Implementar un sistema de reconocimiento e identificación de rostros sobre secuencias de video mediante un modelo de Redes Neuronales Convolucionales y Transfer Learning

dc.contributor.advisorNiño Vásquez, Luis Fernandospa
dc.contributor.authorRoa García, Fabio Andrésspa
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.date.accessioned2022-02-14T20:20:03Z
dc.date.available2022-02-14T20:20:03Z
dc.date.issued2021-09-10
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEn el campo de la biometría y análisis de imágenes se han dado avances importantes en los últimos años, de esta manera, se han formalizado técnicas de reconocimiento facial mediante el uso de redes neuronales convolucionales apoyándose por algoritmos de transfer learning y clasificación. Estas técnicas en conjunto, se pueden aplicar al análisis de video, realizando una serie de pasos adicionales para optimizar los tiempos procesamiento y la precisión del modelo. El propósito de este trabajo es utilizar el modelo ResNet-34 junto con transfer Learning para el reconocimiento e identificación de rostros sobre secuencias de video. (Texto tomado de la fuente).spa
dc.description.abstractNowadays, thanks to technological innovation, it has been possible to obtain a significant increase in the production of multimedia content through devices such as tablet cell phones and computers. This increase in multimedia content for the most part is in video format and implies a need to find useful information about this type of format, but the resulting problem will be a tedious task since it is not possible to analyze useful information about the vídeos without it being in excessive use of resources and long execution times. Fortunately, in the field of biometrics and image analysis, there have been important advances in recent years, in this way, facial recognition techniques have been formalized through the use of convolutional neural networks supported by transfer learning and classification algorithms. Together, these techniques can be applied to video analysis, performing a series of additional steps to optimize processing times and model accuracy. The purpose of this work is to use the ResNet-34 model and Transfer Learning for face recognition and identification on video footage.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.methodsA continuación se realiza una descripción de las fases metodológicas aplicadas en el trabajo: Fase 1: Comprensión del negocio Esta fase se enfoca en comprender los objetivos del proyecto, definir los requisitos y convertirlos en la definición formal del problema. Fase 2: Comprensión de los Datos: Esta fase se centra en la recopilación de datos en bruto , teniendo como propósito la calidad de los mismos y la detección de subconjuntos de datos interesantes para la realización del proyecto. Fase 3: Preparación de los Datos: En esta fase se cubren todas las actividades relacionadas con la construcción del conjunto de datos final, estas actividades incluyen: Limpieza, transformación, discretización, reducción e ingeniería de características. Fase 4: Modelado: En esta fase se seleccionan y aplican los diferentes algoritmos y técnicas de modelado como son CNN y Transfer Learning Esta fase puede ser cíclica dependiendo de las técnicas seleccionadas, si esto es asi, la fase retorna a la fase anterior de preparación de datos y continua iterativamente, hasta que el conjunto de datos sea consecuente con los modelos aplicados. Fase 5: Evaluación: Esta fase se enfoca en la evaluación y validación de los modelos construidos, con el fin de medir la calidad y rendimiento de acuerdo a los requerimientos y objetivos del proyecto. Fase 6: Despliegue: En esta fase se implementa el producto final en una aplicación del mundo real junto con los entregables asociados a las fases anteriores, así como el informe final que consolide la especificación técnica, desarrollo del proyecto y los resultados obtenidosspa
dc.description.notesIncluye anexosspa
dc.description.researchareaSistemas inteligentesspa
dc.format.extentxvi, 70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80979
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesM. Liu and Z. Liu, “Deep Reinforcement Learning Visual-Text Attention for Multimodal Video Classification,” in 1st International Workshop on Multimodal Understanding and Learning for Embodied Applications - {MULEA} ’19, pp. 13–21.spa
dc.relation.referencesS. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10. pp. 1345–1359, Oct-2010.spa
dc.relation.referencesX. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering Deep Learning to Mobile Devices via Offloading,” in Proceedings of the Workshop on Virtual Reality and Augmented Reality Network - {VR}/{AR} Network ’17, pp. 42–47.spa
dc.relation.referencesO. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” vol. 4, no. 11, p. e00938, 2018.spa
dc.relation.referencesG. Szirtes, D. Szolgay, Á. Utasi, D. Takács, I. Petrás, and G. Fodor, “Facing reality: an industrial view on large scale use of facial expression analysis,” in Proceedings of the 2013 on Emotion recognition in the wild challenge and workshop - {EmotiW} ’13, pp. 1–8.spa
dc.relation.referencesG. Levi and T. Hassner, “Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns,” in Proceedings of the 2015 {ACM} on International Conference on Multimodal Interaction - {ICMI} ’15, pp. 503–510.spa
dc.relation.referencesR. Ewerth, M. Mühling, and B. Freisleben, “Robust Video Content Analysis via Transductive Learning,” vol. 3, no. 3, pp. 1–26.spa
dc.relation.referencesM. Parchami, S. Bashbaghi, and E. Granger, “{CNNs} with cross-correlation matching for face recognition in video surveillance using a single training sample per person,” in 2017 14th {IEEE} International Conference on Advanced Video and Signal Based Surveillance ({AVSS}), pp. 1–6.spa
dc.relation.referencesH. Khan, A. Atwater, and U. Hengartner, “Itus: an implicit authentication framework for android,” in Proceedings of the 20th annual international conference on Mobile computing and networking - {MobiCom} ’14, pp. 507–518.spa
dc.relation.referencesL. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications,” in Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, pp. 82–95.spa
dc.relation.referencesR. Iqbal, F. Doctor, B. More, S. Mahmud, and U. Yousuf, “Big data analytics: Computational intelligence techniques and application areas,” Technol. Forecast. Soc. Change, vol. 153, p. 119253, 2020.spa
dc.relation.referencesU. Schmidt-Erfurth, A. Sadeghipour, B. S. Gerendas, S. M. Waldstein, and H. Bogunović, “Artificial intelligence in retina,” vol. 67, pp. 1–29.spa
dc.relation.referencesM. Mittal et al., “An efficient edge detection approach to provide better edge connectivity for image analysis,” IEEE Access, vol. 7, pp. 33240–33255, 2019.spa
dc.relation.referencesD. Sirohi, N. Kumar, and P. S. Rana, “Convolutional neural networks for 5G-enabled Intelligent Transportation System : A systematic review,” vol. 153, pp. 459–498.spa
dc.relation.referencesA. Kumar, A. Kaur, and M. Kumar, “Face detection techniques: a review,” Artif. Intell. Rev., vol. 52, no. 2, pp. 927–948, 2019.spa
dc.relation.referencesK. S. Gautam and S. K. Thangavel, “Video analytics-based intelligent surveillance system for smart buildings,” Soft Comput., vol. 23, no. 8, pp. 2813–2837, 2019.spa
dc.relation.referencesJ. Yu, K. Sun, F. Gao, and S. Zhu, “Face biometric quality assessment via light CNN,” vol. 107, pp. 25–32.spa
dc.relation.referencesL. T. Nguyen-Meidine, E. Granger, M. Kiran, and L.-A. Blais-Morin, “A comparison of {CNN}-based face and head detectors for real-time video surveillance applications,” in 2017 Seventh International Conference on Image Processing Theory, Tools and Applications ({IPTA}), pp. 1–7.spa
dc.relation.referencesB. Chacua et al., “People Identification through Facial Recognition using Deep Learning,” in 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2019, pp.spa
dc.relation.referencesJ. Park, J. Chen, Y. K. Cho, D. Y. Kang, and B. J. Son, “CNN-based person detection using infrared images for night-time intrusion warning systems,” Sensors (Switzerland), vol. 20, no. 1, 2020.spa
dc.relation.referencesA. Bansal, C. Castillo, R. Ranjan, and R. Chellappa, “The Do’s and Don’ts for CNN-Based Face Verification,” in 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), 2017, pp. 2545–2554.spa
dc.relation.referencesJ. Galbally, “A new Foe in biometrics: A narrative review of side-channel attacks,” vol. 96, p. 101902.spa
dc.relation.referencesY. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent Backdoor Attacks on Deep Neural Networks,” in Proceedings of the 2019 {ACM} {SIGSAC} Conference on Computer and Communications Security, pp. 2041–2055.spa
dc.relation.referencesY. Akbulut, A. Sengur, U. Budak, and S. Ekici, “Deep learning based face liveness detection in vídeos,” in 2017 International Artificial Intelligence and Data Processing Symposium ({IDAP}), pp. 1–4.spa
dc.relation.referencesJ. Zhang, W. Li, P. Ogunbona, and D. Xu, “Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective,” vol. 52, no. 1, pp. 1–38.spa
dc.relation.referencesC. X. Lu et al., “Autonomous Learning for Face Recognition in the Wild via Ambient Wireless Cues,” in The World Wide Web Conference on - {WWW} ’19, pp. 1175–1186.spa
dc.relation.referencesJ. C. Hung, K.-C. Lin, and N.-X. Lai, “Recognizing learning emotion based on convolutional neural networks and transfer learning,” vol. 84, p. 105724.spa
dc.relation.referencesS. Zhang, X. Pan, Y. Cui, X. Zhao, and L. Liu, “Learning Affective Video Features for Facial Expression Recognition via Hybrid Deep Learning,” IEEE Access, vol. 7, pp. 32297–32304, 2019.spa
dc.relation.referencesC. Herrmann, T. Müller, D. Willersinn, and J. Beyerer, “Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs,” p. 99870I.spa
dc.relation.referencesF. An and Z. Liu, “Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM,” vol. 36, no. 3, pp. 483–498.spa
dc.relation.referencesZ. Zhang, P. Luo, C. C. Loy, and X. Tang, “Joint Face Representation Adaptation and Clustering in Vídeos,” in Computer Vision – {ECCV} 2016, vol. 9907, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Springer International Publishing, pp. 236–251.spa
dc.relation.referencesE. G. Ortiz, A. Wright, and M. Shah, “Face recognition in movie trailers via mean sequence sparse representation-based classification,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2013, pp. 3531–3538.spa
dc.relation.references“Privacy Protection for Life-log Video.” [Online]. Available: https://www.researchgate.net/publication/4249807_Privacy_Protection_for_Life-log_Video. [Accessed: 13-Jun-2021].spa
dc.relation.referencesSUPERINTENDENDENCIA DE INDUSTRIA Y COMERCIO, “Proteccion de datos personales en sistemas de videovigilancia,” 2016.spa
dc.relation.referencesS. Ebrahimi Kahou, V. Michalski, K. Konda, R. Memisevic, and C. Pal, “Recurrent Neural Networks for Emotion Recognition in Video,” in Proceedings of the 2015 {ACM} on International Conference on Multimodal Interaction - {ICMI} ’15, pp. 467–474.spa
dc.relation.referencesE. Flouty, O. Zisimopoulos, and D. Stoyanov, “FaceOff: Anonymizing Vídeos in the Operating Rooms,” in {OR} 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, vol. 11041, D. Stoyanov, Z. Taylor, D. Sarikaya, J. McLeod, M. A. González Ballester, N. C. F. Codella, A. Martel, L. Maier-Hein, A. Malpani, M. A. Zenati, S. De Ribaupierre, L. Xiongbiao, T. Collins, T. Reichl, K. Drechsler, M. Erdt, M. G. Linguraru, C. Oyarzun Laura, R. Shekhar, S. Wesarg, M. E. Celebi, K. Dana, and A. Halpern, Eds. Springer International Publishing, pp. 30–38.spa
dc.relation.referencesA. Turing, “Maquinaria computacional e Inteligencia Alan Turing, 1950,” 1950.spa
dc.relation.referencesG. R. Yang and X. J. Wang, “Artificial Neural Networks for Neuroscientists: A Primer,” Neuron, vol. 107, no. 6, pp. 1048–1070, Sep. 2020.spa
dc.relation.referencesJ. Singh and R. Banerjee, “A Study on Single and Multi-layer Perceptron Neural Network,” in 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), 2019.spa
dc.relation.referencesI. G. and Y. B. and A. Courville, Deep Learning. 2016.spa
dc.relation.referencesE. Stevens, L. Antiga, and T. Viehmann, “Deep Learning with PyTorch.”spa
dc.relation.referencesK. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.”spa
dc.relation.referencesM. KAYA and H. Ş. BİLGE, “Deep Metric Learning: A Survey,” Symmetry 2019, Vol. 11, Page 1066, vol. 11, no. 9, p. 1066, Aug. 2019.spa
dc.relation.referencesB. R. Vasconcellos, M. Rudek, and M. de Souza, “A Machine Learning Method for Vehicle Classification by Inductive Waveform Analysis,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 13928–13932, Jan. 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembNeural networks (Computer science)eng
dc.subject.lembRedes neuralesspa
dc.subject.lembMachine learningeng
dc.subject.lembAprendizaje automático (Inteligencia artificial)spa
dc.subject.lembOptical data processingeng
dc.subject.lembProcesamiento óptico de datosspa
dc.subject.proposalCNNeng
dc.subject.proposalKNNfra
dc.subject.proposalOpenCVeng
dc.subject.proposalDlibeng
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalReconocimiento facialspa
dc.subject.proposalTransferencia de aprendizajespa
dc.subject.proposalAprendizaje residual profundospa
dc.subject.proposalk vecinos más próximosspa
dc.subject.proposalFace recognitioneng
dc.subject.proposalDeep learningeng
dc.subject.proposalTransfer learningeng
dc.subject.proposalDeep residual learningeng
dc.subject.proposalRedes neuronales convolucionalesspa
dc.titleImplementar un sistema de reconocimiento e identificación de rostros sobre secuencias de video mediante un modelo de Redes Neuronales Convolucionales y Transfer Learningspa
dc.title.translatedImplement a face recognition and identification system on video sequences through a model of Convolutional Neural Networks and Transfer Learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075654641.2021.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: