Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)

dc.contributor.advisorBustos-López, Martha Cristina
dc.contributor.advisorAlgecira Enciso, Néstor Ariel
dc.contributor.authorDuarte Castro, Viviana Astrid
dc.contributor.researchgroupResiliencia y Saneamiento Resaspa
dc.date.accessioned2022-06-03T18:42:04Z
dc.date.available2022-06-03T18:42:04Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl presente trabajo tiene como meta principal evaluar la formación de un lodo granular aerobio a partir de un lodo activo en un Reactor Discontinuo Secuencial (SBR), propone un procedimiento que describe la experimentación para la formación de gránulos aerobios y determina la remoción de materia orgánica por medio de la DQOs del afluente y el efluente. La experimentación se desarrolló en tres fases. En la primera, se hizo el montaje del reactor con un volumen de trabajo de 5 litros, un Radio de Intercambio Volumétrico-RIV de 60% y la automatización del sistema, se inoculó con lodo activo y agua residual sintética de 600 mg/l de DQO y la puesta en marcha del proceso, inició con un tiempo de operación de ciclo de 12 horas. En la segunda fase se llevó a cabo el acondicionamiento del sistema, operando a una COV promedio de 1,4 kg DQO/m3∙d, un tiempo de ciclo de 6 horas y se disminuyó el tiempo de sedimentación de 30 minutos hasta 5 minutos, alcanzando (Vs)min de 7,2 m/h generando mayor estrés cortante como factor relevante para la granulación. En la última fase se controlaron las variables operacionales manteniendo la concentración de SST del licor de mezcla en 2100 mg/l, hasta lograr la formación de gránulos aerobios con IVL30 de 47 ml/gSST y IVL5 71ml/gSST y tamaños de 0,3mm, en esta etapa de granulación se obtuvieron eficiencias en remoción de DQOs promedio de 94%. (Texto tomado de la fuente)spa
dc.description.abstractThe present work has a main goal, to evaluate the formation of an aerobic granular sludge from an active sludge in a Sequential Batch Reactor (SBR). A procedure proposed describes the experimentation for the formation of aerobic granules and determines a removal of organic matter by means of the CODs of the influent and the effluent. The experimentation took place in three phases, in the first one the assembly of the reactor was made with a working volume of 5 liters, a RIV of 60% and the automation of the system, it was inoculated with activated sludge and synthetic residual water of 600 mg/ l of COD; the adequacy of the process started with a cycle operation time of 12 hours.; In the second phase, the conditioning of the process was carried out, operating at an average OLR of 1.4 kg COD/m3∙d, a cycle time of 6 hours and the sedimentation time was reduced from 30 minutes to operating at 5 minutes. reaching (Vs)min of 7.2 m/h, generating greater shear stress as a relevant factor for granulation, in the last phase the operational variables were controlled, maintaining the concentration of TSS in the mixed liquor at 2100 mg/l, until achieving the formation of aerobic granules with IVL30 of 47 ml/gTSS and IVL5 71ml/gTSS and sizes of 0.3mm, in this granulation stage average COD removal efficiencies of 94% were obtained.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaSaneamiento Ambiental y Calidad del Aguaspa
dc.format.extent105 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81504
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAdav, Sunil S., Duu Jong Lee, Kuan Yeow Show, and Joo Hwa Tay. 2008. “Aerobic Granular Sludge: Recent Advances.” Biotechnology Advances 26(5): 411–23.spa
dc.relation.referencesAntioquia, Gobernación de. 2017. “No Title.” Secreteria Seccional de Salud y Proteción Social. http://diagnosticosalud.dssa.gov.co/0-capitulo-1-salud-y-ambiente/pagina-6-capitulo-1-salud-y-ambiente/ (November 8, 2019).spa
dc.relation.referencesAPHA, AMERICAN PUBLIC HEALTH ASSOCIATION. 2017. Standard Methods for the Examination of Water and Wastewater. 23 ed. Washington: APHA. https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=31546 (January 23, 2022).spa
dc.relation.referencesAwang, Nik Azimatolakma, and Md Ghazaly Shaaban. 2016. “Effect of Reactor Height/Diameter Ratio and Organic Loading Rate on Formation of Aerobic Granular Sludge in Sewage Treatment.” International Biodeterioration and Biodegradation 112: 1–11. http://dx.doi.org/10.1016/j.ibiod.2016.04.028.spa
dc.relation.referencesBassin, João Paulo. 2017. “Aerobic Granular Sludge Technology.” In Advanced Biological Processes for Wastewater Treatment: Emerging, Consolidated Technologies and Introduction to Molecular Techniques, Springer International Publishing, 78–142.spa
dc.relation.referencesBeun, J. J. et al. 1999. “Aerobic Granulation in a Sequencing Batch Reactor.” Water Research 33(10): 2283–90.spa
dc.relation.referencesde Bruin, L. M.M. et al. 2004. “Aerobic Granular Sludge Technology: An Alternative to Activated Sludge?” Water Science and Technology 49(11–12): 1–7.spa
dc.relation.referencesCardona Farias, Ana María, and Angie Liseth Parada Parra. 2018. Universidad Distrital Franciso Jose de Caldas “Diagnóstico Base Para El Análisis Histórico Ambiental En El Municipio de Cajicá - Cundinamarca.” Universidad Distrital Francisco José de Caldas. https://repository.udistrital.edu.co/bitstream/handle/11349/14004/AguilarRiveraSergioAndres&DiazAriasJulianAndres2018.pdf?sequence=1%0Ahttp://repository.udistrital.edu.co/bitstream/11349/13996/1/MartinezFonsecaYennyAlexandra2018.pdf.spa
dc.relation.referencesChan, Yi Jing, Mei Fong Chong, Chung Lim Law, and D. G. Hassell. 2009. “A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater.” Chemical Engineering Journal 155(1–2): 1–18.spa
dc.relation.referencesdel Coso, Víctor. 2004. “Disseny de Tractaments SBR d’aigües Residuals.” Escola Universitária D’Enginyeria Técnica Industrial de Barcelona.spa
dc.relation.referencesDangcong, Peng, Nicolas Bernet, Jean Philippe Delgenes, and Rene Moletta. 1999. “Aerobic Granular Sludge - A Case Report.” Water Research 33(3): 890–93.spa
dc.relation.referencesDohare, D, and Nupur Kesharwani. 2014. “A Review on Wastewater Treatment Using Sequential Batchreactor.” International Journal of Scientific Engineering and Technology 1138(9): 2277–1581.spa
dc.relation.referencesFranca, Rita D.G., Helena M. Pinheiro, Mark C.M. van Loosdrecht, and Nídia D. Lourenço. 2018. “Stability of Aerobic Granules during Long-Term Bioreactor Operation.” Biotechnology Advances 36(1): 228–46. https://doi.org/10.1016/j.biotechadv.2017.11.005.spa
dc.relation.referencesGiesen, Andreas et al. 2016. “Aerobic Granular Biomass Technology: Recent Performance Data, Lessons Learnt and Retrofitting Conventional Treatment Infrastructure.” WEFTEC 2016 - 89th Water Environment Federation Annual Technical Exhibition and Conference 3: 1913–23.spa
dc.relation.referencesGuest, R. K., and D. W. Smith. 2002. “A Potential New Role for Fungi in a Wastewater MBR Biological Nitrogen Reduction System.” Journal of Environmental Engineering and Science 1(6): 433–37.spa
dc.relation.referencesHan, Keehyun, and Octave Levenspiel. 1988. “Extended Monod Kinetics for Substrate, Product, and Cell Inhibition.” Biotechnology and Bioengineering 32(4): 430–47. https://onlinelibrary.wiley.com/doi/10.1002/bit.260320404.spa
dc.relation.referencesKaewsuk, Jutamas, Worachat Thorasampan, Monthon Thanuttamavong, and Gyu Tae Seo. 2010. “Kinetic Development and Evaluation of Membrane Sequencing Batch Reactor (MSBR) with Mixed Cultures Photosynthetic Bacteria for Dairy Wastewater Treatment.” Journal of Environmental Management 91(5): 1161–68.spa
dc.relation.referencesKeller, R G, Paul C Burrell, and Linda L Blackall. 1998. “Microbiology of a Nitrite-Oxidizing Bioreactor.” 64(5): 1878–83.spa
dc.relation.referencesKetchum, Lloyd H. 1997. “Design and Physical Features of Sequencing Batch Reactors.” Water Science and Technology 35(1): 11–18. http://dx.doi.org/10.1016/S0273-1223(96)00873-6.spa
dc.relation.referencesKim, Hyungu, Jitae Kim, and Daehee Ahn. 2020. “Effects of Carbon to Nitrogen Ratio on the Performance and Stability of Aerobic Granular Sludge.” Environmental Engineering Research 26(1): 1–8.spa
dc.relation.referencesLili, Liu et al. 2005. “Investigation on the Formation and Kinetics of Glucose-Fed Aerobic Granular Sludge.” Enzyme and Microbial Technology 36(4): 487–91.spa
dc.relation.referencesLinlin, Hu, Wang Jianlong, Wen Xianghua, and Qian Yi. 2005. “The Formation and Characteristics of Aerobic Granules in Sequencing Batch Reactor (SBR) by Seeding Anaerobic Granules.” Process Biochemistry 40(1): 5–11.spa
dc.relation.referencesLiu, Q. S., J. H. Tay, and Y. Liu. 2003. “Substrate Concentration-Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor.” Environmental Technology (United Kingdom) 24(10): 1235–42.spa
dc.relation.referencesLiu, Yong Qiang, and Joo Hwa Tay. 2006. “Variable Aeration in Sequencing Batch Reactor with Aerobic Granular Sludge.” Journal of Biotechnology 124(2): 338–46.spa
dc.relation.referencesLiu, Yu et al. 2005. “Selection Pressure-Driven Aerobic Granulation in a Sequencing Batch Reactor.” Applied Microbiology and Biotechnology 67(1): 26–32.spa
dc.relation.referencesLiu, Yu, and Qi-shan Liu. 2006. “Causes and Control of Filamentous Growth in Aerobic Granular Sludge Sequencing Batch Reactors.” 24: 115–27.spa
dc.relation.referencesLiu, Yu, and Joo Hwa Tay. 2004. “State of the Art of Biogranulation Technology for Wastewater Treatment.” Biotechnology Advances 22(7): 533–63.spa
dc.relation.referencesLv, Yi et al. 2014. “Microbial Communities of Aerobic Granules: Granulation Mechanisms.” Bioresource Technology 169: 344–51.spa
dc.relation.referencesM C M van, Loosdrecht et al. 1995. “Biofilm Structures.” Water Science and Technology 32(8): 35–43. http://ezproxy.unal.edu.co/scholarly-journals/biofilm-structures/docview/1943326097/se-2?accountid=137090.spa
dc.relation.referencesMace, S., and J. Mata-Alvarez. 2002. “Utilization of SBR Technology for Wastewater Treatment: An Overview.” Industrial and Engineering Chemistry Research 41(23): 5539–53.spa
dc.relation.referencesMartínez, M. David Antonio, and B. Oscar González. 2010. “Influencia Del Tiempo de Aireación En La Formación de Gránulos Aerobios En Un Reactor Secuencial Por Lotes.” UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO. http://python-compiler-unam2011-2.googlecode.com/svn-history/r4/trunk/proyecto1/Readme.pdf.spa
dc.relation.referencesMetcalf & Eddy, George Tchobanoglous, Franklin L. Burton, and H. David Stensel. 2003. XVIII Wastewater Engineering: Treatment and Reuse. Cuarta. McGraw-Hill series in civil and environmental engineering).spa
dc.relation.referencesMetcalf, and Eddy. 1995. Tratamiento, Vertido Y Reutilización , Volumen I Ingenieria De Las Aguas Residuales.spa
dc.relation.referencesMuñoz Paredes, J.F., Ramos Ramos, M. 2014. “Sequential Batch Reactors: A Versatile Technology For Wastewater Treatment.” Ciencia e Ingeniería Neogranadina 24(1): 49–66. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81702014000100003&lng=en&nrm=iso&tlng=.spa
dc.relation.referencesNancharaiah, Y. V., and G. Kiran Kumar Reddy. 2018. “Aerobic Granular Sludge Technology: Mechanisms of Granulation and Biotechnological Applications.” Bioresource Technology 247(September 2017): 1128–43. http://dx.doi.org/10.1016/j.biortech.2017.09.131.spa
dc.relation.referencesNicolau, Ana, Nicolina Dias, Manuel Mota, and Nelson Lima. 2001. “Trends in the Use of Protozoa in the Assessment of Wastewater Treatment.” Research in Microbiology 152(7): 621–30.spa
dc.relation.referencesNoyola, Adalberto. 1996. “Anaerobic Technology as a Tool for the Sustainable Environment: The Context of Mexico.” Institute of Engineering UNAM: 169–72.spa
dc.relation.referencesOkpokwasili, G. C., and C. O. Nweke. 2006. “Microbial Growth and Substrate Utilization Kinetics.” African Journal of Biotechnology 5(4): 305–17.spa
dc.relation.referencesOMS. 2019. Organización mundial de salud Guías Para El Saneamiento y La Salud. Licencia: Ginebra. https://apps.who.int/iris/bitstream/handle/10665/330097/9789243514703-spa.pdf.spa
dc.relation.referencesPan, S., J. H. Tay, Y. X. He, and S. T.L. Tay. 2004. “The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules.” Letters in Applied Microbiology 38(2): 158–63.spa
dc.relation.referencesPeyong, Yet Nee, Yan Zhou, Ahmad Zuhairi Abdullah, and Vel Vadivelu. 2012. “The Effect of Organic Loading Rates and Nitrogenous Compounds on the Aerobic Granules Developed Using Low Strength Wastewater.” Biochemical Engineering Journal 67: 52–59. http://dx.doi.org/10.1016/j.bej.2012.05.009.spa
dc.relation.referencesPoltak, Ronald F. 2005. “Sequencing Batch Reactor Design and Operational Considerations Manual.” New England Interstate Water Pollution Control Commission: Massachusetts, USA (September): 27.spa
dc.relation.referencesPronk, M. et al. 2015. “Full Scale Performance of the Aerobic Granular Sludge Process for Sewage Treatment.” Water Research 84: 207–17. http://dx.doi.org/10.1016/j.watres.2015.07.011.spa
dc.relation.referencesQin, Lei, Yu Liu, and Joo Hwa Tay. 2004. “Effect of Settling Time on Aerobic Granulation in Sequencing Batch Reactor.” Biochemical Engineering Journal 21(1): 47–52.spa
dc.relation.referencesQin, Lei, Joo Hwa Tay, and Yu Liu. 2004. “Selection Pressure Is a Driving Force of Aerobic Granulation in Sequencing Batch Reactors.” Process Biochemistry 39(5): 579–84.spa
dc.relation.referencesRaschid-sally, Liqa, and Priyantha Jayakody. 2008. Drivers and Characteristics of Wastewater Agriculture in Developing Countries:spa
dc.relation.referencesRittmann, Bruce E, and Perry L. McCarty. 2001. “Environmental Biotechnology : Principles and Applications.” Current Opinion in Biotechnology 7(3): 357–65. http://www.sciencedirect.com/science/article/pii/S0958166996800474.spa
dc.relation.referencesRollemberg, Silvio Luiz de Sousa, Tasso Jorge Tavares Ferreira, Paulo Igor Milen Firmino, and André Bezerra dos Santos. 2020. “Impact of Cycle Type on Aerobic Granular Sludge Formation, Stability, Removal Mechanisms and System Performance.” Journal of Environmental Management 256(December 2019).spa
dc.relation.referencesRomero Rojas, Jairo Alberto. 1999. Tratamiento-de-Aguas-Residuales: Teoría y Principios de Diseño. Escuela Co. ed. Escuela Colombiana de Ingeniería. Bogotá D.C.: Escuela Colombiana de Ingeniería.spa
dc.relation.referencesSalgot, Miquel, and Montserrat Folch. 2018. “Wastewater Treatment and Water Reuse.” Current Opinion in Environmental Science and Health 2: 64–74. https://doi.org/10.1016/j.coesh.2018.03.005.spa
dc.relation.referencesShow, Kuan-Yeow. 2006. “Mechanisms and Models for Anaerobic Granulation.” In Biogranulation Technologies for Wastewater Treatment, Elsevier Ltd, 24–58.spa
dc.relation.referencesShow, Kuan Yeow, Duu Jong Lee, and Joo Hwa Tay. 2012. “Aerobic Granulation: Advances and Challenges.” Applied Biochemistry and Biotechnology 167(6): 1622–40.spa
dc.relation.referencesde Sousa Rollemberg, Silvio Luiz, Antônio Ricardo Mendes Barros, Paulo Igor Milen Firmino, and André Bezerra dos Santos. 2018. “Aerobic Granular Sludge: Cultivation Parameters and Removal Mechanisms.” Bioresource Technology 270(August): 678–88. https://doi.org/10.1016/j.biortech.2018.08.130.spa
dc.relation.referencesVon Sperling, Marcos. 2014. Principios Del Tratamiento Biológico de Aguas Residuales. ed. San Juan de Pasto: Universidad de Nariño. Pasto.spa
dc.relation.referencesSSPD, Superintendencia de Servicios Públicos Domiciliarios. 2019. Estudio Sectorial de Los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado.spa
dc.relation.referencesSurampalli, Rao Y., R. D. Tyagi, O. Karl Scheible, and James A. Heidman. 1997. “Nitrification, Denitrification and Phosphorus Removal in Sequential Batch Reactors.” Bioresource Technology 61(2): 151–57.spa
dc.relation.referencesTay, J. H., Q. S. Liu, and Y. Liu. 2001. “The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules.” Applied Microbiology and Biotechnology 57(1–2): 227–33.spa
dc.relation.references———. 2002. “Aerobic Granulation in Sequential Sludge Blanket Reactor.” Water Science and Technology 46(4–5): 13–18.spa
dc.relation.referencesTay, Joo-Hwa, Shun Pan, Yanxin He, and Stephen Tiong Lee Tay. 2004. “Effect of Organic Loading Rate on Aerobic Granulation. II: Characteristics of Aerobic Granules.” Journal of Environmental Engineering 130(10): 1102–9.spa
dc.relation.referencesToh, S. K. et al. 2003. “Size-Effect on the Physical Characteristics of the Aerobic Granule in a SBR.” Applied Microbiology and Biotechnology 60(6): 687–95.spa
dc.relation.referencesTsuneda, Satoshi et al. 2003. “Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor.” Water Research 37(20): 4965–73.spa
dc.relation.referencesU.S. EPA. 1999. EPA 832-F- office of Water Washington, D.C. Folleto Informativo de Tecnología de Aguas Residuales Reactores Secuenciales Por Tandas.spa
dc.relation.referencesUNESCO. 2017. 8 Ecos de Economía: A Latin American Journal of Applied Economics Aguas Residuales: El Recurso Desaprovechado. Informe Mundial de Las Naciones Unidas Sobre El Desarrollo de Los Recursos Hídricos 2017. https://unesdoc.unesco.org/ark:/48223/pf0000247647.spa
dc.relation.referencesWang, Li et al. 2018. “Recent Advances on Biosorption by Aerobic Granular Sludge.” Journal of Hazardous Materials 357(May): 253–70. https://doi.org/10.1016/j.jhazmat.2018.06.010.spa
dc.relation.referencesWang, Qiang, Guocheng Du, and Jian Chen. 2004. “Aerobic Granular Sludge Cultivated under the Selective Pressure as a Driving Force.” Process Biochemistry 39(5): 557–63.spa
dc.relation.referencesWang Yu Liu Joo-Hwa Tay, Zhi-Wu. 2005. “APPLIED MICROBIAL AND CELL PHYSIOLOGY Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules.” Appl Microbiol Biotechnol 69: 469–73.spa
dc.relation.referencesWang, Zhi-Wu, and Yu Liu. 2008. Wastewater Purification: Aerobic Granulation in Sequencing Batch Reactors (Brief Article)(Book Review). ed. Inc. Ringgold. https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=edscpi&AN=edscpi.A175905484&lang=es&site=eds-live.spa
dc.relation.referencesWeber, S D, W Ludwig, K.-H Schleifer, and J Fried. 2007. “Microbial Composition and Structure of Aerobic Granular Sewage Biofilms.” APPLIED AND ENVIRONMENTAL MICROBIOLOGY 73(19): 6233–40. https://journals.asm.org/journal/aem.spa
dc.relation.referencesWilderer, P.A.; Irvine, R.L; Goronszy, M.C. 2001. Sequencing Batch Reactor Technology. London. www.iwapublishing.com.spa
dc.relation.referencesWinkler, M. K.H. et al. 2013. “Microbial Diversity Differences within Aerobic Granular Sludge and Activated Sludge Flocs.” Applied Microbiology and Biotechnology 97(16): 7447–58.spa
dc.relation.referencesYang, Shu Fang, Joo Hwa Tay, and Yu Liu. 2003. “A Novel Granular Sludge Sequencing Batch Reactor for Removal of Organic and Nitrogen from Wastewater.” Journal of Biotechnology 106(1): 77–86.spa
dc.relation.referencesYu, Liu. 2006. “Mechanisms of Aerobic Granulation.” In Biogranulation Technologies for Wastewater Treatment, ed. Elsevier. , 308. http://www.sciencedirect.com/science/article/pii/S0713274306801066%0Ahttp://linkinghub.elsevier.com/retrieve/pii/S0713274306801066.spa
dc.relation.referencesYu Liu, Joo-Hwa Tay. 2002. “The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge.” Water Research 36: 1653–65.spa
dc.relation.referencesZhu, Jianrong, and Peter A. Wilderer. 2003. “Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge.” Water Research 37(9): 2013–18.spa
dc.relation.referencesZhu, Liang et al. 2013. “Optimization of Selective Sludge Discharge Mode for Enhancing the Stability of Aerobic Granular Sludge Process.” Chemical Engineering Journal 217: 442–46. http://dx.doi.org/10.1016/j.cej.2012.11.132spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.proposalSBR
dc.subject.proposalLodo granular aerobiospa
dc.subject.proposalLodo activospa
dc.subject.proposalTiempo de sedimentaciónspa
dc.subject.proposalSecuential Batch Reactor (SBR)eng
dc.subject.proposalAerobic granular sludgeeng
dc.subject.proposalActive sludgeeng
dc.subject.proposalSettling timeeng
dc.subject.unescoAgua residualspa
dc.subject.unescoWaste watereng
dc.subject.unescoTratamiento del aguaspa
dc.subject.unescoWater treatmenteng
dc.titleDesarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)spa
dc.title.translatedDevelopment of an aerobic granular sludge for water treatment in a sequential batch reactor (SBR)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de tratamientos para la remoción de fármacos presentes en aguas utilizadas para riego en La Ramada y caracterización de la contaminación por microorganismos de interés en Salud Públicaspa
oaire.fundernameDirección de investigaciones de la sede Bogotá - DIEBspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
53039060.2022.pdf
Tamaño:
3.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: