Extruder for 3D bioprinting with composed bioink oriented to the cellular viability evaluation in the generation of tissues

dc.contributor.advisorCortés Rodríguez, Carlos Juliospa
dc.contributor.authorSilva Castellanos, Christian Augustospa
dc.contributor.cvlacSilva Castellanos, Christian Augusto [0001390041]spa
dc.contributor.googlescholarSilva Castellanos, Christian Augusto [9t8wUxMAAAAJ&hl]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Christian-Silva-15spa
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2024-07-19T13:56:02Z
dc.date.available2024-07-19T13:56:02Z
dc.date.issued2023-02-01
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstract3D bioprinting is an emerging biofabrication strategy that utilizes bioinks and models generated with CAD-like tools for the automated fabrication of tissue scaffolds and organlike constructs. Despite recent advances in materials and techniques with significant potential to achieve the fabrication of tissues relevant for clinical and in vitro applications, various aspects, such as tissue vascularization and prolonged cell functionality, are limited by the advancements in this field. Among the different 3D bioprinting techniques, extrusionbased bioprinting (EBB) has been conceived as the most promising for achieving this goal due to its versatility and availability. This document reports on developing three- and fourlayer extrusion systems axially aligned to overcome the current limitations faced when attempting to manufacture vascularized tissues and stable, perfusable vascular structures. We combined in silico simulations with in vitro experiments to precisely design multiple axial layered tissue extrusion systems with a high degree of cellular viability and versatility for 3D bioprinting applications. Furthermore, we report the hardware and software modifications made on commercially available 3D printers and bioprinters to allow the simultaneous deposition of multiple materials using coaxial nozzles. Finally, we demonstrate the versatility and potential of the four-layer coaxial extrusion system by printing perfusable vascular constructs and vascular networks with some commercially available bioinks. Our work paves the way for the rational design of coaxial extrusion systems with enormous potential in manufacturing hollow tubular constructs relevant to mimic structures found in the human body.eng
dc.description.abstractLa bioimpresión 3D es una estrategia de biofabricación emergente que emplea biotintas y modelos generados con herramientas tipo CAD para la fabricación automatizada de andamiajes de tejidos y constructos similares a órganos. A pesar de los avances recientes en materiales y técnicas con gran potencial para lograr la fabricación de tejidos relevantes para aplicaciones clínicas e in vitro, varios aspectos tales como la vascularización de tejidos y la funcionalidad prolongada de las células están limitada a los avances en este campo. Entre las diversas técnicas de bioimpresión 3D, la bioimpresión basada en extrusión (EBB) ha sido concebida como la más prometedora para lograr este objetivo, debido a su versatilidad y disponibilidad. En este documento se informa el desarrollo de sistemas de extrusión de tres y de cuatro capas alineadas axialmente destinados a resolver las limitaciones actuales que se enfrentan al intentar fabricar tejidos vascularizados y estructuras vasculares estables y perfundibles. Combinamos simulaciones in silico con experimentos in vitro para diseñar con precisión múltiples sistemas de extrusión de tejidos en capas axiales con alto grado de viabilidad celular y versatilidad para aplicaciones de bioimpresión 3D. Además, informamos las modificaciones de hardware y software realizadas en impresoras 3D y bioimpresoras disponibles comercialmente para permitir la deposición simultánea de múltiples materiales usando boquillas coaxiales. Finalmente, demostramos la versatilidad y el potencial del sistema de extrusión coaxial de cuatro capas mediante la impresión de constructos vasculares perfundibles y de redes vasculares con algunas biotintas disponibles comercialmente. Nuestro trabajo allana el camino para el diseño racional de sistemas de extrusión coaxial con gran potencial en la fabricación de constructos tubulares huecos relevantes para imitar estructuras que se encuentran en el cuerpo humano. (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaBiomechanics and tissue engineeringspa
dc.description.sponsorshipColciencias: Doctorado /Ingeniería Mecánica Universidad Nacional de Colombia Bogota, Colombia Doctorado Nacional - 647 Deutscher Akademischer Austauschdienst (DAAD), which financially supported my research internship in Germany.spa
dc.format.extentxxviii, 199 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86572
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.indexedBiremespa
dc.relation.referencesS. Pashneh-Tala, S. MacNeil, and F. Claeyssens, “The tissue-engineered vascular graft - Past, present, and future,” Tissue Eng. - Part B Rev., vol. 22, no. 1, pp. 68– 100, 2016, doi: 10.1089/ten.teb.2015.0100.spa
dc.relation.referencesY. Matsuzaki, K. John, T. Shoji, and T. Shinoka, “The evolution of tissue engineered vascular graft technologies: From preclinical trials to advancing patient care,” Appl. Sci., vol. 9, no. 7, 2019, doi: 10.3390/app9071274.spa
dc.relation.referencesA. Huertas et al., “Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?,” Eur. Respir. J., 2020.spa
dc.relation.referencesZ. Varga et al., “Endothelial cell infection and endotheliitis in COVID-19,” Lancet, vol. 395, no. 10234, pp. 1417–1418, 2020, doi: 10.1016/S0140-6736(20)30937-5.spa
dc.relation.referencesZ. Gu, J. Fu, H. Lin, and Y. He, “Development of 3D bioprinting: From printing methods to biomedical applications,” Asian J. Pharm. Sci., no. xxxx, 2020, doi: 10.1016/j.ajps.2019.11.003.spa
dc.relation.referencesI. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, and C. T. Laurencin, “Progress in 3D bioprinting technology for tissue/organ regenerative engineering,” Biomaterials, vol. 226, no. September 2019, p. 119536, 2020, doi: 10.1016/j.biomaterials.2019.119536.spa
dc.relation.referencesR. Levato, T. Jungst, R. G. Scheuring, T. Blunk, J. Groll, and J. Malda, “From Shape to Function: The Next Step in Bioprinting,” Adv. Mater., vol. 1906423, 2020, doi: 10.1002/adma.201906423.spa
dc.relation.referencesT. Jiang, J. G. Munguia-Lopez, S. Flores-Torres, J. Kort-Mascort, and J. M. Kinsella, “Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication,” Appl. Phys. Rev., vol. 6, no. 011310, 2019, doi: 10.1063/1.5059393.spa
dc.relation.referencesA. Kjar, B. McFarland, K. Mecham, N. Harward, and Y. Huang, “Engineering of tissue constructs using coaxial bioprinting,” Bioact. Mater., vol. 6, no. 2, pp. 460– 471, 2021, doi: 10.1016/j.bioactmat.2020.08.020.spa
dc.relation.referencesG. Gao, J. Y. Park, B. S. Kim, J. Jang, and D. W. Cho, “Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology,” Adv. Healthc. Mater., vol. 7, no. 23, pp. 1–12, 2018, doi: 10.1002/adhm.201801102.spa
dc.relation.referencesY. Yu, Y. Zhang, J. A. Martin, and I. T. Ozbolat, “Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels,” J. Biomech. Eng., vol. 135, no. 9, pp. 1–9, 2013, doi: 10.1115/1.4024575.spa
dc.relation.referencesS. V Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol., vol. 32, no. 8, pp. 773–785, 2014, doi: 10.1038/nbt.2958.spa
dc.relation.referencesR. Chang, J. Nam, and W. Sun, “Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing,” Tissue Eng. - Part A., vol. 14, no. 1, pp. 41–48, 2008, doi: 10.1089/ten.a.2007.0004.spa
dc.relation.referencesC. Mandrycky, Z. Wang, K. Kim, and D. H. Kim, “3D bioprinting for engineering complex tissues,” Biotechnol. Adv., vol. 34, no. 4, pp. 422–434, 2016, doi: 10.1016/j.biotechadv.2015.12.011.spa
dc.relation.referencesK. Nair et al., “Characterization of cell viability during bioprinting processes,” Biotechnol. J., vol. 4, pp. 1168–1177, 2009, doi: 10.1002/biot.200900004.spa
dc.relation.referencesK. Nair et al., “Characterization of cell viability during bioprinting processes,” Biotechnol. J., vol. 4, pp. 1168–1177, 2009, doi: 10.1002/biot.200900004.spa
dc.relation.referencesramé-hart instrument co., “Custom coaxial needle.” [Online]. Available: http://www.ramehart.us/custom-coaxial-needle/spa
dc.relation.referencesS. V Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol., vol. 32, no. 8, pp. 773–785, 2014, doi: 10.1038/nbt.2958.spa
dc.relation.referencesF. Pati, J. Gantelius, and H. A. Svahn, “3D Bioprinting of Tissue/Organ Models,” Angew. Chemie - Int. Ed., vol. 55, no. 15, pp. 4650–4665, 2016, doi: 10.1002/anie.201505062.spa
dc.relation.referencesM. A. Heinrich et al., “3D Bioprinting: from Benches to Translational Applications,” Small, vol. 15, no. 23, pp. 1–47, 2019, doi: 10.1002/smll.201805510.spa
dc.relation.referencesN. Paxton, W. Smolan, T. Böck, F. Melchels, J. Groll, and T. Jungst, “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,” Biofabrication, vol. 9, no. 4, 2017, doi: 10.1088/1758-5090/aa8dd8.spa
dc.relation.referencesC. Silva, C. J. Cortés-Rodriguez, J. Hazur, S. Reakasame, and A. R. Boccaccini, “Rational design of a triple-layered coaxial extruder system: In silico and in vitro evaluations directed toward optimizing cell viability,” Int. J. Bioprinting, vol. 6, no. 4, pp. 1–10, 2020, doi: 10.18063/IJB.V6I4.282.spa
dc.relation.referencesI. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials, vol. 76, pp. 321–343, 2016, doi: 10.1016/j.biomaterials.2015.10.076.spa
dc.relation.referencesK. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, and A. Ovsianikov, “Bioink properties before, during and after 3D bioprinting,” Biofabrication, vol. 8, no. 3, p. 032002, 2016, doi: 10.1088/1758-5090/8/3/032002.spa
dc.relation.referencesT. Jungst, W. Smolan, K. Schacht, T. Scheibel, and J. Groll, “Strategies and Molecular Design Criteria for 3D Printable Hydrogels,” Chem. Rev., vol. 116, no. 3, pp. 1496–1539, 2016, doi: 10.1021/acs.chemrev.5b00303.spa
dc.relation.referencesD. Williams, P. Thayer, H. Martinez, E. Gatenholm, and A. Khademhosseini, “A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting,” Bioprinting, vol. 9, no. March, pp. 19–36, 2018, doi: 10.1016/j.bprint.2018.02.003.spa
dc.relation.referencesM. Hospodiuk, M. Dey, D. Sosnoski, and I. T. Ozbolat, “The bioink: A comprehensive review on bioprintable materials,” Biotechnol. Adv., vol. 35, no. 2, pp. 217–239, 2017, doi: 10.1016/j.biotechadv.2016.12.006.spa
dc.relation.referencesL. Moroni et al., “Biofabrication strategies for 3D in vitro models and regenerative medicine,” Nat. Rev. Mater., vol. 3, no. 5, pp. 21–37, 2018, doi: 10.1038/s41578- 018-0006-y.spa
dc.relation.referencesD. J. Ravnic et al., “Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives,” Ann. Surg., vol. 266, no. 1, pp. 48–58, 2017, doi: 10.1038/srep24474.spa
dc.relation.referencesD. Ke and S. V. Murphy, “Current Challenges of Bioprinted Tissues Toward Clinical Translation,” Tissue Eng. - Part B Rev., vol. 25, no. 1, pp. 1–13, 2019, doi: 10.1089/ten.teb.2018.0132.spa
dc.relation.referencesH. W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala, “A 3D bioprinting system to produce human-scale tissue constructs with structural integrity,” Nat. Biotechnol., vol. 34, no. 3, pp. 312–319, 2016, doi: 10.1038/nbt.3413.spa
dc.relation.referencesT. Distler, F. Ruther, A. R. Boccaccini, and R. Detsch, “Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation,” Macromol. Biosci., vol. 19, no. 9, 2019, doi: 10.1002/mabi.201900245.spa
dc.relation.referencesW. Jia et al., “Direct 3D bioprinting of perfusable vascular constructs using a blend bioink,” Biomaterials, vol. 106, pp. 58–68, 2016, doi: 10.1016/j.biomaterials.2016.07.038.spa
dc.relation.referencesW. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski, and I. T. Ozbolat, “3D bioprinting for drug discovery and development in pharmaceutics,” Acta Biomater., vol. 57, pp. 26–46, 2017, doi: 10.1016/j.actbio.2017.05.025.spa
dc.relation.referencesK. Duval et al., “Modeling Physiological Events in 2D vs. 3D Cell Culture,” Physiology, vol. 32, no. 4, pp. 266–277, 2017, doi: 10.1152/physiol.00036.2016.spa
dc.relation.referencesY. Ai, F. Zhang, C. Wang, R. Xie, and Q. Liang, “Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test,” TrAC - Trends Anal. Chem., vol. 117, pp. 215–230, 2019, doi: 10.1016/j.trac.2019.06.026.spa
dc.relation.referencesJ. Groll et al., “Biofabrication: Reappraising the definition of an evolving field,” Biofabrication, vol. 8, no. 1, 2016, doi: 10.1088/1758-5090/8/1/013001.spa
dc.relation.referencesL. Moroni et al., “Biofabrication: A Guide to Technology and Terminology,” Trends Biotechnol., vol. 36, no. 4, pp. 384–402, 2018, doi: 10.1016/j.tibtech.2017.10.015.spa
dc.relation.referencesJ. Li, C. Wu, P. K. Chu, and M. Gelinsky, “3D printing of hydrogels: Rational design strategies and emerging biomedical applications,” Mater. Sci. Eng. R Reports, vol. 140, p. 100543, 2020, doi: 10.1016/j.mser.2020.100543.spa
dc.relation.referencesJ. Malda et al., “25th anniversary article: Engineering hydrogels for biofabrication,” Adv. Mater., vol. 25, no. 36, pp. 5011–5028, 2013, doi: 10.1002/adma.201302042.spa
dc.relation.referencesF. L. C. Morgan, L. Moroni, and M. B. Baker, “Dynamic Bioinks to Advance Bioprinting,” Adv. Healthc. Mater., vol. 9, no. 15, 2020, doi: 10.1002/adhm.201901798.spa
dc.relation.referencesM. Habibi, S. Foroughi, V. Karamzadeh, and M. Packirisamy, “Direct sound printing,” Nat. Commun., vol. 13, no. 1, pp. 1–11, 2022, doi: 10.1038/s41467-022- 29395-1.spa
dc.relation.referencesP. Thayer, H. Martinez, and E. Gatenholm, “History and Trends of 3D Bioprinting,” in 3D Bioprinting: Principles and Protocols, J. M. Crook, Ed., Humana Press, 2020, pp. 3–18. doi: 10.1007/978-1-0716-0520-2_7.spa
dc.relation.referencesK. S. Lim, J. H. Galarraga, X. Cui, G. C. J. Lindberg, J. A. Burdick, and T. B. F. Woodfield, “Fundamentals and Applications of Photo-Cross-Linking in Bioprinting,” Chem. Rev., 2020, doi: 10.1021/acs.chemrev.9b00812.spa
dc.relation.referencesP. N. Bernal et al., “Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds,” Adv. Mater., vol. 31, no. 42, 2019, doi: 10.1002/adma.201904209.spa
dc.relation.referencesS. Ji and M. Guvendiren, “Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs,” Front. Bioeng. Biotechnol., vol. 5, no. April, pp. 1–8, 2017, doi: 10.3389/fbioe.2017.00023.spa
dc.relation.referencesA. Ribeiro et al., “Assessing bioink shape fidelity to aid material development in 3D bioprinting,” Biofabrication, vol. 10, 2018, doi: 10.1088/1758-5090/aa90e2.spa
dc.relation.referencesS. Kyle, Z. M. Jessop, A. Al-Sabah, and I. S. Whitaker, “‘Printability’’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art,’” Adv. Healthc. Mater., vol. 6, no. 16, pp. 1–16, 2017, doi: 10.1002/adhm.201700264.spa
dc.relation.referencesL. Ouyang, R. Yao, Y. Zhao, and W. Sun, “Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells,” Biofabrication, vol. 8, no. 3, p. 35020, Sep. 2016, doi: 10.1088/1758-5090/8/3/035020.spa
dc.relation.referencesY. He, F. Yang, H. Zhao, Q. Gao, B. Xia, and J. Fu, “Research on the printability of hydrogels in 3D bioprinting,” Sci. Rep., vol. 6, no. 1, p. 29977, 2016, doi: 10.1038/srep29977.spa
dc.relation.referencesJ. H. Y. Chung et al., “Bio-ink properties and printability for extrusion printing living cells,” Biomater. Sci., vol. 1, no. 7, pp. 763–773, 2013, doi: 10.1039/C3BM00012E.spa
dc.relation.referencesN. Diamantides et al., “Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH,” Biofabrication, vol. 9, no. 3, p. 34102, 2017, doi: 10.1088/1758-5090/aa780f.spa
dc.relation.referencesA. S. Theus et al., “Bioprintability: Physiomechanical and biological requirements of materials for 3d bioprinting processes,” Polymers (Basel)., vol. 12, no. 10, pp. 1– 19, 2020, doi: 10.3390/polym12102262.spa
dc.relation.referencesA. Blaeser, D. F. Duarte Campos, U. Puster, W. Richtering, M. M. Stevens, and H. Fischer, “Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity,” Adv. Healthc. Mater., vol. 5, no. 3, pp. 326–333, 2016, doi: 10.1002/adhm.201500677.spa
dc.relation.referencesJ. Cheng et al., “Rheological properties of cell-hydrogel composites extruding through small-diameter tips,” J. Manuf. Sci. Eng. Trans. ASME, vol. 130, no. 2, pp. 0210141–0210145, 2008, doi: 10.1115/1.2896215.spa
dc.relation.referencesM. Khatibi, N. Potokin, and W. Time, “Experimental investigation of effect of salts on rheological properties of non- Difference during Polymer Melt Extrusion Flows Newtonian,” vol. 24, pp. 53–57, 2016.spa
dc.relation.referencesA. Skardal et al., “A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs,” Acta Biomater., vol. 25, pp. 24–34, 2015, doi: 10.1016/j.actbio.2015.07.030.spa
dc.relation.referencesB. A. Aguado, W. Mulyasasmita, J. Su, K. J. Lampe, and S. C. Heilshorn, “Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers,” Tissue Eng. - Part A, vol. 18, no. 7–8, pp. 806–815, 2012, doi: 10.1089/ten.tea.2011.0391.spa
dc.relation.referencesD. Malagón-Romero, N. Hernández, C. Cardozo, and R. D. Godoy-Silva, “Rheological characterization of a gel produced using human blood plasma and alginate mixtures,” J. Mech. Behav. Biomed. Mater., vol. 34, pp. 171–180, 2014, doi: 10.1016/j.jmbbm.2014.02.012.spa
dc.relation.referencesP. Gatenholm et al., “3D Printing and Biofabrication,” 3D Print. Biofabrication, no. May, 2018, doi: 10.1007/978-3-319-45444-3.spa
dc.relation.referencesA. E. Lecturer, “Navier-Stokes Equations,” 2013.spa
dc.relation.referencesA. Malekpour and X. Chen, “Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views,” J. Funct. Biomater., vol. 13, no. 2, 2022, doi: 10.3390/jfb13020040.spa
dc.relation.referencesW. Liu et al., “Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks,” Adv. Healthc. Mater., vol. 6, no. 12, pp. 1–11, 2017, doi: 10.1002/adhm.201601451.spa
dc.relation.referencesT. Camp and R. Figliola, “Fluid mechanics,” Mechanobiol. Handb., pp. 23–44, 2011, doi: 10.2478/jtam-2013-0011.spa
dc.relation.referencesJ. D. Ferry, “Viscoelastic properties of polymers, 3rd edition,” Wiley, New York. p. 672, 1980. [Online]. Available: https://www.wiley.com/en- sg/Viscoelastic+Properties+of+Polymers%2C+3rd+Edition-p-9780471048947spa
dc.relation.referencesE. Celik, 6 Bioprinting, Modeling In Vitro Tissues and Organs Using Tissue-Specific Bioinks. 2020. doi: 10.1515/9781501518782-006.spa
dc.relation.referencesH. Q. Xu, J. C. Liu, Z. Y. Zhang, and C. X. Xu, “A review on cell damage, viability, and functionality during 3D bioprinting,” Mil. Med. Res., vol. 9, no. 1, pp. 1–15, 2022, doi: 10.1186/s40779-022-00429-5.spa
dc.relation.referencesS. Kapur, D. J. Baylink, and K. H. W. Lau, “Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways,” Bone, vol. 32, no. 3, pp. 241–251, 2003, doi: 10.1016/S8756-3282(02)00979-1.spa
dc.relation.referencesR. C. Riddle, A. F. Taylor, D. C. Genetos, and H. J. Donahue, “MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation,” Am. J. Physiol. - Cell Physiol., vol. 290, no. 3, pp. 776–785, 2006, doi: 10.1152/ajpcell.00082.2005.spa
dc.relation.referencesM. E. Cooke and D. H. Rosenzweig, “The rheology of direct and suspended extrusion bioprinting,” APL Bioeng., vol. 5, no. 1, 2021, doi: 10.1063/5.0031475.spa
dc.relation.referencesM. Mollet, N. Ma, Y. Zhao, R. Brodkey, R. Taticek, and J. J. Chalmers, “Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells,” Biotechnol. Prog., vol. 20, no. 5, pp. 1437–1448, 2004, doi: 10.1021/bp0498488.spa
dc.relation.referencesJ. Y.-T. K. Ming-Ju Chen, Kreuter, “Acute Hydrodynamic Forces and Apoptosis: A Complex Question,” J. Anat., vol. 189 ( Pt 3, no. Ii, pp. 503–505, 1996, doi: 10.1002/bit.spa
dc.relation.referencesG. Cidonio, M. Glinka, J. I. Dawson, and R. O. C. Oreffo, “The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine,” Biomaterials, vol. 209, pp. 10–24, 2019, doi: 10.1016/j.biomaterials.2019.04.009.spa
dc.relation.referencesX. Zhou et al., “3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study,” ACS Appl. Mater. Interfaces, vol. 8, no. 44, pp. 30017–30026, 2016, doi: 10.1021/acsami.6b10673.spa
dc.relation.referencesB. Journal, “Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells,” pp. 1–23, 2014, doi: 10.1002/biot.201400305.Submitted.spa
dc.relation.referencesD. Nguyen et al., “Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1038/s41598-017-00690-y.spa
dc.relation.referencesA. Faulkner-Jones et al., “Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D,” Biofabrication, vol. 7, no. 4, p. 44102, 2015, doi: 10.1088/1758- 5090/7/4/044102.spa
dc.relation.referencesQ. Ramadan and M. Zourob, “3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries,” Front. Med. Technol., vol. 2, no. January, pp. 1–19, 2020, doi: 10.3389/fmedt.2020.607648.spa
dc.relation.referencesY.-J. Choi et al., “3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink,” Adv. Healthc. Mater., vol. 5, no. 20, pp. 2636– 2645, Oct. 2016, doi: 10.1002/adhm.201600483.spa
dc.relation.referencesN. Cubo et al., “3D bioprinting of functional human skin: production and in vivo analysis,” Biofabrication, vol. 9, no. 1, p. 015006, 2016, doi: 10.1088/1758- 5090/9/1/015006.spa
dc.relation.referencesW. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski, and I. T. Ozbolat, “3D bioprinting for drug discovery and development in pharmaceutics,” Acta Biomater., vol. 57, pp. 26–46, 2017, doi: 10.1016/j.actbio.2017.05.025.spa
dc.relation.referencesA. Dick, B. Bhandari, and S. Prakash, “3D printing of meat,” Meat Sci., vol. 153, no. September 2018, pp. 35–44, 2019, doi: 10.1016/j.meatsci.2019.03.005.spa
dc.relation.referencesJ. S. Huh, H. G. Byun, H. C. Lau, and G. J. Lim, “Biosensor and bioprinting,” in Essentials of 3D Biofabrication and Translation, Elsevier Inc., 2015, pp. 215–227. doi: 10.1016/B978-0-12-800972-7.00012-8.spa
dc.relation.referencesS. Santoni, S. G. Gugliandolo, M. Sponchioni, D. Moscatelli, and B. M. Colosimo, “3D bioprinting: current status and trends—a guide to the literature and industrial practice,” Bio-Design Manuf., vol. 5, no. 1, pp. 14–42, 2022, doi: 10.1007/s42242- 021-00165-0.spa
dc.relation.referencesM. Pohanka and P. Skládal, “Electrochemical biosensors - Principles and applications,” J. Appl. Biomed., vol. 6, no. 2, pp. 57–64, 2008, doi: 10.32725/jab.2008.008.spa
dc.relation.referencesQ. Liu, C. Wu, H. Cai, N. Hu, J. Zhou, and P. Wang, “Cell-based biosensors and their application in biomedicine,” Chem. Rev., vol. 114, no. 12, pp. 6423–6461, 2014, doi: 10.1021/cr2003129.spa
dc.relation.referencesN. Vermeulen, G. Haddow, T. Seymour, A. Faulkner-Jones, and W. Shu, “3D bioprint me: A socioethical view of bioprinting human organs and tissues,” J. Med. Ethics, vol. 43, no. 9, pp. 618–624, 2017, doi: 10.1136/medethics-2015-103347.spa
dc.relation.referencesN. B. Robinson et al., “The current state of animal models in research: A review,” Int. J. Surg., vol. 72, no. August, pp. 9–13, 2019, doi: 10.1016/j.ijsu.2019.10.015.spa
dc.relation.referencesA. Akhtar, “The Flaws and Human Harms of Animal Experimentation,” Cambridge Q. Healthc. Ethics, vol. 24, no. 4, pp. 407–419, 2015, doi: 10.1017/S0963180115000079.spa
dc.relation.referencesM. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, and S. A. Woznicki, “Climate change and livestock: Impacts, adaptation, and mitigation,” Clim. Risk Manag., vol. 16, pp. 145–163, 2017, doi: 10.1016/j.crm.2017.02.001.spa
dc.relation.referencesJ. Vanderburgh, J. A. Sterling, and S. A. Guelcher, “3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening,” Ann. Biomed. Eng., vol. 45, no. 1, pp. 164–179, 2017, doi: 10.1007/s10439-016-1640-4.spa
dc.relation.referencesM. Albanna et al., “In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds,” Sci. Rep., vol. 9, no. 1, pp. 1–15, 2019, doi: 10.1038/s41598-018-38366-w.spa
dc.relation.referencesT. J. Hinton et al., “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels,” Sci. Adv., vol. 1, no. 9, 2015, doi: 10.1126/sciadv.1500758.spa
dc.relation.referencesH. Ravanbakhsh, V. Karamzadeh, G. Bao, L. Mongeau, D. Juncker, and Y. S. Zhang, “Emerging Technologies in Multi-Material Bioprinting,” Adv. Mater., vol. 33, no. 49, pp. 1–38, 2021, doi: 10.1002/adma.202104730.spa
dc.relation.referencesM. Costantini, C. Colosi, W. Świȩszkowski, and A. Barbetta, “Co-axial wet-spinning in 3D bioprinting: State of the art and future perspective of microfluidic integration,” Biofabrication, vol. 11, no. 1, 2019, doi: 10.1088/1758-5090/aae605.spa
dc.relation.referencesX. Dai et al., “Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–12, 2017, doi: 10.1038/s41598-017- 01581-y.spa
dc.relation.referencesL. Ouyang, C. B. Highley, W. Sun, and J. A. Burdick, “A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks,” Adv. Mater., vol. 29, no. 8, 2017, doi: 10.1002/adma.201604983.spa
dc.relation.referencesS. Hong, J. S. Kim, B. Jung, C. Won, and C. Hwang, “Coaxial bioprinting of cell- laden vascular constructs using a gelatin-tyramine bioink,” Biomater. Sci., vol. 7, no. 11, pp. 4578–4587, 2019, doi: 10.1039/c8bm00618k.spa
dc.relation.referencesY. Zhang et al., “3D Composite Bioprinting for Fabrication of Artificial Biological Tissues,” Int. J. Bioprinting, vol. 7, no. 1, pp. 7–20, 2021, doi: 10.18063/ijb.v7i1.299.spa
dc.relation.referencesY. S. Zhang, M. Duchamp, R. Oklu, L. W. Ellisen, R. Langer, and A. Khademhosseini, “Bioprinting the Cancer Microenvironment,” ACS Biomater. Sci. Eng., vol. 2, no. 10, pp. 1710–1721, 2016, doi: 10.1021/acsbiomaterials.6b00246.spa
dc.relation.referencesP. Zhao, H. Jiang, H. Pan, K. Zhu, and W. Chen, “Biodegradable fibrous scaffolds composed of gelatin coated poly(e-caprolactone) prepared by coaxial electrospinning,” J. Biomed. Mater. Res. Part A, vol. 79, no. 4, pp. 963–73, 2006, doi: 10.1002/jbm.a.spa
dc.relation.referencesG. H. Kim, T. Min, S. A. Park, and W. D. Kim, “Coaxially electrospun micro/nanofibrous poly(ε-caprolactone)/eggshell- protein scaffold,” Bioinspiration and Biomimetics, vol. 3, no. 1, 2008, doi: 10.1088/1748-3182/3/1/016006.spa
dc.relation.referencesY. Zhang, Y. Yu, and I. T. Ozbolat, “Direct bioprinting of vessel-like tubular microfluidic channels,” J. Nanotechnol. Eng. Med., vol. 4, no. 2, pp. 1–7, 2013, doi: 10.1115/1.4024398.spa
dc.relation.referencesQ. Pi et al., “Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues,” Adv. Mater., vol. 30, no. 43, pp. 1–10, 2018, doi: 10.1002/adma.201706913.spa
dc.relation.referencesQ. Gao et al., “3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels,” ACS Biomater. Sci. Eng., vol. 3, no. 3, pp. 399–408, 2017, doi: 10.1021/acsbiomaterials.6b00643.spa
dc.relation.referencesG. Gao et al., “Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue- Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease,” Adv. Funct. Mater., vol. 27, no. 33, pp. 1–12, 2017, doi: 10.1002/adfm.201700798.spa
dc.relation.referencesQ. Gao, Y. He, J. zhong Fu, A. Liu, and L. Ma, “Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery,” Biomaterials, vol. 61, pp. 203–215, 2015, doi: 10.1016/j.biomaterials.2015.05.031.spa
dc.relation.referencesJ. Schöneberg et al., “Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-28715-0.spa
dc.relation.referencesZ. Sun et al., “Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions,” Biomolecules, vol. 13, no. 8, 2023, doi: 10.3390/biom13081180.spa
dc.relation.referencesC. M. Hwang et al., “Controlled cellular orientation on PLGA microfibers with defined diameters,” Biomed. Microdevices, vol. 11, no. 4, pp. 739–746, 2009, doi: 10.1007/s10544-009-9287-7.spa
dc.relation.referencesR. Xie, W. Zheng, L. Guan, Y. Ai, and Q. Liang, “Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues,” Small, vol. 16, no. 15, pp. 1–17, 2020, doi: 10.1002/smll.201902838.spa
dc.relation.referencesL. Shao et al., “Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers,” Small, vol. 14, no. 44, pp. 1–8, 2018, doi: 10.1002/smll.201802187.spa
dc.relation.referencesQ. Ma et al., “Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid– Liquid Phase Separation toward Advanced Biomaterials,” Adv. Sci., vol. 7, no. 7, 2020, doi: 10.1002/advs.201903359.spa
dc.relation.referencesC. Loebel, C. B. Rodell, M. H. Chen, and J. A. Burdick, “Shear-thinning and self- healing hydrogels as injectable therapeutics and for 3D-printing,” Nat. Protoc., vol. 12, no. 8, pp. 1521–1541, 2017, doi: 10.1038/nprot.2017.053.spa
dc.relation.referencesA. Lee et al., “3D bioprinting of collagen to rebuild components of the human heart,” Science (80-. )., vol. 365, no. 6452, pp. 482–487, 2019, doi: 10.1126/science.aav9051.spa
dc.relation.referencesC. B. Highley, C. B. Rodell, and J. A. Burdick, “Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels,” Adv. Mater., vol. 27, no. 34, pp. 5075– 5079, 2015, doi: 10.1002/adma.201501234.spa
dc.relation.referencesS. Ricard-Blum, “The Collagen Family,” Cold Spring Harb. Perspect. Biol., vol. 3, no. 1, pp. 1–19, 2011, doi: 10.1101/cshperspect.a004978.spa
dc.relation.referencesT. J. Hinton et al., “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels,” Sci. Adv., vol. 1, no. 9, p. e1500758, 2015, doi: 10.1126/sciadv.1500758.spa
dc.relation.referencesC. Mota, S. Camarero-Espinosa, M. B. Baker, P. Wieringa, and L. Moroni, “Bioprinting: From Tissue and Organ Development to in Vitro Models,” Chem. Rev., vol. 120, no. 19, pp. 10547–10607, 2020, doi: 10.1021/acs.chemrev.9b00789.spa
dc.relation.referencesX. Zeng et al., “Embedded bioprinting for designer 3D tissue constructs with complex structural organization,” Acta Biomater., vol. 140, pp. 1–22, 2022, doi: 10.1016/j.actbio.2021.11.048.spa
dc.relation.referencesA. Isaacson, S. Swioklo, and C. J. Connon, “3D bioprinting of a corneal stroma equivalent,” Exp. Eye Res., vol. 173, no. April, pp. 188–193, 2018, doi: 10.1016/j.exer.2018.05.010.spa
dc.relation.referencesN. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir, “3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts,” Adv. Sci., vol. 6, no. 11, 2019, doi: 10.1002/advs.201900344.spa
dc.relation.referencesM. E. Kupfer et al., “ In Situ Expansion, Differentiation and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid ,” Circ. Res., pp. 207–224, 2020, doi: 10.1161/circresaha.119.316155.spa
dc.relation.referencesE. Mirdamadi, J. W. Tashman, D. J. Shiwarski, R. N. Palchesko, and A. W. Feinberg, “FRESH 3D Bioprinting a Full-Size Model of the Human Heart,” ACS Biomater. Sci. Eng., vol. 6, no. 11, pp. 6453–6459, Nov. 2020, doi: 10.1021/acsbiomaterials.0c01133.spa
dc.relation.referencesJ. Lewicki, J. Bergman, C. Kerins, and O. Hermanson, “Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel,” Bioprinting, vol. 16, no. February, p. e00053, 2019, doi: 10.1016/j.bprint.2019.e00053.spa
dc.relation.referencesM. Bordoni et al., “3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells,” Cells, vol. 9, no. 3, p. 682, 2020, doi: 10.3390/cells9030682.spa
dc.relation.referencesY. J. Choi et al., “A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss,” Biomaterials, vol. 206, pp. 160–169, 2019, doi: 10.1016/j.biomaterials.2019.03.036.spa
dc.relation.referencesG. Štumberger and B. Vihar, “Freeform perfusable microfluidics embedded in hydrogel matrices,” Materials (Basel)., vol. 11, no. 12, 2018, doi: 10.3390/ma11122529.spa
dc.relation.referencesM. A. Skylar-Scott et al., “Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels,” Sci. Adv., vol. 5, no. 9, 2019, doi: 10.1126/sciadv.aaw2459.spa
dc.relation.referencesA. McCormack, C. B. Highley, N. R. Leslie, and F. P. W. Melchels, “3D Printing in Suspension Baths: Keeping the Promises of Bioprinting Afloat,” Trends Biotechnol., vol. 38, no. 6, pp. 584–593, 2020, doi: 10.1016/j.tibtech.2019.12.020.spa
dc.relation.referencesA. Z. Nelson, B. Kundukad, W. K. Wong, S. A. Khan, and P. S. Doyle, “Embedded droplet printing in yield-stress fluids,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 11, pp. 5671–5679, 2020, doi: 10.1073/pnas.1919363117.spa
dc.relation.referencesW. Wu, A. Deconinck, and J. A. Lewis, “Omnidirectional printing of 3D microvascular networks,” Adv. Mater., vol. 23, no. 24, pp. 178–183, 2011, doi: 10.1002/adma.201004625.spa
dc.relation.referencesA. Manuscript, “Freeform 3D printing using a continuous viscoelastic supporting matrix,” pp. 0–7, 2018.spa
dc.relation.referencesL. Shi et al., “Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel,” Chem. Mater., vol. 29, no. 14, pp. 5816–5823, 2017, doi: 10.1021/acs.chemmater.7b00128.spa
dc.relation.referencesS. Fleischer, A. Shapira, R. Feiner, and T. Dvir, “Modular assembly of thick multifunctional cardiac patches,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 8, pp. 1898–1903, 2017, doi: 10.1073/pnas.1615728114.spa
dc.relation.referencesZ. Zhang et al., “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev., vol. 5, no. 4, 2018, doi: 10.1063/1.5053979.spa
dc.relation.referencesP. Wang, Y. Sun, X. Shi, H. Shen, H. Ning, and H. Liu, “3D printing of tissue engineering scaffolds: a focus on vascular regeneration,” Bio-Design Manuf., vol. 4, no. 2, pp. 344–378, 2021, doi: 10.1007/s42242-020-00109-0.spa
dc.relation.referencesY. Yang, K. Wang, X. Gu, and K. W. Leong, “Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography,” Engineering, vol. 3, no. 1, pp. 36–54, 2017, doi: 10.1016/J.ENG.2017.01.014.spa
dc.relation.referencesC. D. Morley et al., “Quantitative characterization of 3D bioprinted structural elements under cell generated forces,” Nat. Commun., vol. 10, no. 1, pp. 1–9, 2019, doi: 10.1038/s41467-019-10919-1.spa
dc.relation.referencesF. Cheng et al., “Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing,” Nano Lett., vol. 19, no. 6, pp. 3603–3611, 2019, doi: 10.1021/acs.nanolett.9b00583.spa
dc.relation.referencesS. M. Bakht, M. Gomez-Florit, T. Lamers, R. L. Reis, R. M. A. Domingues, and M. E. Gomes, “3D Bioprinting of Miniaturized Tissues Embedded in Self-Assembled Nanoparticle-Based Fibrillar Platforms,” Adv. Funct. Mater., vol. 31, no. 46, pp. 1– 16, 2021, doi: 10.1002/adfm.202104245.spa
dc.relation.referencesK. H. Song, C. B. Highley, A. Rouff, and J. A. Burdick, “Complex 3D-Printed Microchannels within Cell-Degradable Hydrogels,” Adv. Funct. Mater., vol. 28, no. 31, pp. 1–10, 2018, doi: 10.1002/adfm.201801331.spa
dc.relation.referencesA. Lee et al., “3D bioprinting of collagen to rebuild components of the human heart,” Science (80-. )., vol. 365, no. 6452, pp. 482–487, 2019, doi: 10.1126/science.aav9051.spa
dc.relation.referencesK. L. Spiller et al., “The role of macrophage phenotype in vascularization of tissue engineering scaffolds,” Biomaterials, vol. 35, no. 15, pp. 4477–4488, 2014, doi: 10.1016/j.biomaterials.2014.02.012.spa
dc.relation.referencesY. Jin, W. Chai, and Y. Huang, “Fabrication of Stand-Alone Cell-Laden Collagen Vascular Network Scaffolds Using Fugitive Pattern-Based Printing-Then-Casting Approach,” ACS Appl. Mater. Interfaces, vol. 10, no. 34, pp. 28361–28371, 2018, doi: 10.1021/acsami.8b09177.spa
dc.relation.referencesV. K. Lee, A. M. Lanzi, H. Ngo, S. S. Yoo, P. A. Vincent, and G. Dai, “Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology,” Cell. Mol. Bioeng., vol. 7, no. 3, pp. 460–472, 2014, doi: 10.1007/s12195-014-0340-0.spa
dc.relation.referencesT. G. Molley et al., “Freeform printing of heterotypic tumor models within cell-laden microgel matrices,” bioRxiv, 2020, doi: 10.1101/2020.08.30.274654.spa
dc.relation.referencesA. M. Compaan, K. Song, W. Chai, and Y. Huang, “Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects,” ACS Appl. Mater. Interfaces, vol. 12, no. 7, pp. 7855–7868, 2020, doi: 10.1021/acsami.9b15451.spa
dc.relation.referencesJ. A. Brassard, M. Nikolaev, T. Hübscher, M. Hofer, and M. P. Lutolf, “Recapitulating macro-scale tissue self-organization through organoid bioprinting,” Nat. Mater., vol. 20, no. 1, pp. 22–29, 2021, doi: 10.1038/s41563-020-00803-5.spa
dc.relation.referencesL. Lian et al., “Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting,” Adv. Healthc. Mater., vol. 11, no. 9, pp. 1–12, 2022, doi: 10.1002/adhm.202102411.spa
dc.relation.referencesM. Ye, B. Lu, X. Zhang, B. Li, Z. Xiong, and T. Zhang, “Coaxial Embedded Printing of Gelatin Methacryloyl–alginate Double Network Hydrogel for Multilayer Vascular Tubes,” Chinese J. Mech. Eng. Addit. Manuf. Front., vol. 1, no. 2, p. 100024, 2022, doi: 10.1016/j.cjmeam.2022.100024.spa
dc.relation.referencesF. B. Coulter et al., “Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing,” Matter, vol. 1, no. 1, pp. 266–279, 2019, doi: 10.1016/j.matt.2019.05.013.spa
dc.relation.referencesB. Albert and J. Butcher, “Bioprinting Embedded Non-planar Tissues (BENT) for Manufacturing Tissue Engineered Atrioventricular Valves,” Struct. Hear., vol. 5, pp. 66–67, 2021, doi: 10.1080/24748706.2021.1900699.spa
dc.relation.referencesB. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science (80-. )., vol. 363, no. 6431, pp. 1075–1079, 2019, doi: 10.1126/science.aau7114.spa
dc.relation.referencesS. W. Graves, J. P. Nolan, J. H. Jett, J. C. Martin, and L. A. Sklar, “Nozzle design parameters and their effects on rapid sample delivery in flow cytometry,” Cytometry, vol. 47, no. 2, pp. 127–137, 2002, doi: 10.1002/cyto.10056.spa
dc.relation.referencesY. Yu, Y. Zhang, J. A. Martin, and I. T. Ozbolat, “Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels,” J. Biomech. Eng., vol. 135, no. 9, pp. 1–9, 2013, doi: 10.1115/1.4024575.spa
dc.relation.referencesN. Paxton, W. Smolan, T. Böck, F. Melchels, J. Groll, and T. Jungst, “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,” Biofabrication, vol. 9, no. 4, 2017, doi: 10.1088/1758-5090/aa8dd8.spa
dc.relation.referencesK. Fakhruddin, M. S. A. Hamzah, and S. I. A. Razak, “Effects of extrusion pressure and printing speed of 3D bioprinted construct on the fibroblast cells viability,” IOP Conf. Ser. Mater. Sci. Eng., vol. 440, no. 1, 2018, doi: 10.1088/1757- 899X/440/1/012042.spa
dc.relation.referencesD. Dranseikiene, S. Schrüfer, D. W. Schubert, S. Reakasame, and A. R. Boccaccini, “Cell-laden alginate dialdehyde–gelatin hydrogels formed in 3D printed sacrificial gel,” J. Mater. Sci. Mater. Med., vol. 31, no. 3, pp. 3–7, 2020, doi: 10.1007/s10856-020-06369-7.spa
dc.relation.referencesR. Chang, K. Emami, H. Wu, and W. Sun, “Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model,” Biofabrication, vol. 2, no. 4, 2010, doi: 10.1088/1758-5082/2/4/045004.spa
dc.relation.referencesK. Unnikrishnan, L. V. Thomas, and R. M. Ram Kumar, “Advancement of Scaffold- Based 3D Cellular Models in Cancer Tissue Engineering: An Update,” Front. Oncol., vol. 11, no. October, pp. 1–11, 2021, doi: 10.3389/fonc.2021.733652.spa
dc.relation.referencesW. Lan, X. Huang, D. Huang, X. Wei, and W. Chen, “Progress in 3D printing for bone tissue engineering: a review,” J. Mater. Sci., vol. 57, no. 27, pp. 12685– 12709, 2022, doi: 10.1007/s10853-022-07361-y.spa
dc.relation.referencesE. Widmaier, H. Raaff, and K. Strang, Vander’s Human Physiology, 13th ed. New York: McGraw Hill, 2014.spa
dc.relation.referencesC. J. Curley, E. B. Dolan, M. Otten, S. Hinderer, G. P. Duffy, and B. P. Murphy, “An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure,” Drug Deliv. Transl. Res., vol. 9, no. 1, pp. 1–13, 2019, doi: 10.1007/s13346-018-00601-2.spa
dc.relation.referencesW. L. Ng, C. K. Chua, and Y. F. Shen, “Print Me An Organ! Why We Are Not There Yet,” Prog. Polym. Sci., vol. 97, p. 101145, 2019, doi: 10.1016/j.progpolymsci.2019.101145.spa
dc.relation.referencesB. Luzak, P. Siarkiewicz, and M. Boncler, “An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells.,” Toxicol. Vitr. an Int. J. Publ. Assoc. with BIBRA, vol. 83, p. 105407, Sep. 2022, doi: 10.1016/j.tiv.2022.105407.spa
dc.relation.referencesE. Witzleb, “Functions of the Vascular System,” in Human Physiology, R. F. Schmidt and G. Thews, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 480–542. doi: 10.1007/978-3-642-73831-9_20.spa
dc.relation.referencesM. K. Pugsley and R. Tabrizchi, “The vascular system: an overview of structure and function,” J. Pharmacol. Toxicol. Methods, vol. 44, pp. 333–340, 2000, doi: 10.1016/S1056-8719(00)00125-8.spa
dc.relation.referencesP. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater., vol. 51, pp. 1–20, 2017, doi: 10.1016/j.actbio.2017.01.035.spa
dc.relation.referencesE. Hoch, G. E. M. Tovar, and K. Borchers, “Bioprinting of artificial blood vessels: Current approaches towards a demanding goal,” Eur. J. Cardio-thoracic Surg., vol. 46, no. 5, pp. 767–778, 2014, doi: 10.1093/ejcts/ezu242.spa
dc.relation.referencesJ. M. Rhodes and M. Simons, “The extracellular matrix and blood vessel formation: Not just a scaffold,” J. Cell. Mol. Med., vol. 11, no. 2, pp. 176–205, 2007, doi: 10.1111/j.1582-4934.2007.00031.x.spa
dc.relation.referencesJ. Halper and M. Kjaer, “Basic Components of Connective Tissues and Extracellular Matrix: Elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins,” in Progress in Heritable Soft Connective Tissue Diseases, J. Halper, Ed., Dordrecht: Springer Netherlands, 2014, pp. 31–47. doi: 10.1007/978-94-007-7893-1_3.spa
dc.relation.referencesS. K. Schmidt, R. Schmid, A. Arkudas, A. Kengelbach-Weigand, and A. K. Bosserhoff, “Tumor Cells Develop Defined Cellular Phenotypes After 3D- Bioprinting in Different Bioinks,” Cells, vol. 8, no. 10, 2019, doi: 10.3390/cells8101295.spa
dc.relation.referencesA. Sorkio et al., “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials, vol. 171, pp. 57– 71, 2018, doi: https://doi.org/10.1016/j.biomaterials.2018.04.034.spa
dc.relation.referencesM. Marcinczyk, H. Elmashhady, M. Talovic, A. Dunn, F. Bugis, and K. Garg, “Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration,” Biomaterials, vol. 141, pp. 233–242, 2017, doi: https://doi.org/10.1016/j.biomaterials.2017.07.003.spa
dc.relation.referencesN. Ziemkiewicz et al., “Laminin-111 functionalized polyethylene glycol hydrogels support myogenic activity in vitro,” Biomed. Mater., vol. 13, no. 6, p. 65007, 2018, doi: 10.1088/1748-605x/aad915.spa
dc.relation.referencesS. M. Goldman, B. E. P. Henderson, T. J. Walters, and B. T. Corona, “Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury,” PLoS One, vol. 13, no. 1, p. e0191245, Jan. 2018, [Online]. Available: https://doi.org/10.1371/journal.pone.0191245spa
dc.relation.referencesR. Jain and S. Roy, “Designing a bioactive scaffold from coassembled collagen- laminin short peptide hydrogels for controlling cell behaviour,” RSC Adv., vol. 9, no. 66, pp. 38745–38759, 2019, doi: 10.1039/c9ra07454f.spa
dc.relation.referencesK. Stamati, J. V Priestley, V. Mudera, and U. Cheema, “Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake,” Exp. Cell Res., vol. 327, no. 1, pp. 68–77, Sep. 2014, doi: 10.1016/j.yexcr.2014.05.012.spa
dc.relation.referencesK. Göbel, S. Eichler, H. Wiendl, T. Chavakis, C. Kleinschnitz, and S. G. Meuth, “The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders-a systematic review,” Front. Immunol., vol. 9, no. JUL, 2018, doi: 10.3389/fimmu.2018.01731.spa
dc.relation.referencesA. Sahni and C. W. Francis, “Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation,” Blood, vol. 96, no. 12, pp. 3772–3778, 2000, doi: 10.1182/blood.v96.12.3772.h8003772_3772_3778.spa
dc.relation.referencesS. P. B. Teixeira, R. M. A. Domingues, M. Shevchuk, M. E. Gomes, N. A. Peppas, and R. L. Reis, “Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior,” Adv. Funct. Mater., vol. 30, no. 44, p. 1909011, 2020, doi: https://doi.org/10.1002/adfm.201909011.spa
dc.relation.referencesCellink - Life Sciences, “VASKIT,” www.cellink.com. [Online]. Available: https://www.cellink.com/product/vaskit/spa
dc.relation.referencesK. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg, and P. Gatenholm, “3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications,” Biomacromolecules, vol. 16, no. 5, pp. 1489–1496, 2015, doi: 10.1021/acs.biomac.5b00188.spa
dc.relation.referencesL. Gui et al., “Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days,” Tissue Eng. Part A, vol. 20, no. 9–10, pp. 1499–1507, May 2014, doi: 10.1089/ten.TEA.2013.0263.spa
dc.relation.referencesA. K. Ramaswamy, D. A. Vorp, and J. S. Weinbaum, “Functional Vascular Tissue Engineering Inspired by Matricellular Proteins ,” Frontiers in Cardiovascular Medicine , vol. 6. p. 74, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fcvm.2019.00074spa
dc.relation.referencesK. Wang et al., “Three-Layered PCL Grafts Promoted Vascular Regeneration in a Rabbit Carotid Artery Model,” Macromol. Biosci., vol. 16, no. 4, pp. 608–618, Apr. 2016, doi: https://doi.org/10.1002/mabi.201500355.spa
dc.relation.referencesP. Mallis, A. Kostakis, C. Stavropoulos-Giokas, and E. Michalopoulos, “Future Perspectives in Small-Diameter Vascular Graft Engineering,” Bioengineering , vol. 7, no. 4. 2020. doi: 10.3390/bioengineering7040160.spa
dc.relation.referencesP. Datta, A. Barui, Y. Wu, V. Ozbolat, K. K. Moncal, and I. T. Ozbolat, “Essential steps in bioprinting: From pre- to post-bioprinting,” Biotechnol. Adv., vol. 36, no. 5, pp. 1481–1504, 2018, doi: https://doi.org/10.1016/j.biotechadv.2018.06.003.spa
dc.relation.referencesW. M. Abbott, A. Callow, W. Moore, R. Rutherford, F. Veith, and S. Weinberg, “Evaluation and performance standards for arterial prostheses,” J. Vasc. Surg., vol. 17, no. 4, pp. 746–756, Apr. 1993, doi: 10.1016/0741-5214(93)90120-B.spa
dc.relation.referencesHealth Resources & Services Administration, “U.S. government information on organ donation and transplantation,” 2020, [Online]. Available: https://www.organdonor.gov/statistics-stories/statistics.htmlspa
dc.relation.referencesL. Edgar et al., “Regenerative medicine, organ bioengineering and transplantation,” Br. J. Surg., vol. 107, no. 7, pp. 793–800, 2020, doi: 10.1002/bjs.11686.spa
dc.relation.referencesT. K. Rajab and V. Tchantchaleishvili, “Can tissue engineering produce bioartificial organs for transplantation?,” Artif. Organs, vol. 43, no. 6, pp. 536–541, 2019, doi: https://doi.org/10.1111/aor.13443.spa
dc.relation.referencesX. Liu et al., “Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs,” Adv. Healthc. Mater., vol. 8, no. 7, pp. 1– 12, 2019, doi: 10.1002/adhm.201801181.spa
dc.relation.referencesM. Castilho et al., “Hydrogel-Based Bioinks for Cell Electrowriting of Well- Organized Living Structures with Micrometer-Scale Resolution,” Biomacromolecules, vol. 22, no. 2, pp. 855–866, Feb. 2021, doi: 10.1021/acs.biomac.0c01577.spa
dc.relation.referencesX. Ma et al., “3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling,” Adv. Drug Deliv. Rev., vol. 132, pp. 235– 251, Jul. 2018, doi: 10.1016/j.addr.2018.06.011.spa
dc.relation.referencesC. Arrigoni, M. Gilardi, S. Bersini, C. Candrian, and M. Moretti, “Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases,” Stem Cell Rev. Reports, vol. 13, no. 3, pp. 407–417, 2017, doi: 10.1007/s12015- 017-9741-5.spa
dc.relation.referencesS. Mao et al., “Bioprinting of in vitro tumor models for personalized cancer treatment: a review,” Biofabrication, vol. 12, no. 4, p. 42001, Jul. 2020, doi: 10.1088/1758-5090/ab97c0.spa
dc.relation.referencesV. Gasco, V. Cambria, F. Bioletto, E. Ghigo, and S. Grottoli, “Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment,” Front. Endocrinol. (Lausanne)., vol. 12, no. March, pp. 1–18, 2021, doi: 10.3389/fendo.2021.634415.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsSupervivencia Celularspa
dc.subject.decsCell Survivaleng
dc.subject.decsBioimpresión/instrumentaciónspa
dc.subject.decsBioprinting/instrumentationeng
dc.subject.decsIngeniería de Tejidos/métodosspa
dc.subject.decsTissue Engineering/methodseng
dc.subject.proposal3D bioprintingeng
dc.subject.proposalCoaxial printingeng
dc.subject.proposalVascularized tissueseng
dc.subject.proposalTissue-engineered vascular graftseng
dc.subject.proposalCell viabilityeng
dc.subject.proposalBioimpresión 3Dspa
dc.subject.proposalImpresión coaxialspa
dc.subject.proposalTejidos vascularizadosspa
dc.subject.proposalIngeniería tisularspa
dc.subject.proposalViabilidad celularspa
dc.titleExtruder for 3D bioprinting with composed bioink oriented to the cellular viability evaluation in the generation of tissueseng
dc.title.translatedExtrusor para bioimpresión 3D con biotinta compuesta orientado a la evaluación de viabilidad celular en la generación de tejidosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa
oaire.fundernameDAADspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80796285.2024.pdf
Tamaño:
6.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: