Viabilidad de Weissella cibaria durante los procesos integrados de fermentación y encapsulación utilizando residuos agroindustriales en la formulación del sustrato y doble emulsión seguido de coacervación compleja en la encapsulación

dc.contributor.advisorSerna Cock, Liliana
dc.contributor.advisorCortés Rodríguez, Misael
dc.contributor.authorMicanquer Carlosama, Adriana Del Rosario
dc.contributor.financerMinisterio de Ciencia, Tecnología e Innovación
dc.contributor.orcid0000-0001-7630-34444spa
dc.contributor.researcherCortés-Rodríguez, Misael
dc.contributor.researcherSerna-Cock, Liliana
dc.contributor.researcherCorrea-Londoño Guillermo
dc.contributor.researcherOrozco, Fernando
dc.contributor.researchgroupBacterias Acido Lácticas y sus aplicaciones Biotecnologicasindustrialesspa
dc.contributor.researchgroupGaf (Grupo de Alimentos Funcionales)spa
dc.date.accessioned2023-02-03T13:29:29Z
dc.date.available2023-02-03T13:29:29Z
dc.date.issued2022
dc.description.abstractPara la producción de biomasa bacteriana y sus metabolitos mediante procesos de fermentación láctica, comúnmente se han utilizado sustratos comerciales; sin embargo, se ha promovido el uso de residuos agroindustriales como sustratos de fermentación de bacterias ácido lácticas (BAL) y, como posible alternativa para reducir los costos de producción de probióticos. Por otra parte, mejorar la viabilidad de las BAL ha sido un desafío persistente en las aplicaciones de microorganismos con potencial probiótico en alimentos. Por lo cual, diferentes tecnologías de encapsulación han sido evaluadas para proteger las células bacterianas y facilitar su aplicación. En este contexto, el objetivo general de esta investigación fue integrar los procesos de fermentación y encapsulación de la bacteria ácido láctica Weissella cibaria utilizando residuos de piña (epicarpios y núcleos) y subproducto de sacha inchi como sustrato de fermentación, y combinando las tecnologías doble emulsión y coacervación compleja para su encapsulación. Objetivo que se desarrolló en cuatro fases. En la 1era fase se caracterizó elemental, proximal, física y químicamente los residuos de piña y el subproducto de sacha inchi (SSI) para la formulación de un sustrato de fermentación (SFS). El SFS se hidrolizó y se utilizó para la producción de una bacteria ácido láctica (Weissella cibaria). Los resultados mostraron que los residuos de piña y SSI fueron fuentes potenciales de macro y micronutrientes (carbohidratos, proteínas y minerales). Tras la aplicación del SFS en el proceso de fermentación con W. cibaria se obtuvieron resultados similares a cuando se utilizó el sustrato comercial (MRS); producción de biomasa (2.9±0.1 y 3.5±0.1 g L-1) y viabilidad (9.8±3.2 y 9.9±2.7 Log10 CFU mL-1). En la 2ª fase, se optimizó la producción de biomasa de W. cibaria mediante metodología de superficie de respuesta considerando las variables independientes: temperatura (32 – 40 °C), pH (5.0 – 6.0), y agitación (100 - 150 rpm). La optimización experimental de múltiples respuestas con una deseabilidad de 77.4%, arrojó las siguientes condiciones óptimas para las variables independientes: temperatura = 35.1 °C, pH = 5.0 y agitación = 139.3 rpm. Los resultados experimentales a resaltar entre las variables dependientes fueron: viabilidad = 10.1±0.1 Log10 CFU mL-1, producción biomasa = 3.2±0.2 g L-1 y velocidad específica de crecimiento = 0.24 h-1. En la 3ª fase se optimizaron experimentalmente las condiciones de proceso de una emulsión simple (W/O), considerando las variables independientes; tiempo de homogenización (HT) (1 – 5 min), balance hidrófilo lipófilo (HLBTotal) (4.7 – 6.7), concentración de emulsificantes (0.1 – 0.5 %) y concentración de aceite (30 – 50 %). Con el 70.1 % de deseabilidad en la optimización por múltiples respuestas se establecieron las siguientes condiciones óptimas; HT = 3.7 min, HLBtotal = 6.5, surfactantes = 0.47 % y aceite = 39.6 %. A partir de las condiciones óptimas de W/O se procedió a optimizar la formulación de una emulsión doble (W1/O)/W2, en la que se incorporó W. cibaria. Se utilizó un diseño central compuesto evaluando las variables independientes: tiempo de agitación (HT) (2 - 4 min), velocidad de homogenización (HS) (3000 - 5000 rpm), relación de mezcla de goma arábiga y gelatina (GA/G) (1.34 - 1.66) y relación másica de la emulsión simple W1/O (E1) y solución de hidrocoloides (W2) (0.43 - 0.66). Previamente, se determinó el punto de equivalencia de GA y G, obteniendo como resultado una relación de mezcla = 1.5 (GA/G). Las condiciones óptimas de las variables independientes fueron: HT = 3.1 min, HS = 3000 rpm, relación GA/G = 1.6 y E1/W2 = 0.5. Entre los resultados se destacó una alta viabilidad (10.5±0.1 Log10 CFU mL-1) y la obtención de gotas esféricas, dispersas y de tamaño variable. Seguidamente, se evaluó el proceso de coacervación compleja mediante un diseño unifactorial, considerándose el efecto del pH (3.5, 4.0 y 4.5) sobre las propiedades fisicoquímicas del coacervado y la viabilidad de W. cibaria. Se tomó la emulsión E1/W2 optimizada para la formación del coacervado, obteniendo los mejores resultados a pH = 4.0. Destacando alta viabilidad de W. cibaria (10.01±0.02 Log10 (CFU mL-1) y una morfología de partículas aglomeradas. Finalmente, en la 4ª fase los coacervados se liofilizaron y se evaluó la estabilidad de las microcápsulas durante el almacenamiento (1, 2, 3, 4, 5 y 6 meses) a diferentes condiciones de temperatura (5, 15 y 25 °C) mediante un diseño factorial completamente aleatorizado considerando las variables dependientes aw, humedad (%), solubilidad (%), higroscopicidad (%), índice de peróxidos (meqO2/kg muestra), viabilidad (Log10 CFU g-1) y simulación in vitro de digestión gastrointestinal (Log10 CFU g-1). Obteniendo en las cápsulas almacenadas a 5 °C la mayor viabilidad a los 180 días de almacenamiento (7.8±0.1 Log10 CFU g-1), garantizando unas propiedades fisicoquímicas adecuadas. En general, se resalta que a 5, 15 y 25 °C se mantiene el carácter probiótico de las microcápsulas de W. cibaria durante los 6 meses de almacenamiento. (texto tomado de la fuente)spa
dc.description.abstractCommercial substrates have been commonly used for the production of bacterial biomass and its metabolites through lactic fermentation processes; however, the use of agro-industrial wastes as fermentation substrates for lactic acid bacteria (LAB) has been promoted as a possible alternative to reduce probiotic production costs. On the other hand, improving the viability of LAB has been a persistent challenge in the applications of microorganisms with probiotic potential in food. Therefore, different encapsulation technologies have been evaluated to protect bacterial cells and facilitate their application. In this context, the general objective of this research was to integrate the fermentation and encapsulation processes of the lactic acid bacterium Weissella cibaria using pineapple residues (epicarps and cores) and sacha inchi by-product as fermentation substrate, and combining double emulsion and complex coacervation technologies for encapsulation. Objective was developed in four phases. In the 1st phase, elemental, proximal, physical and chemical characterization of pineapple residues and sacha inchi by-product (SSI) was carried out for the formulation of a fermentation substrate (SFS). The SFS was hydrolyzed and used for the production of a lactic acid bacteria (Weissella cibaria). The results showed that pineapple and SSI residues were potential sources of macro- and micronutrients (carbohydrates, proteins and minerals). After the application of SFS in the fermentation process with W. cibaria, similar results were obtained when the commercial substrate (MRS) was used; biomass production (2.9±0.1 and 3.5±0.1 g L-1) and viability (9.8±3.2 and 9.9±2.7 Log10 CFU mL-1). In the 2nd phase, W. cibaria biomass production was optimized using response surface methodology, considering the independent variables: temperature (32 – 40 °C), pH (5.0 - 6.0), and agitation (100 - 150 rpm). The experimental optimization of multiple responses with a desirability of 77.4 % yielded the following optimal conditions for the independent variables: temperature = 35.1 °C, pH = 5.0 and agitation = 139.3 rpm. The experimental results to highlight among the dependent variables were: viability = 10.1±0.1 Log10 CFU mL-1, biomass production = 3.2±0.2 g L-1 and specific growth rate = 0.24 h-1. In the 3rd phase, the process conditions of a simple emulsion (W/O) were experimentally optimized, considering the independent variables; homogenization time (HT) (1 - 5 min), hydrophilic lipophilic balance (HLBTotal) (4.7 - 6.7), emulsifier concentration (0.1 - 0.5 %) and oil concentration (30 – 50 %). With 70.1 % desirability in the optimization by multiple responses, the following optimal conditions were established; HT= 3.7 min, HLBtotal = 6.5, surfactants = 0.47 % and oil = 39.6 %. Based on the optimal W/O conditions, we proceeded to optimize the formulation of a double emulsion (W1/O)/W2, in which W. cibaria was incorporated. A central composite design was used evaluating the independent variables: homogenization time (HT) (2 - 4 min), homogenization speed (HS) (3000 - 5000 rpm), gum arabic and gelatin mixing ratio (GA/G) (1.34 - 1.66) and mass ratio of the W1/O single emulsion (E1) and hydrocolloid solution (W2) (0.43 - 0.66). Previously, the equivalence point of GA and G was determined, obtaining a mixture ratio = 1.5 (GA/G). The optimum conditions for the independent variables were: HT = 3.1 min, HS = 3000 rpm, GA/G ratio = 1.6 and E1/W2 = 0.5. The results included high viability (10.5±0.1 Log10 CFU mL-1) and the production of spherical, dispersed and variable size droplets. Regarding morphology, spherical and dispersed droplets of variable size were observed. Next, the complex coacervation process was evaluated using a unifactorial design, considering the effect of pH (3.5, 4.0 and 4.5) on the physicochemical properties of the coacervate and the viability of W. cibaria. The E1/W2 emulsion optimized for coacervate formation was taken, obtaining the best results at pH = 4.0. High viability of W. cibaria (10.01±0.02 Log10 CFU mL-1 and an agglomerated particle morphology stood out. Finally, in the 4th phase, the coacervates were lyophilized and the stability of the microcapsules was evaluated during storage (1, 2, 3, 4, 5 and 6 months) at different temperature conditions (5, 15 and 25 °C). Using a completely randomized factorial design considering the dependent variables aw, moisture (%), solubility (%), hygroscopicity (%), peroxides index (meqO2/kg sample), viability (Log10 CFU g-1) and in vitro simulation of gastrointestinal digestion (Log10 CFU g-1). Obtaining in the capsules stored at 5 °C the highest viability at 180 days of storage (7.8±0.1 Log10 CFU g-1), ensuring adequate physico-chemical properties. In general, it is noted that at 5, 15 and 25 °C the probiotic character of the microcapsules of W. cibaria is maintained during the 6 months of storage.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaAprovechamiento de Residuos Agroindustrialesspa
dc.description.researchareaAlimentos funcionalesspa
dc.description.researchareaEncapsulación de probióticosspa
dc.format.extentxxiii, 164 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83264
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgronet. (2018). Sistemas de Información del Sector Agropecuario. Retrieved from http://www.agronet.gov.co/estadistica/Paginas/default.aspxspa
dc.relation.referencesAhmad, F. Banat, H. Taher. (2020). A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges, Environ. Technol. Innov. 20, 101138. https://doi.org/10.1016/j.eti.2020.101138.spa
dc.relation.referencesArrioja-Bretón, E. Mani-López, E. Palou, A. López-Malo, (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef, Food Control. 115, 107286. https://doi.org/10.1016/j.foodcont.2020.107286.spa
dc.relation.referencesBatista, A. L. D., Silva, R., Cappato, L. P., Almada, C. N., Garcia, R. K. A., Silva, M. C., Cruz, A. G. (2015). Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical-chemical and metabolic activity analyses. Food Research International, 77, 627–635. http://doi.org/10.1016/j.foodres.2015.08.017.spa
dc.relation.referencesBosnea, L., Moschakis, T., & Biliaderis, C. (2014). Complex Coacervation as a Novel Microencápsulation Technique to Improve Viability of Probiotics Under Different Stresses. Food and Bioprocess Technology, 7(10), 2767–2781. http://doi.org/10.1007/s11947-014-1317-7.spa
dc.relation.referencesBosnea, L., Moschakis, T., Nigam, P., & Biliaderis, C. (2017). Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, 77, 282–289. http://doi.org/10.1016/j.lwt.2016.11.056.spa
dc.relation.referencesBoulay, M. Al Haddad, F. Rul, (2020). Streptococcus thermophilus growth in soya milk: Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the cell-wall protease PrtS, Int. J. Food Microbiol. 335, 108903. https://doi.org/10.1016/j.ijfoodmicro.2020.108903.spa
dc.relation.referencesCaro, S., Vega, N., Husserl, J., & Alvarez, A. (2016). Studying the impact of biomodifiers produced from agroindustrial wastes on asphalt binders. Construction and Building Materials, 126, 369–380. http://doi.org/10.1016/j.conbuildmat.2016.09.043spa
dc.relation.referencesCarpinelli, J. V., de Barros Ranke, F. F., Escaramboni, B., Campioni, T. S., Fernández Núñez, E. G., & de Oliva Neto, P. (2020). Cost-effective lactic acid production by fermentation of agro-industrial residues. Biocatalysis and Agricultural Biotechnology, 27, 101706. https://doi.org/10.1016/j.bcab.2020.101706spa
dc.relation.referencesCedeño Jessenia & Zambrano Johana. (2014). Cáscaras de piña y mango deshidratado como fuente de fibra dietética en producción de galletas. Tesis pag.29.spa
dc.relation.referencesChang, C. P., & Liew, S. L. (2013). Growth medium optimization for biomass production of a probiotic bacterium, lactobacillus rhamnosus ATCC 7469. Journal of Food Biochemistry, 37(5), 536–543. http://doi.org/10.1111/jfbc.12004.spa
dc.relation.referencesChirinos, R., Aquino, M., Pedreschi, R., & Campos, D. (2017). Optimized Methodology for Alkaline and Enzyme-Assisted Extraction of Protein from Sacha Inchi ( Plukenetia volubilis) Kernel Cake. Journal of Food Process Engineering, 40(2), n/a-N.PAG. https://doi-org.ezproxy.unal.edu.co/10.1111/jfpe.12412.spa
dc.relation.referencesChranioti C, Chanioti S, & Tzia C. (2015). Microencápsulation of steviol glycosides (Stevia rebaudiana Bertoneladasi) by a spray drying method–Evaluation of encápsulated products and prepared syrups. International Journal of Food Studies. 4(2), 212-220.spa
dc.relation.referencesComunian, T., Thomazini, M., Alves, A. J. G., Matos, F., Carvalho, J., & Favaro, C. (2013). Microencápsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373–379. http://doi.org/10.1016/j.foodres.2013.03.028.spa
dc.relation.referencesCosme, F., Inês, A., & Vilela, A. (2022). Consumer’s acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Research International, 151, 110842. https://doi.org/10.1016/j.foodres.2021.110842spa
dc.relation.referencesDai, H., & Huang, H. (2016). Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate polymers. 148, 1-10. https://doi.org/10.1016/j.carbpol.2016.04.040.spa
dc.relation.referencesDuffus LJ, Norton JE, Smith P, Norton IT, Spyropoulos F. (2016). A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions. J Colloid Interface Sci.473:9–21.spa
dc.relation.referencesEspitia, P. J. P., Batista, R. A., Azeredo, H. M. C., & Otoneladasi, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90, 42–52. http://doi.org/10.1016/j.foodres.2016.10.026.spa
dc.relation.referencesFAOSTAT. (2018). The Food and Agriculture Organization Corporate Statistical Database. Retrieved from http://faostat3.fao.org/download/T/TP/Espa
dc.relation.referencesFood and Agriculture Organization (F.A.O.) (2017). Probióticos en los alimentos. Propiedades saludables y nutricionales y directrices para la evaluaciónspa
dc.relation.referencesFerrari, M., & da Rocha, P. A. (2011). Multiple emulsions containing amazon oil:Açaí oil (euterpe oleracea). Brazilian Journal of Pharmacognosy, 21(4), 737–743. http://doi.org/10.1590/S0102-695X2011005000093.spa
dc.relation.referencesFlores, E., Pascual, L. A., Alarcón, F. G., Rascón, M. P., Pimentel, D. J., & Beristain, C. I. (2017). Effect of vacuum on the impregnation of Lactobacillus rhamnosus microcapsules in apple slices using double emulsion. Journal of Food Engineering, 202, 18–24. http://doi.org/10.1016/j.jfoodeng.2017.02.005.spa
dc.relation.referencesFoligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: The possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284–292. http://doi.org/10.1016/j.mib.2013.06.008.spa
dc.relation.referencesFraj, J., Petrović, L., Đekić, L., Budinčić, J. M., Bučko, S., & Katona, J. (2021a). Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. Journal of Food Engineering, 292, 110353. https://doi.org/10.1016/j.jfoodeng.2020.110353spa
dc.relation.referencesGarcía, E., & Serna, L. (2015). Viability of encápsulated lactic bacteria added in a matrix of chocolate coverage. Revista Colombiana de Biotecnología, 17(1), 40–45. http://doi.org/10.15446/rev.colomb.biote.v17n1.44824.spa
dc.relation.referencesGirelli, M.L. Astolfi, F.R. Scuto, (2020). Agro-industrial wastes as potential carriers for enzyme immobilization: A review, Chemosphere. 244, 125368. https://doi.org/10.1016/j.chemosphere.2019.125368.spa
dc.relation.referencesGiroux, H., Robitaille, G., & Britten, M. (2016). Controlled release of casein-derived peptides in the gastrointestinal environment by encápsulation in water-in-oil-in-water double emulsions. LWT - Food Science and Technology, 69, 225–232. http://doi.org/10.1016/j.lwt.2016.01.050.spa
dc.relation.referencesGonzález-Ferrero, C., Irache, J. M., & González-Navarro, C. J. (2017). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry, 239, 879-888.spa
dc.relation.referencesGonzalez, L. V. P., Gómez, S. P. M., & Abad, P. A. G. (2017). Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2).spa
dc.relation.referencesGuarner, F., Khan, A. G., Garisch, J., Eliakim, R., Gangl, A., & Thomson, A. (2011). Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. World Gastroenterology Organization, Milwaukee, pag. 1-35.spa
dc.relation.referencesGuerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., Gaiani, C. (2017). Lactobacillus rhamnosus GG encápsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. Journal of Food Engineering, 193, 10–19. http://doi.org/10.1016/j.jfoodeng.2016.08.008.spa
dc.relation.referencesGul, O. (2017). Microencapsulation of Lactobacillus casei Shirota by spray drying using different combinations of wall materials and application for probiotic dairy dessert. Journal of Food Processing & Preservation, 41(5), n/a-N.PAG. https://doi-org.ezproxy.unal.edu.co/10.1111/jfpp.13198.spa
dc.relation.referencesHernández Rodríguez, L., Lobato Calleros, C., Pimentel González, D. J., & Vernon Carter, E. J. (2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids, 36, 181–188. http://doi.org/10.1016/j.foodhyd.2013.09.018.spa
dc.relation.referencesHu, J., Lin, Y., Zhang, Z., Xiang, T., Mei, Y., Zhao, S., Peng, N. (2016). High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresource Technology, 214, 74–80. http://doi.org/10.1016/j.biortech.2016.04.034.spa
dc.relation.referencesJain, A., Thakur, D., Ghoshal, G., Katare, O., & Shivhare, U. (2016). Characterization of microcápsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, 87, 101–113. http://doi.org/10.1016/j.ijbiomac.2016.01.117.spa
dc.relation.referencesJiménez Colmenero, F. (2013). Emulsiones múltiples; compuestos bioactivos y alimentos funcionales. Nutricion Hospitalaria, 28(5), 1413–1421. http://doi.org/10.3305/nh.2013.28.5.6673.spa
dc.relation.referencesJuodeikiene, G., Klupsaite, D., Zadeike, D., Cizeikiene, D., Vidziunaite, I., Bartkiene, E., & Cernauskas, D. (2016). Bioconversion of agro-industrial by-products to lactic acid using Lactobacillus sakei and two Pediococcus spp. strains. International Journal of Food Science and Technology, 51(12), 2682–2691. http://doi.org/10.1111/ijfs.13258spa
dc.relation.referencesKaprasob, R., Kerdchoechuen, O., Laohakunjit, N., Sarkar, D., & Shetty, K. (2017). Fermentation-based biotransformation of biaoctive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochemistryspa
dc.relation.referencesKhedkar M, Nimbalkar P, Gaikwad S, Chavan P, and Bankar S (2017). Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study. Bioresource Technol, 225:359–366. https://doi.org/10.1016/j.biortech.2016.11.058.spa
dc.relation.referencesKralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a review. Journal of Dispersion Science and Technology, 30(9), 1363-1383.spa
dc.relation.referencesKüster-Boluda, I., & Vidal-Capilla, I. (2017). Consumer attitudes in the election of functional foods. Spanish Journal of Marketing-ESIC, 21, 65-79.spa
dc.relation.referencesLecomte, X., Gagnaire, V., Lortal, S., Dary, A., & Genay, M. (2016). Streptococcus thermophilus, an emerging and promising tool for heterologous expression: Advantages and future trends. Food Microbiology, 53, 2–9. http://doi.org/10.1016/j.fm.2015.05.003.spa
dc.relation.referencesLee, K. W., Park, J. Y., Jeong, H. R., Heo, H. J., Han, N. S., & Kim, J. H. (2012). Probiotic properties of Weissella strains isolated from human faeces. Anaerobe, 18(1), 96–102. http://doi.org/10.1016/j.anaerobe.2011.12.015.spa
dc.relation.referencesLi, R., Zhang, Y., Polk, D. B., Tomasula, P. M., Yan, F., & Liu, L. S. (2016). Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encápsulation system. Journal of Controlled Release, 230, 79–87. http://doi.org/10.1016/j.jconrel.2016.04.009.spa
dc.relation.referencesMargallo, K. Ziegler-Rodriguez, I. (2019). Vázquez-Rowe, R. Aldaco, Á. Irabien, R. Kahhat, Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support, Sci. Total Environ. 689, 1255–1275. https://doi.org/10.1016/j.scitotenv.2019.06.393.spa
dc.relation.referencesMarques da Silva, T., de Deus, C., de Souza Fonseca, B., Lopes, E. J., Cichoski, A. J., Almeida Esmerino, E., de Bona da Silva, C., Irineu Muller, E., Moraes Flores, E. M., & Ragagnin de Menezes, C. (2019). The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Research International, 125(April), 108577. https://doi.org/10.1016/j.foodres.2019.108577spa
dc.relation.referencesMazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biore fi neries. Biotechnology Advances, 32(7), 1216–1236. http://doi.org/10.1016/j.biotechadv.2014.07.005.spa
dc.relation.referencesMcClements, D. (2016). Food Emulsions. 3rd edition, Boca Ratoneladas: CRC Press. 714 Pag.spa
dc.relation.referencesMicanquer-Carlosama, A., Serna-Cock, L., & Ayala-Aponte, A. (2017). Double emulsion and complex coacervation in stevia encapsulation. Vitae (01214004), 24(3).spa
dc.relation.referencesMozzi, F., Raya, R., Vignolo, G. (2010). Biotechnology of Lactic Acid Bacteria. Novel Applications. (1a ed) New York: Wiley-Blackwell. Cap I. pp: 361.spa
dc.relation.referencesMudaliyar, P., Sharma, L., & Kulkarni, C. (2012). Food Waste Management-Lactic Acid Production By Lactobacillus Species, 2(1), 34–38.spa
dc.relation.referencesNeethu, C., Mujeeb, K., Rosmine, E., Saramma, A., & Mohamed, A. (2015). Utilization of agro-industrial wastes for the production of lipase from Stenotrophomonas maltophilia isolated from Arctic and optimization of physical parameters. Biocatalysis and Agricultural Biotechnology, 4(4), 703–709. http://doi.org/10.1016/j.bcab.2015.09.002spa
dc.relation.referencesOzturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Food Science, 7, 1–6.spa
dc.relation.referencesPanesar, P. S., & Kaur, S. (2015). Bioutilisation of agro-industrial waste for lactic acid production. International Journal of Food Science and Technology, 50(10), 2143–2151. http://doi.org/10.1111/ijfs.12886.spa
dc.relation.referencesPeredo, H., & Jiménez, M. (2012). Mecanismos de inestabilidad y métodos de estabilización de emulsiones múltiples. Ingeniería de Alimentos, 6(2), 122–130spa
dc.relation.referencesPeyer, L. C., Zannini, E., & Arendt, E. K. (2016). Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends in Food Science and Technology, 54, 17–25. http://doi.org/10.1016/j.tifs.2016.05.009.spa
dc.relation.referencesPitigraisorn, P., Srichaisupakit, K., Wongpadungkiat, N., & Wongsasulak, S. (2017). Encápsulation of Lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. Journal of Food Engineering, 192, 11–18. http://doi.org/10.1016/j.jfoodeng.2016.07.022.spa
dc.relation.referencesPolychniatou V & Tzia C. (2014) Study of formulation and stability of co-surfactant free water-in-olive oil nano-and submicron emulsions with food grade non-ionic surfactants. J Am Oil Chem Soc.91:79–88.spa
dc.relation.referencesPosada-Velez, S. (2014). Posibilidades de penetración al mercado colombiano con alimentos funcionales (Doctoral dissertation, Administrativa, Financiera, Sistemas y Computación), pag. 1-90spa
dc.relation.referencesProbst, M., Walde, J., Pümpel, T., Wagner, A. O., Schneider, I., & Insam, H. (2015). Lactic acid fermentation within a cascading approach for biowaste treatment. Applied Microbiology and Biotechnology, 99(7), 3029–3040. http://doi.org/10.1007/s00253-015-6414-7.spa
dc.relation.referencesReale, A., Di Renzo, T., Zotta, T., Preziuso, M., Boscaino, F., Ianniello, R., Coppola, R. (2016). Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. LWT - Food Science and Technology, 73, 622–629. http://doi.org/10.1016/j.lwt.2016.06.065.spa
dc.relation.referencesReque, P. M., & Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science & Technology, 114, 1-10.spa
dc.relation.referencesRivera, Y., & Gallardo, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1–11. http://doi.org/10.1016/j.fm.2008.06.008.spa
dc.relation.referencesRocha, G., Bozza, F., Thomazini, M., Bolini, H., & Fávaro, C. (2013). Microencápsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry, 139(1), 72–78. http://doi.org/10.1016/j.foodchem.2013.01.114.spa
dc.relation.referencesSalmerón, I., Thomas, K., & Pandiella, S. S. (2014). Effect of substrate composition and inoculum on the fermentation kinetics and flavour compound profiles of potentially non-dairy probiotic formulations. LWT - Food Science and Technology, 55(1), 240–247. http://doi.org/10.1016/j.lwt.2013.07.008.spa
dc.relation.referencesSantos, M., Bozza, F., Thmazini, M., & Favaro, C. (2015). Microencápsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, 171(1), 32–39.spa
dc.relation.referencesSantos, M., Carpinteiro, D., Thomazini, M., Rocha, G., Da Cruz, A., Rodriges, C., & Favaro, C. (2014). Coencápsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Research International, 66(1), 454–462.spa
dc.relation.referencesSerna Cock, L., Valencia Hernández, L., & Campos Gaona, R. (2010). Kinetic of fermentation and antimicrobial activity of Weissella confusa against Staphylococcus aureus and Streptococcus agalactiae. Revista Facultad de Ingeniería Universidad de Antioquia, (55), 55-65.spa
dc.relation.referencesSerna, L., Vallejo, V., & García, E. (2012a). Gel de Aloe vera (Aloe barbadensis Miller) en la encápsulacion de una bacteria ácido láctica. Vitae, 19, 168–170.spa
dc.relation.referencesSerna, L., Enríquez, C. E., Jiménez, E. M., & Campos, R. (2012b). Effects of fermentation substrates and conservation methods on the viability and antimicrobial activity of Weissella confuse and its metabolites. Electronic Journal of Biotechnology, 15(3). http://doi.org/10.2225/vol15-issue3-fulltext-9.spa
dc.relation.referencesSerna-Cock, L., Camargo-Guarnizo, A. F., & Rengifo-Guerrero, C. A. (2013a). Antimicrobial activity against Xanthomonas albilineans and fermentation kinetics of a lactic acid bacterium isolated from the sugar cane crop. Chilean journal of agricultural research, 73(3), 250-258.spa
dc.relation.referencesSerna, L., & Enríquez, C. E. (2013b). Antimicrobial activity of Weissella confusa and its metabolites against Escherichia coli and Klebsiella pneumoniae. Revista Colombiana de Biotecnolgía, XV(2), 63–70.spa
dc.relation.referencesSerna, L., Mera, J. D., & Angulo, J. E. (2013c). Guava Psidium guajava seed flour and dry aspergillus niger mycelium as nitrogen sources for the production of biomass and antimicrobial compounds produced by Weissella confusa. Electronic Journal of Biotechnology, 16(6), 1–9. http}://doi.org/10.2225/vol16-issue6-fulltext-1.spa
dc.relation.referencesShori, A. B. (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, 4(4), 423–431.spa
dc.relation.referencesVásquez Osorio, G.A. Hincapié Llanos, M. Cardona, D.I. Jaramillo, L. Vélez Acosta, (2017). Formulación de una colada empleando harina de sacha inchi (Plukenetia volubilis L.) proveniente del proceso de obtención de aceite, Perspect. En Nutr. Humana. 19, 167–179. https://doi.org/10.17533/udea.penh.v19n2a04.spa
dc.relation.referencesWoraprayote, W., Malila, Y., Sorapukdee, S., Swetwiwathana, A., Benjakul, S., & Visessanguan, W. (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Science, 120, 118–132. http://doi.org/10.1016/j.meatsci.2016.04.004.spa
dc.relation.referencesYu, H.J. Jang, N.K. Lee, H.D. Paik, (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi, LWT. 112, 108229. https://doi.org/10.1016/j.lwt.2019.05.127.spa
dc.relation.referencesZheng, J., Gao, M., Wang, Q., Wang, J., Sun, X., Chang, Q., & Tashiro, Y. (2017). Enhancement of L-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste. Bioresource Technology, 225, 159–164. http://doi.org/10.1016/j.biortech.2016.11.055spa
dc.relation.referencesZhao, L., & Wang, W. (2016). Perspectives on FDA’s attempts to limit functional food development in the US. Science for Industry, 27, 5.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembBiomasa
dc.subject.lembFermentación láctica
dc.subject.lembResiduos agrícolas
dc.subject.proposalWeissella cibariaeng
dc.subject.proposalAnanas comosuseng
dc.subject.proposalPlukenetia volubiliseng
dc.subject.proposalAgroindustrial wasteseng
dc.subject.proposalFermentationeng
dc.subject.proposalEncapsulationeng
dc.subject.proposalResiduos agroindustrialesspa
dc.subject.proposalFermentaciónspa
dc.subject.proposalEncapsulaciónspa
dc.subject.proposalProbióticosspa
dc.titleViabilidad de Weissella cibaria durante los procesos integrados de fermentación y encapsulación utilizando residuos agroindustriales en la formulación del sustrato y doble emulsión seguido de coacervación compleja en la encapsulaciónspa
dc.title.translatedViability of Weissella cibaria during the integrated fermentation and encapsulation processes using agro-industrial residues in the formulation of the substrate and double emulsion followed by complex coacervation in the encapsulationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088651531-2022.pdf
Tamaño:
2.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: