Evaluación del riesgo urbano por inundaciones del río Supía
dc.contributor.advisor | Cardona Arboleda, Omar Darío | |
dc.contributor.author | Londoño Giraldo, Johan Styweart | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2021-06-11T20:54:49Z | |
dc.date.available | 2021-06-11T20:54:49Z | |
dc.date.issued | 2021 | |
dc.description | anexos, figuras, tablas | spa |
dc.description.abstract | Este estudio presenta un enfoque probabilista para la evaluación del riesgo por inundaciones en un tramo del río Supía; en el municipio que recibe el mismo nombre, al Noroccidente del departamento de Caldas. La evaluación del riesgo es un insumo indispensable para el ordenamiento territorial, debido a que permite considerar el riesgo como una estrategia del desarrollo, cuantificar las pérdidas asociadas a la ocurrencia de fenómenos amenazantes que no han ocurrido aún y definir medidas para la reducción del riesgo. El enfoque de evaluación se basa en tres etapas: 1) modelación probabilista de la amenaza, que incluye la generación de eventos estocásticos de lluvia intensa sobre la cuenca, cálculo del hidrograma para cada evento (descarga máxima) y estimación de la profundidad de la inundación, 2) caracterización de la exposición en la zona urbana así como la asignación de funciones de vulnerabilidad de las edificaciones expuestas, y 3) estimación de los daños y pérdidas como resultado de la evaluación cuantitativa de riesgo. Para evaluar los impactos negativos de las inundaciones, se utiliza el modelo hidráulico Iber 2D para la amenaza y el sistema CAPRA (Comprehensive approach to probabilistic risk assessment) para el cálculo del riesgo. El resultado final es un mapa de riesgo a escala local, utilizando la pérdida anual esperada (promedio anual de todas las pérdidas que se pueden presentar en el futuro) para cada edificación en el área de estudio, complementado con otras métricas de riesgo como las curvas de excedencia de pérdidas o de pérdida máxima probable, las cuales son útiles para la toma de decisiones en planificación territorial y la gestión del riesgo en general. El análisis ilustra que el enfoque es de especial utilidad para la evaluación del riesgo de inundación en áreas adyacentes a ríos para las que se dispone de datos suficientes. | spa |
dc.description.abstract | This study presents a probabilistic approach to assessing the risk of flooding in a section of the Supía River; in the municipality that receives the same name, in the Northwest of the department of Caldas. Risk assessment is an essential input for land-use planning because it allows considering risk as a determinant of development, quantifying the losses associated with the occurrence of threatening phenomena that have not yet occurred and defining measures to reduce risk. The evaluation approach is based on three stages: 1) probabilistic hazard modeling, which includes the generation of stochastic heavy rain events over the basin, calculation of the hydrograph for each event (maximum discharge), and estimation of the depth of the flood; 2) characterization of the exposure in the urban area as well as the assignment of vulnerability functions of the exposed buildings; and 3) estimation of the damages and losses as a result of the quantitative risk assessment. To assess the negative impacts of floods, the Iber 2D hydraulic model is used for the hazard and the CAPRA system (Comprehensive approach to probabilistic risk assessment) for the risk calculation. The final result is a risk map on a local scale, using the expected annual loss (annual average of all losses that may occur in the future) for each building in the study area, complemented with other risk metrics such as loss exceedance curves or probable maximum losses, which are useful for decision-making in territorial planning and risk management in general. The analysis illustrates that the approach is especially useful for flood risk assessment in areas adjacent to rivers for which enough data are available. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería - Recursos Hidráulicos | spa |
dc.description.methods | 1 Modelación de la amenaza por inundaciones 2 Caracterización de elementos expuestos y análisis de vulnerabilidad ante inundaciones 3 Modelación de riesgo por inundaciones | spa |
dc.description.researcharea | Gestión del Riesgo de Desastres | spa |
dc.format.extent | 282 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79634 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Ingeniería Civil | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.references | Alzate, L. J. (2019). Análisis de Parámetros Morfométricos, Morfología Fluvial y Relación de la Cobertura Vegetal con los Movimientos en Masa de la Cuenca del Rio Supía. 69. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Apel, H, Aronica, A. G. T., Kreibich, A. H., Thieken, A. A. H., Aronica, G. T., & Thieken, A. H. (2009). Flood risk analyses-how detailed do we need to be? 49, 79–98. https://doi.org/10.1007/s11069-008-9277-8 | spa |
dc.relation.references | Apel, H, Thieken, A. H., Merz, B., & Blöschl, G. (2004). Flood risk assessment and associated uncertainty. In Natural Hazards and Earth System Sciences (Vol. 4). | spa |
dc.relation.references | Apel, Heiko, Thieken, A. H., Merz, B., Gu¨, G., Blo¨schl, G., & Blo¨schl, B. (2006). A Probabilistic Modelling System for Assessing Flood Risks. https://doi.org/10.1007/s11069-005-8603-7 | spa |
dc.relation.references | Aristizabal, V. M. (2013). Contrato 272-2012 Ajuste a las Fajas Forestales Protectoras a Escala de Detalle (1:10.000) de las Corrientes de las Cabeceras Municipales del Departamento de Caldas Segpun la Resolución 561 de 2012. (6). | spa |
dc.relation.references | Azizian, A. (2018). Uncertainty Analysis of Time of Concentration Equations based on First-Order-Analysis (FOA) Method. American Journal of Engineering and Applied Sciences, 11(1), 327–341. https://doi.org/10.3844/ajeassp.2018.327.341 | spa |
dc.relation.references | Bernal G; Rincon D; Cardona O. (2018). Drought Pro: Computer program for probabilitic drought risk assessment of crops and livestock systems. Bogotá. | spa |
dc.relation.references | Bernal, G. A., Escovar, M. A., Zuloaga, D., & Cardona, O. D. (2017). Agricultural Drought Risk Assessment in Northern Brazil: An Innovative Fully Probabilistic Approach. In V. Marchezini, B. Wiesner, S. Saito, & L. Londe (Eds.), Reduction of Vulnerability to Disasters: from Knowledge to Action (RiMa Edito, pp. 331–356). | spa |
dc.relation.references | Bladé Castellet, E., Cea, L., & Corestein, G. (2014). Numerical modelling of river inundations. Ingeniería Del Agua, 18(1), 68. https://doi.org/10.4995/ia.2014.3144 | spa |
dc.relation.references | Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 | spa |
dc.relation.references | Bladé, E., Sánchez, M., Juny, Sánchez, H. P., Niñerola, D., & Gómez, M. (2009). Modelación numérica en ríos en régimen permanente y variable Modelación numérica en ríos en régimen permanente y variable. | spa |
dc.relation.references | Brunner, G., & Bonner, V. (1994). Hydrologic Engineering Center - River Analysis System HEC-RAS (TP-147). US Army Corps of Engineers. | spa |
dc.relation.references | Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P., & O’connell, P. E. (2008). RainSim: A spatial-temporal stochastic rainfall modelling system. https://doi.org/10.1016/j.envsoft.2008.04.003 | spa |
dc.relation.references | Campos, D. F. (1987). Construcción de tormentas hipotéticas. Ingeniería Hidráulica En México, 2(2), 9–22. | spa |
dc.relation.references | Cardona, Omar Darío. (2019). AMENAZA Y RIESGO POR INUNDACIÓN Ejemplos de Evaluación - Amenaza en el Yaguaron. | spa |
dc.relation.references | Cardona, Omar Dario, Bernal, G. A., Zuloaga, D., & Escovar, M. A. (2017). Modelación probabilista de inundaciones en La Mojana. 1–108. https://doi.org/10.13140/RG.2.2.29312.02566 | spa |
dc.relation.references | Castillo-Rodríguez, J. T., Escuder-Bueno, I., Altarejos-García, L., & Serrano-Lombillo, A. (2014). The value of integrating information from multiple hazards for flood risk analysis and management. Natural Hazards and Earth System Sciences, 14(2), 379–400. https://doi.org/10.5194/nhess-14-379-2014 | spa |
dc.relation.references | Cea, L., & Bladé, E. (n.d.). Modelos 1D y 2D en régimen permanente y variable. 1–30. | spa |
dc.relation.references | Centro Internacional de Métodos Numéricos en Ingeniería International Centre for Numerical Methods in Engineering CIMNE, & INGENIAR LTDA. (2016). Perfil de Riesgo de Desastres. | spa |
dc.relation.references | Cho, S. Y., & Chang, H. (2017). Recent research approaches to urban flood vulnerability, 2006–2016. Natural Hazards, 88(1), 633–649. https://doi.org/10.1007/s11069-017-2869-4 | spa |
dc.relation.references | Chow, Ven Te. (1994). Hidráulica de Canales Abiertos (p. 337). p. 337. | spa |
dc.relation.references | Chow, Ven Te, Maidment, D. R., & Mays, L. W. (1994). Hidrología Aplicada. 299. | spa |
dc.relation.references | Chow, VT, Maidment, D., & Mays, L. (1994). Hidrología aplicada. Hidrologia Aplicada, p. 575 pp. | spa |
dc.relation.references | Clark, C. (1945). Storage and the unit hydrograph. American Society of Civil Engineers Transactions, (100), 1419–1446. | spa |
dc.relation.references | Cobián Álvarez, J. A., Budy, ·, & Resosudarmo, P. (2019). The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia. Environmental Economics and Policy Studies, 21. https://doi.org/10.1007/s10018-019-00242-w | spa |
dc.relation.references | Consejo Municipal para la Gestión del Riesgo de Desastres CMGRD Supía. (2016). Plan Municipal De Gestion Del Riesgo Supía, Caldas. | spa |
dc.relation.references | Cook, A., & Merwade, V. (2009). Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology, 377, 131–142. https://doi.org/10.1016/j.jhydrol.2009.08.015 | spa |
dc.relation.references | Coppola, M. (2008). Estudio hidrográfico del Río Basento (Italia). 64. Retrieved from https://upcommons.upc.edu/handle/2099.1/6074 | spa |
dc.relation.references | Corpocaldas, & Geosub. (2013). Contrato 292-2013 Identificar y Caracterizar la Amenaza, Vulnerabilidad y Riesgo para las Cabeceras Municipales y las Áreas de Desarrollo Rural Restringido. | spa |
dc.relation.references | Corpocaldas, & UAM. (2019). Agendas de Cambio Climático. Supía - Caldas. Retrieved from http://www.corpocaldas.gov.co/publicaciones/1598/2019/04-03/Villamaria.pdf | spa |
dc.relation.references | Corporación Autónoma Regional De Cundinamarca. (2012). Guia Metodológica Para La Delimitación De Zonas De Ronda (p. 30). p. 30. Bogotá, Colombia. | spa |
dc.relation.references | DANE. (2018). Censo Nacional de Población y Vivienda. Bogotá. | spa |
dc.relation.references | DANE. (2019). Conceptos básicos. | spa |
dc.relation.references | De Moel, H., & Aerts, J. C. J. H. (2011). Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. 58, 407–425. https://doi.org/10.1007/s11069-010-9675-6 | spa |
dc.relation.references | De Risi, R, Jalayer, • F, De Paola, • F, Iervolino, • I, Giugni, • M, Topa, • M E, … Kyessi, Á. A. (2013). Flood risk assessment for informal settlements. 69, 1003–1032. https://doi.org/10.1007/s11069-013-0749-0 | spa |
dc.relation.references | De Risi, Raffaele, De Paola, F., Turpie, J., & Kroeger, T. (2018). Life Cycle Cost and Return on Investment as complementary decision variables for urban flood risk management in developing countries. International Journal of Disaster Risk Reduction, 28, 88–106. https://doi.org/10.1016/j.ijdrr.2018.02.026 | spa |
dc.relation.references | Del, M., Ctalamochita, R. Í. O., Córdoba, P. D. E., Ochoa, S., Reyna, T., Reyna, S., & García, M. (2015). Modelación Hidrodinámica Unidimensional y Bidimensional del Tramo Medio del Río Ctalamochita, Provincia de Córdoba. | spa |
dc.relation.references | Diario La Patria. (2012). Por lo menos 10 casas evacuadas en Supía por una avalancha del río Supía. Diario La Patria. Recuperado de http://www.lapatria.com/caldas/por-lo-menos-10-casas-evacuadas-en-supia-por-una-avalancha-del-rio-supia-4815?qt-_none_=1&qt-redessociales=0&qt-lo_m_s. | spa |
dc.relation.references | Díez Herrera, A., Laín Huerta, R., & Llorente Isidro, M. (2006). Mapas de peligrosidad de avenidas e inundaciones métodos, experiencias y aplicación (Instituto Geológico y Minero de España, Ed.). España. | spa |
dc.relation.references | Englhardt, J., De Moel, H., Huyck, C. K., De Ruiter, M. C., Aerts, J. C. J. H., & Ward, P. J. (2019). Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in urban and rural areas. Hazards Earth Syst. Sci, 19, 1703–1722. https://doi.org/10.5194/nhess-19-1703-2019 | spa |
dc.relation.references | ESRI. (n.d.). Cómo funcional el kriging. | spa |
dc.relation.references | Falter, D., Schröter, K., Viet Dung, N., Vorogushyn, S., Kreibich, H., Hundecha, Y., … Merz, B. (2015). Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. https://doi.org/10.1016/j.jhydrol.2015.02.021 | spa |
dc.relation.references | FEMA. (2003). Multi-hazard Loss Estimation Methodology: Flood Model. Soins Psychiatrie, 42(272), 471. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21605785 | spa |
dc.relation.references | Ganguli, P., & Reddy, M. J. (2012). Probabilistic assessment of flood risks using trivariate copulas. https://doi.org/10.1007/s00704-012-0664-4 | spa |
dc.relation.references | Garrote, J., Alvarenga, F. M., & Díez-Herrero, A. (2016). Quantification of flash flood economic risk using ultra-detailed stage–damage functions and 2-D hydraulic models. Journal of Hydrology, 541, 611–625. https://doi.org/10.1016/j.jhydrol.2016.02.006 | spa |
dc.relation.references | Hammond, M. J., Chen, A. S., Djordjević, S., Butler, D., & Mark, O. (2013). Urban flood impact assessment: A state-of-the-art review. | spa |
dc.relation.references | Histórico, E., Molino, T. D. E. L., & Tíscar, J. (2016). Simulación Tridimensional Multifásica del Río Guadalquivir Durante Crecidas Extremas en Tramos Tipo Cañon. | spa |
dc.relation.references | Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Retrieved from www.elsevier.com/locate/jhydrol | spa |
dc.relation.references | IDEAM. (2017). CERCA DE 12 MILLONES DE COLOMBIANOS ESTÁN EN RIESGO POR AMENAZA DE INUNDACIÓN. | spa |
dc.relation.references | INGENIAR LTDA., & CIMNE. (2018). Perfil de Riesgo de Desastres por Sequía y Evaluación del Riesgo por Inundación en la ciudad de Río Branco, Uruguay. | spa |
dc.relation.references | Instituto de Hidrológia Metereológiga y Estudios Ambientales (IDEAM). (2016). Amenaza por Crecientes Súbitas Tr: 50 años. | spa |
dc.relation.references | Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., … Ward, P. J. (2012). Comparative flood damage model assessment: towards a European approach. Hazards Earth Syst. Sci, 12, 3733–3752. https://doi.org/10.5194/nhess-12-3733-2012 | spa |
dc.relation.references | Kirpich, Z. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 6(362). | spa |
dc.relation.references | Komolafe, A. A., Herath, S., & Avtar, R. (2019a). Establishment of detailed loss functions for the urban flood risk assessment in Chao Phraya River basin, Thailand. Geomatics, Natural Hazards and Risk, 10(1), 633–650. https://doi.org/10.1080/19475705.2018.1539038 | spa |
dc.relation.references | Komolafe, A. A., Herath, S., & Avtar, R. (2019b). Establishment of detailed loss functions for the urban flood risk assessment in Chao Phraya River basin, Thailand. Geomatics, Natural Hazards and Risk, 10(1), 633–650. https://doi.org/10.1080/19475705.2018.1539038 | spa |
dc.relation.references | Komolafe, A. A., Herath, S., Avtar, R., & Vuillaume, J. F. (2019). Comparative analyses of flood damage models in three Asian countries: towards a regional flood risk modelling. Environment Systems and Decisions, 39(2), 229–246. https://doi.org/10.1007/s10669-018-9716-3 | spa |
dc.relation.references | Kubal, C., Haase, D., Meyer, V., & Scheuer, S. (2009a). Integrated urban flood risk assessment-adapting a multicriteria approach to a city. In Hazards Earth Syst. Sci (Vol. 9). Retrieved from www.nat-hazards-earth-syst-sci.net/9/1881/2009/ | spa |
dc.relation.references | Kubal, C., Haase, D., Meyer, V., & Scheuer, S. (2009b). Integrated urban flood risk assessment – adapting a multicriteria approach to a city. 1881–1895. | spa |
dc.relation.references | Kull, D., & Feldman, A. (1998). Evolution of Clark’s Unit Graph Method to Spatially Distributed Runoff. Journal of Hydrologic Engineering, 3(1), 9–18. | spa |
dc.relation.references | Li, C., Cheng, X., Li, N., Du, X., Yu, Q., & Kan, G. (2016). A framework for flood risk analysis and benefit assessment of flood control measures in Urban Areas. International Journal of Environmental Research and Public Health, 13(8). https://doi.org/10.3390/ijerph13080787 | spa |
dc.relation.references | Lluen Chero, W. E. (2015). Aplicacion de la nueva herramienta HEC-RAS 5.0 para calculos bidimiensionales del flujo de agua en rios. 74. | spa |
dc.relation.references | Mahmood, S., Rahman, A.-U., & Shaw, R. (2019). Spatial appraisal of flood risk assessment and evaluation using integrated hydro-probabilistic approach in Panjkora River Basin, Pakistan. https://doi.org/10.1007/s10661-019-7746-z | spa |
dc.relation.references | Marín Muñoz, A., & Barros Martínez, J. (2016). Modelación de tránsito de crecientes en el río aburrá-medellín para una propuesta de su restauración. Revista EIA, (26), 153–168. | spa |
dc.relation.references | Mebarki, A., Valencia, N., Salagnac, J. L., & Barroca, B. (2012). Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale. Hazards Earth Syst. Sci, 12, 1799–1809. https://doi.org/10.5194/nhess-12-1799-2012 | spa |
dc.relation.references | Merz, B., Annegret, A. E., Thieken, H., Merz, B., & Thieken, A. H. (2009). Flood risk curves and uncertainty bounds. 51, 437–458. https://doi.org/10.1007/s11069-009-9452-6 | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2017). Guía Técnica De Criterios Para El. 128. | spa |
dc.relation.references | Morita, M., & Tung, Y. K. (2019). Uncertainty quantification of flood damage estimation for urban drainage risk management. https://doi.org/10.2166/wst.2019.297 | spa |
dc.relation.references | Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2020). A review of the current status of flood modelling for urban flood risk management in the developing countries. https://doi.org/10.1016/j.sciaf.2020.e00269 | spa |
dc.relation.references | Ochoa, S. A. (2014). Evaluación de Modelos Hidrodinámicos para Confluencia con el Arroyo La Cañada, Provincia. 118. | spa |
dc.relation.references | Ogania, J. L., Puno, G. R., Alivio, M. B. T., & Taylaran, J. M. G. (2019). Effect of digital elevation model’s resolution in producing flood hazard maps. Global Journal of Environmental Science and Management, 5(1), 95–106. https://doi.org/10.22034/gjesm.2019.01.08 | spa |
dc.relation.references | Oubennaceur, K., Chokmani, K., Nastev, M., Lhissou, R., & Alem, A. El. (2017). Flood risk mapping for direct damage to residential buildings in Quebec, Canada. https://doi.org/10.1016/j.ijdrr.2018.09.007 | spa |
dc.relation.references | Park, K., & Won, J.-H. (2019). Analysis on distribution characteristics of building use with risk zone classification based on urban flood risk assessment. https://doi.org/10.1016/j.ijdrr.2019.101192 | spa |
dc.relation.references | Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., & Han, D. (2017). Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5. Natural Hazards, 89(1), 93–130. https://doi.org/10.1007/s11069-017-2956-6 | spa |
dc.relation.references | Pedrozo-Acuña, A., Rodríguez-Rincón, J. P., Arganis-Juárez, M., Domínguez-Mora, R., & González Villareal, F. J. (2015). Estimation of probabilistic flood inundation maps for an extreme event: Pánuco River, México. Journal of Flood Risk Management, 8(2), 177–192. https://doi.org/10.1111/jfr3.12067 | spa |
dc.relation.references | Peters, J., & Easton, D. (1996). Runoff Simulation Using Radar Rainfall Data. Water Resources Bulletin, 32(4), 753–760. | spa |
dc.relation.references | Quintero, J. J. (2013). Diagnóstico de la gestión integral del riesgo por inundaciones y avenidas torrenciales en ríos urbanos del departamento de Caldas. Universidad Católica de Manizales, 117. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Quirogaa, V. M., Kurea, S., Udoa, K., & Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001 | spa |
dc.relation.references | Rao, A., & Kao, S.-C. (2006). Statistical Analysis of Indiana Rainfall Data. West Lafayette, IN. | spa |
dc.relation.references | Remo, J. W. F., & Pinter, N. (2007). Retro-modeling the Middle Mississippi River. Journal of Hydrology, 337(3–4), 421–435. https://doi.org/10.1016/j.jhydrol.2007.02.008 | spa |
dc.relation.references | ShahiriParsa, A., Noori, M., Heydari, M., & Rashidi, M. (2016). Floodplain zoning simulation by using HEC-RAS and CCHE2D models in the Sungai Maka river. Air, Soil and Water Research, 9, 55–62. https://doi.org/10.4137/ASWR.S36089 | spa |
dc.relation.references | SIÉ Ingeniería. (2018). Asistencia Técnica al Municipio de Supía Sobre la Adecuada Incorporación de los Asuntos de Riesgo y Determinantes Ambientales en los Procesos de Revisión Y Ajuste de su Esquema de Ordenamiento Territorial. | spa |
dc.relation.references | Singh, V. P. (1988). Hydrologic Systems (U. of California, Ed.). Prentice Hall. | spa |
dc.relation.references | Springall, R. (1970). Hidrología. Ciudad de México: Facultad de Ingeniaría UNAM. | spa |
dc.relation.references | Stephens, T. A., & Bledsoe, B. P. (2020). Probabilistic mapping of flood hazards: Depicting uncertainty in streamflow, land use, and geomorphic adjustment. Anthropocene, 29, 100231. https://doi.org/10.1016/j.ancene.2019.100231 | spa |
dc.relation.references | Timbe Castro, L. M., & Willems, P. (2011). Desempeño de modelos hidráulicos 1D y 2D para la simulación de inundaciones Lus Timbe. Maskana, 2(1), 91–98. https://doi.org/10.18537/mskn.02.01.07 | spa |
dc.relation.references | Ur, M. A., & Tariq, R. (2013). Risk based flood zoning employing expected annual damages: the Chenab River case study. https://doi.org/10.1007/s00477-013-0730-1 | spa |
dc.relation.references | Van Dyck, J., & Willems, P. (2013). Probabilistic flood risk assessment over large geographical regions. Water Resour. Res, 49, 3330–3344. https://doi.org/10.1002/wrcr.20149 | spa |
dc.relation.references | Velásquez, C. A., Cardona, O. D., Mora, M. G., Yamin, L. E., Carreño, M. L., & Barbat, A. H. (2014). Hybrid loss exceedance curve (HLEC) for disaster risk assessment. Natural Hazards, 72(2), 455–479. https://doi.org/10.1007/s11069-013-1017-z | spa |
dc.relation.references | Verdin, A., Funk, C., Rajagopalan, B., & Kleiber, W. (2016). Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2552–2562. https://doi.org/10.1109/TGRS.2015.2502956 | spa |
dc.relation.references | Ward, P., van Pelt, S., de Keizer, O., Aerts, J., Beersma, J., van den Hurk, B., … Philip Ward, C. J. (2011). Including climate change projections in probabilistic flood risk assessment. 1, 207. https://doi.org/10.1111/jfr3.12029 | spa |
dc.relation.references | Wu, X., Zhou, L., Gao, G., Guo, J., & Ji, Z. (2016). Urban flood depth-economic loss curves and their amendment based on resilience: evidence from Lizhong Town in Lixia River and Houbai Town in Jurong River of China. Natural Hazards, 82(3), 1981–2000. https://doi.org/10.1007/s11069-016-2281-5 | spa |
dc.relation.references | Yamin, L. E., Ghesquiere, F., Cardona, O. D., & Ordaz, M. G. (2013). Modelación probabilista para la gestión del riesgo de desastre El caso de Bogotá, Colombia. | spa |
dc.relation.references | Yang, M. S., Kull, W., & Feldman, A. D. (1999). Evolution of clark’s unit graph method to spatially distributed runoff. Journal of Hydrologic Engineering, 4(1), 89–90. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:1(89) | spa |
dc.relation.references | Yara, F. A. (2019). Estudio hidráulico del meandro del río Magdalena , municipio de La Dorada Caldas. | spa |
dc.relation.references | Yin, J., Ye, M., Yin, Z., & Xu, S. (2014). A review of advances in urban flood risk analysis over China. https://doi.org/10.1007/s00477-014-0939-7 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | 360 - Problemas y servicios sociales; asociaciones::363 - Otros problemas y servicios sociales | spa |
dc.subject.lcsh | Flood damage prevention -- Risk Assessment | |
dc.subject.lemb | inundaciones | |
dc.subject.lemb | inundaciones - evaluación del riesgo | |
dc.subject.proposal | Modelación probabilista | spa |
dc.subject.proposal | Inundación | spa |
dc.subject.proposal | Amenaza | spa |
dc.subject.proposal | Vulnerabilidad | spa |
dc.subject.proposal | Riesgo | spa |
dc.subject.proposal | Pérdidas | spa |
dc.subject.proposal | Probabilistic modeling | eng |
dc.subject.proposal | Flood | eng |
dc.subject.proposal | Hazard | eng |
dc.subject.proposal | Vulnerability | eng |
dc.subject.proposal | Risk | eng |
dc.subject.proposal | Losses | eng |
dc.title | Evaluación del riesgo urbano por inundaciones del río Supía | spa |
dc.title.translated | Urban flood risk assessment at the Supía River | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: