamiento para evaluar la resistencia al choque térmico. La pasta con mejor respuesta en ambas propiedades presentó una relación estequiométrica sílice/alúmina de 3.01, evidenciando mecanismos de aumento de la tenacidad debido a la formación de microgrietas alrededor de los límites de grano en la matriz que pueden ser causadas por la introducción de segundas fases con diferentes coeficientes de expansión térmica, que dificultan la propagación de las macrogrietas al aumentar su recorrido. (Tomado de la fuente)spa
dc.description.abstractFracture mechanics in ceramics is a widely studied field due to its inherent brittleness. Ceramics, characterized by their high hardness, wear resistance, and thermal stability, present significant challenges in terms of their behavior under stress due to their tendency to fracture catastrophically. Factors such as microstructure, grain size and distribution, the presence of defects as porosities, and loading conditions influences the fracture resistance of these materials. In this work, thermomechanical properties such as thermal shock resistance and fracture toughness were evaluated based on the silica/alumina ratio, determined by adjusting the raw material composition in the paste formulation. Chemical and mineralogical characterization techniques (XRF and XRD) were used, through with nanoindentation tests to measure fracture toughness, and thermal cycling to assess thermal shock resistance. The paste with the best response in both properties had a stoichiometric ratio of 3.01, evidencing mechanisms of toughness enhancement due to the formation of microcracks around the grain boundaries in the matrix, which can be caused by the introduction of second phases with different thermal expansion coefficients, hindering the propagation of macrocracks by increasing their path length.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.format.extent93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87193
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesT. T. Shih and J. Opoku, “APPLICATION OF FRACTURE MECHANICS TO CERAMIC MATERIALS-A STATE-OF-THE-ART REVIEW,” 1995.spa
dc.relation.referencesR. J. Torrecillas S Moya, “MECÁNICA DE FRACTURA EN MATERIALES CERÁMICOS FRAGILES. I: PRINCIPIOS FUNDAMENTALES,” 1988.spa
dc.relation.referencesJ. M. Pérez and M. Romero, “Microstructure and technological properties of porcelain stoneware tiles moulded at different pressures and thicknesses,” Ceram Int, vol. 40, no. 1, pp. 1365–1377, Jan. 2014, doi: 10.1016/j.ceramint.2013.07.018.spa
dc.relation.referencesC. T. G. Knight, R. J. Balec, and S. D. Kinrade, “The structure of silicate anions in aqueous alkaline solutions,” Angewandte Chemie - International Edition, vol. 46, no. 43, pp. 8148–8152, 2007, doi: 10.1002/anie.200702986.spa
dc.relation.referencesC. Zanelli, M. Raimondo, G. Guarini, and M. Dondi, “The vitreous phase of porcelain stoneware: Composition, evolution during sintering and physical properties,” J Non Cryst Solids, vol. 357, no. 16–17, pp. 3251–3260, Aug. 2011, doi: 10.1016/j.jnoncrysol.2011.05.020.spa
dc.relation.referencesF. Wakai, K. Chihara, and M. Yoshida, “Anisotropic shrinkage induced by particle rearrangement in sintering,” Acta Mater, vol. 55, no. 13, pp. 4553–4566, Aug. 2007, doi: 10.1016/j.actamat.2007.04.027.spa
dc.relation.referencesP. Henrique, A. Wanderlind, and A. de Noni, “Curvature Evolution of Porcelain Tile during Firing,” Materials Science Forum, vol. 820, pp. 218–224, Jun. 2015, doi: 10.4028/www.scientific.net/MSF.820.218.spa
dc.relation.referencesS. Ray, M. Haque, Md. N. Sakib, A. F. Mita, M. D. M. Rahman, and B. B. Tanmoy, “Use of ceramic wastes as aggregates in concrete production: A review,” Journal of Building Engineering, vol. 43, p. 102567, Nov. 2021, doi: 10.1016/j.jobe.2021.102567.spa
dc.relation.referencesP.J Adams, “Geology and ceramics : a brief review of the nature, geological occurrence processing, and principle industrial applications of the rocks and minerals used in British ceramic manufacture,” Geology and Ceramics, 1961.spa
dc.relation.referencesM. M. Jordan, M. A. Montero, S. Meseguer, and T. Sanfeliu, “Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies,” Appl Clay Sci, vol. 42, no. 1–2, pp. 266–271, Dec. 2008, doi: 10.1016/j.clay.2008.01.005.spa
dc.relation.referencesA. S. Wagh, J. P. Singh, and R. B. Poeppel, “Dependence of ceramic fracture properties on porosity,” J Mater Sci, vol. 28, no. 13, pp. 3589–3593, 1993, doi: 10.1007/BF01159841.spa
dc.relation.referencesY. Sawadogo, L. Zerbo, M. Sawadogo, M. Seynou, M. Gomina, and P. Blanchart, “Characterization and use of raw materials from Burkina Faso in porcelain formulations,” Results in Materials, vol. 6, p. 100085, Jun. 2020, doi: 10.1016/j.rinma.2020.100085.spa
dc.relation.referencesR. J. Galán-Arboledas, M. T. Cotes-Palomino, C. Martínez-García, J. M. Moreno Maroto, M. Uceda-Rodríguez, and S. Bueno, “Ternary diagrams as a tool for developing ceramic materials from waste: relationship between technological properties and microstructure,” Environmental Science and Pollution Research, vol. 26, no. 35, pp. 35574–35587, Dec. 2019, doi: 10.1007/s11356-019-05343-3.spa
dc.relation.referencesC. Bartuli, L. Lusvarghi, T. Manfredini, and T. Valente, “Thermal spraying to coat traditional ceramic substrates: Case studies,” J Eur Ceram Soc, vol. 27, no. 2–3, pp. 1615–1622, Jan. 2007, doi: 10.1016/j.jeurceramsoc.2006.05.049.spa
dc.relation.referencesJ. Espinosa, D. E. Los, M. S. De Aza, M. A. Del Rio, and E. Criado, “Aplicación de los diagramas de fases ternarios a los productos de cerámica blanca Í*^,” Madrid, 2000.spa
dc.relation.referencesM. Aloisi, A. Karamanov, G. Taglieri, F. Ferrante, and M. Pelino, “Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes,” J Hazard Mater, vol. 137, no. 1, pp. 138–143, Sep. 2006, doi: 10.1016/j.jhazmat.2005.12.056.spa
dc.relation.referencesJ. Hostaša, F. Picelli, S. Hříbalová, and V. Nečina, “Sintering aids, their role and behaviour in the production of transparent ceramics,” Open Ceramics, vol. 7, Sep. 2021, doi: 10.1016/j.oceram.2021.100137.spa
dc.relation.referencesA. E. Lavat, M. C. Grasselli, and J. E. Tasca, “Phase changes of ceramic whiteware slip-casting bodies studied by XRD and FTIR,” Ceram Int, vol. 33, no. 6, pp. 1111 1117, Aug. 2007, doi: 10.1016/j.ceramint.2006.03.016.spa
dc.relation.referencesZ. Shen, M. Johnsson, Z. Zhao, and M. Nygren, “Spark Plasma Sintering of Alumina,” Journal of the American Ceramic Society, vol. 85, no. 8, pp. 1921–1927, Aug. 2002, doi: 10.1111/j.1151-2916.2002.tb00381.x.spa
dc.relation.referencesH. Schneider, J. Schreuer, and B. Hildmann, “Structure and properties of mullite—A review,” J Eur Ceram Soc, vol. 28, no. 2, pp. 329–344, Jan. 2008, doi: 10.1016/j.jeurceramsoc.2007.03.017.spa
dc.relation.referencesE. Tkalcec et al., “Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry,” J Non Cryst Solids, vol. 223, no. 1 2, pp. 57–72, Jan. 1998, doi: 10.1016/S0022-3093(97)00429-8.spa
dc.relation.referencesY. Meng, G. Gong, Z. Wu, Z. Yin, Y. Xie, and S. Liu, “Fabrication and microstructure investigation of ultra-high-strength porcelain insulator,” J Eur Ceram Soc, vol. 32, no. 12, pp. 3043–3049, Sep. 2012, doi: 10.1016/j.jeurceramsoc.2012.04.015.spa
dc.relation.referencesK. M. Sree Manu, T. P. D. Rajan, and B. C. Pai, “Structure and properties of squeeze infiltrated zirconia grade-aluminosilicate short fiber reinforced aluminum composites,” J Alloys Compd, vol. 688, pp. 489–499, Dec. 2016, doi: 10.1016/j.jallcom.2016.07.135.spa
dc.relation.referencesY.-M. Sung, “KINETICS ANALYSIS OF MULLITE FORMATION REACTION AT HIGH TEMPERATURES,” Acta Mater, vol. 48, pp. 2157–2162, 2001.spa
dc.relation.referencesY. CHEN, “Kinetics of secondary mullite formation in kaolin?Al2O3 ceramics,” Scr Mater, vol. 51, no. 3, pp. 231–235, Aug. 2004, doi: 10.1016/j.scriptamat.2004.04.013.spa
dc.relation.referencesC. Zanelli, M. Raimondo, G. Guarini, and M. Dondi, “The vitreous phase of porcelain stoneware: Composition, evolution during sintering and physical properties,” J Non Cryst Solids, vol. 357, no. 16–17, pp. 3251–3260, Aug. 2011, doi: 10.1016/j.jnoncrysol.2011.05.020.spa
dc.relation.referencesA. De Noni Junior, S. B. Canever, P. Henrique, and R. R. da Silva, “Microstructure oriented porcelain stoneware tile composition design,” Ceram Int, vol. 49, no. 14, pp. 24558–24565, Jul. 2023, doi: 10.1016/j.ceramint.2022.11.067.spa
dc.relation.referencesE. Garzón, L. Pérez-Villarejo, D. Eliche-Quesada, S. Martínez-Martínez, and P. J. Sánchez-Soto, “Vitrification rate and estimation of the optimum firing conditions of ceramic materials from raw clays: A review,” Ceram Int, vol. 48, no. 11, pp. 15889 15898, Jun. 2022, doi: 10.1016/j.ceramint.2022.02.129.spa
dc.relation.referencesJ. Shi, F. He, J. Han, J. Xie, S. Mei, and M. Jin, “Influence of Al2O3 on the structure and the physical properties of low-temperature ceramic vitrified bond,” Materials Science and Engineering A, vol. 673, pp. 587–594, Sep. 2016, doi: 10.1016/j.msea.2016.07.113.spa
dc.relation.referencesAsociación Española técnicos cerámicos, “Tecnología cerámica aplicada,” Castellón, 2004.spa
dc.relation.referencesY. Iqbal and W. E. Lee, “Microstructural Evolution in Triaxial Porcelain,” The American Ceramic Society, vol. 83, pp. 3121–3127, 2004.spa
dc.relation.referencesJ. B. Wachtman, W. Roger Cannon, and M. J. Matthewson, MECHANICAL PROPERTIES OF CERAMICS Second Editon, 2nd ed., vol. 2. 2008.spa
dc.relation.referencesM. P. G. Tena, J. Gilabert, J. Toledo, M. J. Ibáñez, and A. Muñoz, “Determination of the wear resistance of traditional ceramic tile glazes using a pin-on-disk tribometer,” International Journal of Surface Science and Engineering, vol. 5, no. 4, p. 272, 2011, doi: 10.1504/IJSURFSE.2011.044277.spa
dc.relation.referencesW. M. Cam and U. Senapati, “Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior,” vol. 81, pp. 3–20, 2005.spa
dc.relation.referencesT. J. Lu and N. A. Fleck, “The thermal shock resistance of solids,” Acta Mater, vol. 46, no. 13, pp. 4755–4768, Aug. 1998, doi: 10.1016/S1359-6454(98)00127-X.spa
dc.relation.referencesI. González, P. Campos, C. Barba-Brioso, A. Romero, E. Galán, and E. Mayoral, “A proposal for the formulation of high-quality ceramic ‘green’ materials with traditional raw materials mixed with Al-clays,” Appl Clay Sci, vol. 131, pp. 113–123, Oct. 2016, doi: 10.1016/j.clay.2015.12.035.spa
dc.relation.referencesI. Allegretta, G. Eramo, D. Pinto, and A. Hein, “The effect of temper on the thermal conductivity of traditional ceramics: Nature, percentage and granulometry,” Thermochim Acta, vol. 581, pp. 100–109, Apr. 2014, doi: 10.1016/j.tca.2014.02.024.spa
dc.relation.referencesS. R. Bragança, C. P. Bergmann, and H. Hübner, “Effect of quartz particle size on the strength of triaxial porcelain,” J Eur Ceram Soc, vol. 26, no. 16, pp. 3761–3768, Jan. 2006, doi: 10.1016/j.jeurceramsoc.2006.01.012.spa
dc.relation.referencesM. F. Majid, A. F. Essa, and S. S. Batros, “EFFECT OF COMPOSITION RATIO AND SINTERING PROCESS ON MECHANICAL PROPERTIES AND STRESSES IN HA:Al2O3:SiO2 CERAMIC SYSTEMS,” JP Journal of Heat and Mass Transfer, vol. 17, no. 1, pp. 227–242, Jun. 2019, doi: 10.17654/HM017010227.spa
dc.relation.referencesH. A. Lutpi, H. Mohamad, T. K. Abdullah, and H. Ismail, “Effect of ZnO on the structural, physio-mechanical properties and thermal shock resistance of Li2O Al2O3–SiO2 glass-ceramics,” Ceram Int, vol. 48, no. 6, pp. 7677–7686, Mar. 2022, doi: 10.1016/j.ceramint.2021.11.315.spa
dc.relation.referencesK. Traoré, G. V. Ouédraogo, P. Blanchart, J. P. Jernot, and M. Gomina, “Influence of calcite on the microstructure and mechanical properties of pottery ceramics obtained from a kaolinite-rich clay from Burkina Faso,” J Eur Ceram Soc, vol. 27, no. 2–3, pp. 1677–1681, 2007, doi: 10.1016/j.jeurceramsoc.2006.04.147.spa
dc.relation.referencesA. E. Lavat, M. C. Grasselli, and J. E. Tasca, “Phase changes of ceramic whiteware slip-casting bodies studied by XRD and FTIR,” Ceram Int, vol. 33, no. 6, pp. 1111 1117, Aug. 2007, doi: 10.1016/j.ceramint.2006.03.016.spa
dc.relation.referencesJ. García Ten, M. J. Orts, A. Saburit, and G. Silva, “Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature,” Ceram Int, vol. 36, no. 6, pp. 1951–1959, Aug. 2010, doi: 10.1016/j.ceramint.2010.05.012.spa
dc.relation.referencesN. Tayebi, A. A. Polycarpou, and T. F. Conry, “Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques,” J Mater Res, vol. 19, no. 6, pp. 1791–1802, Jun. 2004, doi: 10.1557/JMR.2004.0233.spa
dc.relation.referencesW. M. Carty and U. Senapati, “Porcelain?Raw Materials, Processing, Phase Evolution, and Mechanical Behavior,” Journal of the American Ceramic Society, vol. 81, no. 1, pp. 3–20, Jan. 2005, doi: 10.1111/j.1151-2916.1998.tb02290.x.spa
dc.relation.referencesF. Gridi-Bennadji, D. Chateigner, G. Di Vita, and P. Blanchart, “Mechanical properties of textured ceramics from muscovite–kaolinite alternate layers,” J Eur Ceram Soc, vol. 29, no. 11, pp. 2177–2184, Aug. 2009, doi: 10.1016/j.jeurceramsoc.2009.01.004.spa
dc.relation.referencesJ.-M. Brazier, A.-D. Schmitt, S. Gangloff, E. Pelt, F. Chabaux, and E. Tertre, “Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite),” Geochim Cosmochim Acta, vol. 250, pp. 324–347, Apr. 2019, doi: 10.1016/j.gca.2019.02.017.spa
dc.relation.referencesH. M. Zhou, X. C. Qiao, and J. G. Yu, “Influences of quartz and muscovite on the formation of mullite from kaolinite,” Appl Clay Sci, vol. 80–81, pp. 176–181, Aug. 2013, doi: 10.1016/j.clay.2013.04.004.spa
dc.relation.referencesG. L. Lecomte, J. P. Bonnet, and P. Blanchart, “A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1,100 °C,” J Mater Sci, vol. 42, no. 20, pp. 8745–8752, Aug. 2007, doi: 10.1007/s10853-006-0192-7.spa
dc.relation.referencesL. Yang et al., “Effects of the stearic acid modified mica powder on hydrophobic properties and salt freezing resistance of mortar: Experimental study and microscopic mechanism analysis,” Constr Build Mater, vol. 416, p. 135188, Feb. 2024, doi: 10.1016/j.conbuildmat.2024.135188.spa
dc.relation.referencesH. Shendy, G. A. Khater, M. G. Shahien, and A. M. Zayed, “Preparation of innovative glass-ceramic materials based on mica schist within the CaO–MgO Al2O3–SiO2 system,” Open Ceramics, vol. 17, p. 100545, Mar. 2024, doi: 10.1016/j.oceram.2024.100545.spa
dc.relation.referencesR. Papšík, O. Ševeček, J. Schlacher, and R. Bermejo, “Prediction of thermal shock induced cracking in multi-material ceramics using a stress-energy criterion,” Eng Fract Mech, vol. 303, p. 110121, Jun. 2024, doi: 10.1016/j.engfracmech.2024.110121.spa
dc.relation.referencesC. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: A review,” Materials Science and Engineering, vol. 95, pp. 303–308, Nov. 1987, doi: 10.1016/0025-5416(87)90523-4.spa
dc.relation.referencesD. H. A. Besisa, E. M. M. Ewais, E. A. Mohamed, N. H. A. Besisa, and Y. M. Z. Ahmed, “Inspection of thermal stress parameters of high temperature ceramics and energy absorber materials,” Solar Energy Materials and Solar Cells, vol. 203, p. 110160, Dec. 2019, doi: 10.1016/j.solmat.2019.110160.spa
dc.relation.referencesY. Shuai et al., “Residual strength of porous alumina ceramics and fractal characterization of their crack patterns after thermal shocks,” Ceram Int, Aug. 2024, doi: 10.1016/j.ceramint.2024.08.038.spa
dc.relation.referencesS. Sarker, H. T. Mumu, Md. Al-Amin, Md. Zahangir Alam, and M. A. Gafur, “Impacts of inclusion of additives on physical, microstructural, and mechanical properties of Alumina and Zirconia toughened alumina (ZTA) ceramic composite: A review,” Mater Today Proc, vol. 62, pp. 2892–2918, 2022, doi: 10.1016/j.matpr.2022.02.481.spa
dc.relation.referencesS. Bharani kumar et al., “Examining the mechanical behaviour of B4C/SiC reinforced Al-Si alloy hybrid composites using solid state processing method,” Mater Today Proc, Apr. 2024, doi: 10.1016/j.matpr.2024.04.014.spa
dc.relation.referencesP. J. Sánchez-Soto, E. Garzón, L. Pérez-Villarejo, and D. Eliche-Quesada, “Sintering behaviour of a clay containing pyrophyllite, sericite and kaolinite as ceramic raw materials: Looking for the optimum firing conditions,” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 62, no. 1, pp. 26–39, Jan. 2023, doi: 10.1016/j.bsecv.2021.09.001.spa
dc.relation.referencesL. Shafei, P. Adhikari, and W.-Y. Ching, “DFT Study of Electronic Structure and Optical Properties of Kaolinite, Muscovite, and Montmorillonite,” Crystals (Basel), vol. 11, no. 6, p. 618, May 2021, doi: 10.3390/cryst11060618.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembCerámica - Propiedades mecánicas
dc.subject.lembResistencia de materiales
dc.subject.lembFractura de cerámicas
dc.subject.lembEsfuerzos y deformaciones
dc.subject.proposalCerámicosspa
dc.subject.proposalPropiedades mecánicasspa
dc.subject.proposalTenacidad a la fracturaspa
dc.subject.proposalMateriales cerámicosspa
dc.subject.proposalFractura frágilspa
dc.subject.proposalPorosidadspa
dc.subject.proposalChoque térmicospa
dc.subject.proposalCeramic materialseng
dc.subject.proposalBrittle fractureeng
dc.subject.proposalThermal shockeng
dc.titleEstudio de la influencia de relación sílice/alúmina sobre algunas propiedades mecánicas de la cerámica tradicionalspa
dc.title.translatedStudy of the influence of the silica/alumina ratio on some mechanical properties of traditional ceramicseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036399075.2024.pdf
Tamaño:
3.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: