Bird diversity in the urban system of Medellín (Colombia) and its surrounding non-urban landscape

dc.contributor.advisorMancera Rodríguez, Nestor Javier
dc.contributor.advisorMacGregor Fors, Ian
dc.contributor.authorGarizábal Carmona, Jaime Andrés
dc.contributor.orcidGarizábal-Carmona, Jaime A. [0000000201772729]
dc.contributor.orcidMancera-Rodríguez, Nestor Jarvier [0000000273259588}
dc.contributor.orcidMacGregor-Fors, Ian [0000000331987322]
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestre
dc.contributor.scopusGarizábal-Carmona, Jaime A. [57225197443]
dc.coverage.cityMedellín, Colombia
dc.date.accessioned2025-10-31T19:38:10Z
dc.date.available2025-10-31T19:38:10Z
dc.date.issued2025-10-25
dc.descriptionIlustraciones
dc.description.abstractCities are highly complex, dynamic, and heterogeneous human-dominated systems that act as environmental filters for species assemblages at multiple spatiotemporal scales. Over the past decades, knowledge of ecological patterns across urbanized landscapes has significantly increased, including in Neotropical cities. However, urban contexts where environmental filtering operates under both high urbanization densities and high biodiversity remain poorly understood, particularly those dominated by native species. This thesis assessed how urbanization and the internal heterogeneity of Medellín (Colombia) shape bird diversity compared to other dominant systems in the surrounding landscape, using a city-wide sampling strategy and a space-for-time substitution approach. In Chapter One, bird species richness, abundance, composition and structure were compared between urban and non-urban systems (20 sites per system, 160 in total). Results suggest that birds inhabiting open areas (which also occur in non-urban sites) experience broad environmental filtering until a threshold at 76–100 % urbanization (based on the percentage of build cover at 50 m buffers), while forest-dependent species (primarily from non-urban sites) undergo narrower filtering at the urban fringe (urban limits). Chapters Two and Three analyzed drivers of bird diversity (species richness and abundance) within urban systems (212 sites), from taxonomic and functional perspectives, respectively. These chapters assessed the influence of urban infrastructure (e.g., built cover, buildings, cables), human-related hazards (e.g., noise, motorized vehicles, pedestrians), and vegetation-related factors (e.g., green cover, vertical vegetation layers, vegetation management). From the taxonomic perspective (Chapter Two), species abundance based-groups revealed that highly abundant species showed mostly positive relationships with human-related factors, but only at the abundance level. In contrast, moderately and lowly abundant species exhibited predominantly negative relationships with human-related factors at both richness and abundance levels, while showing positively association to vegetation-related factors (except vegetation management). From the functional perspective (Chapter Three), species richness and abundance declined in more urbanized areas across diet- and foraging strata-based groups. Even highly generalist species (i.e., omnivorous birds and those foraging across multiple strata) showed predominantly negative associations with human-related factors. Conversely, most diet and foraging strata categories were positively related to greater vegetation availability (green cover) and structural heterogeneity (number of vegetation layers). Overall, these results indicate that urbanization in Medellín imposes strong environmental filtering on most bird species, regardless of their geographical origin or ecological traits related to diet and foraging strata. Therefore, if mitigating urban biodiversity loss in highly dense Neotropical cities like Medellín is intended, urban planning and vegetation management should focus on reducing human-related constraints in areas with intermediate to low urbanization while safeguarding forest remnants and adjacent non-urban areas.eng
dc.description.abstractLas ciudades son sistemas dominados por el ser humano que representan filtros ambientales para los ensamblajes de especies a múltiples escalas espaciotemporales. Durante las últimas décadas, el conocimiento sobre patrones ecológicos en paisajes urbanizados ha crecido substancialmente, incluyendo ciudades Neotropicales. Sin embargo, contextos urbanos donde el filtro ambiental opera bajo altas densidades de urbanización y alta biodiversidad permanecen pocos entendidos, particularmente los dominados por especies nativas. Esta tesis aborda cómo la urbanización y la heterogeneidad interna de Medellín (Colombia) moldea la diversidad de aves comparativamente con otros sistemas dominantes del paisaje circundante, usando una estrategia de muestreo city-wide y un acercamiento space-for-time substitution. En el Capitulo Uno, la riqueza de especies de aves, abundancia, composición y estructura fue comparada entre sistemas urbanos y no urbanos (20 sitios por sistema, 160 en total). Los resultados sugieren que las aves que habitan áreas abiertas (las cuales también se encuentran en sitios no urbanos) experimentan un filtro ambiental grueso hasta un umbral a 76–100 % de nivel de urbanización (basado en el porcentaje de construcciones a 50 m de buffer), mientras las especies dependientes de bosques (primariamente de sitios no urbanos) sufren un mayor filtro en el borde urbano. Los Capítulos Dos y Tres analizaron los impulsores de diversidad de aves (riqueza de especies y abundancia) dentro de sistemas urbanos (212 sitios), desde una perspectiva taxonómica y funcional, respectivamente. Estos capítulos abordaron el rol de la infraestructura urbana (e.g., cobertura construida, edificaciones, cables), riesgos relacionados con humanos (e.g., ruido, vehículos X Bird diversity in the urban system of Medellín (Colombia) and its surrounding nonurban landscape motorizados, peatones), y factores relacionados con la vegetación (cobertura verde, número de capas de vegetación, manejo de la vegetación), así como factores a escala paisaje (i.e., distancia al borde urbano, número de parches y índice de parche más grande de cobertura verde). Desde la perspectiva taxonómica (Capitulo Dos), los grupos de especies basados en abundancia revelaron que las especies altamente abundantes mostraron principalmente relaciones positivas con factores relacionados con las actividades humanas (i.e., peatones, vehículos motorizados), pero solo a nivel de abundancia. En contraste, las especies moderada y escasamente abundantes mostraron predominantemente asociaciones negativas con factores relacionados con el ser humano a ambos niveles (riqueza y abundancia, incluyendo actividades humanas e infraestructura urbana), mostrando asociación positiva con factores relacionados con la vegetación (excepto manejo de la vegetación para las escasamente abundantes). Desde la perspectiva funcional (Capitulo Tres), la riqueza de especies y abundancia disminuyeron en zonas más urbanizadas incluyendo todos los grupos de dietas y estratos de forrajeo. Incluso las especies generalistas (i.e., omnívoros y especies que forrajean en múltiples estratos), mostraron predominantemente asociaciones negativas con factores relacionados con el ser humano. Por el contrario, la mayor parte de los grupos de dieta y estrato de forrajeo estuvieron positivamente relacionados con mayor disponibilidad de vegetación (cobertura verde) y heterogeneidad estructural (número de capas de vegetación). En general, estos resultados indican que la urbanización en Medellín representa un filtrado ambiental fuerte para la mayor parte de las especies, sin importar su origen biogeográfico o rasgos ecológicos relacionados con la dieta y los estratos de forrajeo. Por ello, si se pretende mitigar la pérdida de biodiversidad en las ciudades Neotropicales altamente urbanizadas como Medellín, la planeación urbana y el manejo de la vegetación deberá enfocarse en reducir las limitaciones relacionadas con el ser humano en áreas con niveles intermedios a bajos de urbanización, mientras se salvaguardan los remanentes de bosque nativo en las áreas no urbanas adyacentes. (Texto tomado de la fuente)spa
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.description.degreelevelDoctorado
dc.description.degreenameDoctorado en Ecología
dc.description.methodsThis research was conducted in Medellín, Colombia (6º15′ N, 75º34′ W; ca. 1,450–2,200 m a.s.l.), encompassing the city and its surrounding municipalities within the Tropical Andes. Medellín represents a densely populated urban system (~4 million inhabitants; ~21,000 people/km²) embedded in a heterogeneous landscape dominated by built infrastructure, surrounded by remnant native forests, exotic-tree plantations, and open areas (pastures and croplands). Urban greenspaces are mainly distributed along waterways and parks, with vegetation predominantly composed of exotic species managed under silvicultural regimes. I implemented an integrative, multi-scale sampling design combining stratified and systematic approaches to cover both non-urban and urban systems. In non-urban environments, 80 sampling points were evenly distributed across four representative systems—well-preserved native forest, secondary forest, exotic-tree plantations, and open areas—ensuring spatial independence (≥200 m apart). In urban areas, I established 212 sampling points across a 1×1 km grid covering the entire city, complemented with additional points in large greenspaces (>10 ha) to account for their ecological relevance. Based on a 50 m buffer around each point, sites were classified into four urbanization levels (0–25%, 26–50%, 51–75%, and 76–100% built cover) using 10 m Sentinel-2 imagery processed in Google Earth Engine. Bird surveys were conducted between June and August 2023, encompassing the breeding season of resident species. The same experienced observer conducted two consecutive 5-minute point counts (50 m radius) per site within the first five hours after sunrise and under favorable weather conditions. All birds detected visually or aurally and actively using the surveyed area were recorded, excluding overflying individuals. Environmental variables potentially driving bird diversity were quantified within the same 50 m radius. Nine predictors were grouped into three categories: (i) urban infrastructure—built cover, number of buildings, and number of overhead cables; (ii) human-related factors—pedestrian and vehicle numbers, and noise intensity (measured with a digital sound level meter); and (iii) vegetation-related features—green cover, vegetation layer complexity (0–3), and vegetation management intensity (0–3). In Chapter 1, I analyzed bird species richness, abundance, and composition across the urbanization gradient. Species richness per point was estimated through rarefaction and extrapolation procedures (1,000 bootstrap replications), while taxonomic dissimilarity between systems was calculated using Jaccard and Bray–Curtis indices. I applied hierarchical clustering, non-metric multidimensional scaling (NMDS), and Measurement of Biodiversity (MoB) analyses to assess taxonomic and functional patterns. Chapters 2 and 3 focused on the responses of bird groups defined by abundance, diet, and foraging strata. In Chapter 2, species were categorized into highly-, moderately-, and lowly-abundant groups. In Chapter 3, species were categorized by diet and foraging strata based on Elton Traits. For both, I used a multi-model inferential framework to identify the most influential environmental predictors. To account for non-linear relationships, I used Generalized Additive Models (GAMs) with Poisson, quasi-Poisson, or negative binomial errors depending on dispersion. Competing models were compared using the corrected Akaike’s Information Criterion (AICc), retaining those with ΔAICc ≤ 2. Final models included predictors consistently selected among top-performing models and served as the basis for ecological interpretation.
dc.description.notesI kindly request that this document remains as confidential as possible. Chapters One and Two are already under review in scientific journals, and Chapter Three is expected to be submitted soon. Thus, looking ahead, I recommend citing my thesis outcomes directly from the published manuscripts (when they are published), except when referencing information unique to this documenteng
dc.description.researchareaEcología urbana
dc.description.sponsorshipMy doctoral research was possible thank to the economic aid of the “fund for strengthen the academic training through supporting research, artistic creation, or innovation projects at the National University of Colombia 2022-2024” (scholarship ID: 57625), and the Doctoral scholarships for university teachers in Colombia (scholarship ID: 9092) granted by the National Ministry of Science, Technology, and Innovation. In addition, I received economical support from the small grants of Corporación Merceditas, the mobility program of the National University of Colombia 2022-2024 (scholarship ID: 1229), the economic support given by the Curricular Area of Forests and Environmental Conservation of the same university (scholarship ID: 0762), and the small grant awarded by Lahden Yliopistokampus and University of Helsinki in Finland (scholarship ID: 75711221).
dc.format.extent1 recurso en línea (139 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89094
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ecología
dc.relation.referencesAlbert, S., J. D. Wolfe, J. Kellerman, T. Sherry, B. J. M. Stutchbury, N. J. Bayly, and A. Ruiz-Sánchez. 2020. Habitat ecology of Nearctic-Neotropical migratory landbirds on the nonbreeding ground. The Condor: Ornithological Applications 122
dc.relation.referencesAlmeida-Gomes, M., P. K. Lira, F. Severo-Neto, F. L. de Souza, and F. Valente-Neto. 2025. Evidence of taxonomic but not functional diversity extinction debt in bird assemblages in an urban area in the Cerrado hotspot. Landscape and Urban Planning 253:105219.
dc.relation.referencesAmaya-Espinel, J. D., M. Hostetler, C. Henríquez, and C. Bonacic. 2019. The influence of building density on Neotropical bird communities found in small urban parks. Landscape and Urban Planning 190:103578.
dc.relation.referencesAndrade, G. I., F. Remolina, and D. Wiesner. 2013. Assembling the pieces: a framework for the integration of multi-functional ecological main structure in the emerging urban region of Bogotá, Colombia. Urban Ecosystems 16:723–739.
dc.relation.referencesAronson, M. F. J., F. A. La Sorte, C. H. Nilon, M. Katti, M. A. Goddard, C. A. Lepczyk, P. S. Warren, N. S. G. Williams, S. Cilliers, B. Clarkson, C. Dobbs, R. Dolan, M. Hedblom, S. Klotz, J. L. Kooijmans, I. MacGregor-Fors, M. J. McDonnell, U. Mörtberg, P. Pyšek, S. Siebert, J. Sushinsky, P. Werner, and M. Winter. 2014. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society 281:20133330.
dc.relation.referencesAronson, M. F. J., C. A. Lepczyk, K. L. Evans, M. A. Goddard, S. B. Lerman, J. S. MacIvor, C. H. Nilon, and T. Vargo. 2017. Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment 15:189–196.
dc.relation.referencesAronson, M. F. J., C. H. Nilon, C. A. Lepczyk, T. S. Parker, P. S. Warren, S. S. Cilliers, M. A. Goddard, A. K. Hahs, C. Herzog, M. Katti, F. A. La Sorte, N. S. G. Williams, and W. C. Zipperer. 2016. Hierarchical filters determine community assembly of urban species pools. Ecology 97:2952–2963.
dc.relation.referencesBarbosa de Toledo, M. C., R. J. Donatelli, and G. Teixeira Batista. 2012. Relation between green spaces and bird community structure in an urban area in Southeast Brazil. Urban Ecosystems 15:111–131.
dc.relation.referencesBartoń, K. 2025. _MuMIn: Multi-Model Inference_
dc.relation.referencesBatáry, P., K. Kurucz, M. Suarez-Rubio, and D. E. Chamberlain. 2018. Non-linearities in bird responses across urbanization gradients: A meta-analysis. Global Change Biology 24:1046–1054.
dc.relation.referencesBeninde, J., M. Veith, and A. Hochkirch. 2015. Biodiversity in cities needs space: A meta analysis of factors determining intra-urban biodiversity variation. Ecology Letters 18:581–592.
dc.relation.referencesBhakti, T., J. C. Pena, A. C. M. Moura, D. Pujoni, L. Saliba, and M. Rodrigues. 2024. Urban biodiversity suitability index: decoding the relationships between cities and birds. Urban Ecosystems 27:305–319.
dc.relation.referencesBhusal, D., P. Ghimire, M. Low, Z. M. Rosin, and Y. P. Timilsina. 2025. The diversity and nesting preferences of birds along an urban-rural gradient in the Kathmandu Valley, Nepal. Urban Ecosystems 28:1–13.
dc.relation.referencesBiamonte, E., L. Sandoval, E. Chacón, and G. Barrantes. 2011. Effect of urbanization on the avifauna in a tropical metropolitan area. Landscape Ecology 26:183–194.
dc.relation.referencesBibby, C., M. Jones, and S. Marsden. 1998. Expedition Field Techniques: Bird Surveys. Expedition Advisory Centre, Royal Geographical Society, London.
dc.relation.referencesBivand, R. 2022. R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geographical Analysis 44:488–518.
dc.relation.referencesBjørnstad, O. N. 2022. ncf: Spatial Covariance Functions.
dc.relation.referencesBotkin, D. B., and C. E. Beveridge. 1997. Cities as environments. Urban Ecosystems 1:3–19.
dc.relation.referencesBrumfield, R. T., and A. P. Capparella. 1996. Historical diversification of birds in Northwestern South America: A molecular perspective on the role of vicariant events. Evolution 50:1607–1624.
dc.relation.referencesBurnham, K. P., and D. R. Anderson. 1998. Model selection and multimodel inference: a Practical Information-Theoretic Approach. Colorado State University, Fort Collins, CO.
dc.relation.referencesBurns, K. J., A. J. Shultz, P. O. Title, N. A. Mason, F. K. Barker, J. Klicka, S. M. Lanyon, and I. J. Lovette. 2014. Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Molecular Phylogenetics and Evolution 75:41–77.
dc.relation.referencesCallaghan, C. T., R. E. Major, W. K. Cornwell, A. G. B. Poore, J. H. Wilshire, and M. B. Lyons. 2019. A continental measure of urbanness predicts avian response to local urbanization. Ecography 42:1–11.
dc.relation.referencesCampos-Silva, L. A., and A. J. Piratelli. 2021. Vegetation structure drives taxonomic diversity and functional traits of birds in urban private native forest fragments. Urban Ecosystems 24:375–390.
dc.relation.referencesCanedoli, C., R. Manenti, and E. Padoa-Schioppa. 2018. Birds biodiversity in urban and periurban forests: environmental determinants at local and landscape scales. Urban Ecosystems 21:779–793.
dc.relation.referencesCaneva, G., F. Bartoli, I. Zappitelli, and V. Savo. 2020. Street trees in italian cities: story, biodiversity and integration within the urban environment. Rendiconti Lincei. Scienze Fisiche e Naturali 31:411–417.
dc.relation.referencesCarbó-Ramírez, P., and I. Zuria. 2011. The value of small urban greenspaces for birds in a Mexican city. Landscape and Urban Planning 100:213–222.
dc.relation.referencesCarvajal-Castro, J. D., A. María Ospina-L, Y. Toro-Ló pez, A. Pulido-G, L. Ximena Cabrera-Casas, S. Guerrero-Peláez, V. Hugo García-Merchá, and F. Vargas-Salinas. 2019. Birds vs bricks: Patterns of species diversity in response to urbanization in a Neotropical Andean city. Plos One 14:e0218775.
dc.relation.referencesCastaño-Villa, G. J., and J. C. Patiño-Zabala. 2007. The composition of avian communities in fragmented forest in Santa Elena region, Central Colombian Andes. Boletín Científico Museo Historia Natural 11:47–60.
dc.relation.referencesde Castro Pena, J. C., F. Martello, M. C. Ribeiro, R. A. Armitage, R. J. Young, and M. Rodrigues. 2017. Street trees reduce the negative effects of urbanization on birds. PLoS ONE 12:1–19.
dc.relation.referencesCatterall, C. P. 2009. Responses of faunal assemblages to urbanisation: global research paradigms and an avian case study. Pages 129–155 in M. J. McDonnell, A. K. Hahs, and J. H. Breuste, editors. Ecology of Cities and Towns. First edition. Cambridge University Press.
dc.relation.referencesChace, J. F., and J. J. Walsh. 2006. Urban effects on native avifauna: A review. Landscape and Urban Planning 74:46–69.
dc.relation.referencesChamberlain, D., M. Kibuule, R. Skeen, and D. Pomeroy. 2017. Trends in bird species richness, abundance and biomass along a tropical urbanization gradient. Urban Ecosystems 20:629–638.
dc.relation.referencesChan, Y. H. 2003. Biostatistics 104: Correlational Analysis. Singapure Med J 44:614–619.
dc.relation.referencesChao, A., and C.-H. Chiu. 2016. Species Richness: Estimation and Comparison. Wiley StatsRef: Statistics Reference Online:1–26.
dc.relation.referencesChave, J. 2013. The problem of pattern and scale in ecology: What have we learned in 20 years? Ecology Letters 16:4–16.
dc.relation.referencesChia, S. Y., Y.-T. Fang, Y.-T. Su, P.-Y. Tsai, C. Hsieh, S.-H. Tsao, J.-Y. Juang, C.-M. Hung, and M.-N. Tuanmu. 2023. A global database of bird nest traits. Scientific Data 10:923.
dc.relation.referencesChong, K. Y., S. Teo, B. Kurukulasuriya, Y. F. Chung, S. Rajathurai, H. Tiang, and W. Tan. 2014. Not all green is as good: Different effects of the natural and cultivated components of urban vegetation on bird and butterfly diversity. Biological Conservation 171:299–309.
dc.relation.referencesCiach, M., and A. Fröhlich. 2016. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosystems 20:547–559.
dc.relation.referencesCincotta, R. P., J. Wisnewski, and R. Engelman. 2000. Human population in the biodiversity hotspots. Nature 404:990–992.
dc.relation.referencesClergeau, P., J. P. L. Savard, G. Mennechez, and G. Falardeau. 1998. Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents. The Condor 100:413–425.
dc.relation.referencesClucas, B., and J. M. Marzluff. 2015. A cross-continental look at the patterns of avian species diversity and composition across an urbanisation gradient. Wildlife Research 42:554.
dc.relation.referencesCody, M. L. 1985. Habitat Selection in Birds. Academic Press, Orlando, Florida, USA.
dc.relation.referencesCohen, M. P. 2011. Stratified Sampling. Page International Encyclopedia of Statistical Science. Lovric, M. (ed). Springer Nature, Berlin.
dc.relation.referencesConcepción, E. D., M. K. Obrist, M. Moretti, F. Altermatt, B. Baur, and M. P. Nobis. 2016. Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urban Ecosystems 19:225–242.
dc.relation.referencesCuripaco Quinto, P. Z., H. R. Quispe-Melgar, and O. Siguas Robles. 2023. Plant composition, water resources and built structures influence bird diversity : a case study in a high Andean city with homogeneous soundscape. Urban Ecosystems.
dc.relation.referencesCurzel, F. E., and L. M. Leveau. 2021. Bird Taxonomic and Functional Diversity in Three Habitats in Buenos Aires City, Argentina. Birds 2:217–229.
dc.relation.referencesDadashpoor, H., P. Azizi, and M. Moghadasi. 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment 655:707–719.
dc.relation.referencesDale, S. 2018. Urban bird community composition influenced by size of urban green spaces, presence of native forest, and urbanization. Urban Ecosystems 21:1–14.
dc.relation.referencesDANE. 2019. Resultados Censo Nacional de Población y Vivienda 2018 (National population census). Page 35. DANE, Bogotá, D.C., Colombia.
dc.relation.referencesDavies, Z. G., R. A. Fuller, A. Loram, K. N. Irvine, V. Sims, and K. J. Gaston. 2009. A national scale inventory of resource provision for biodiversity within domestic gardens. Biological Conservation 142:761–771.
dc.relation.referencesDeng, J. S., K. Wang, Y. Hong, and J. G. Qi. 2009. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning 92:187–198.
dc.relation.referencesDi Pietro, S., C. Mantoni, and S. Fattorini. 2021. Influence of urbanization on the avian species-area relationship: insights from the breeding birds of Rome. Urban Ecosystems 24:779–788.
dc.relation.referencesDonnelly, R., and J. M. Marzluff. 2006. Relative importance of habitat quantity, structure, and spatial pattern to birds in urbanizing environments. Urban Ecosystems 9:99–117.
dc.relation.referencesEcheverry-Galvis, M. A., J. D. Amaya Espinel, and P. Lozano Ramírez. 2023. Long-term Christmas Bird Counts describe Neotropical urban bird diversity. PLoS ONE 18:E0272754.
dc.relation.referencesElmqvist, T., M. Fragkias, J. Goodness, B. Güneralp, P. J. Marcotullio, R. I. Mcdonald, S. Parnell, M. Schewenius, M. Sendstad, K. C. Seto, and C. Wilkinson. 2013. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Page Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment. Springer, Heidelberg.
dc.relation.referencesEmlen, J. T. 1974. An urban bird community in Tucson, Arizona: derivation, structure, regulation. The Condor 76:184–197.
dc.relation.referencesEscobar-Ibáñez, J. F., R. Rueda-Hernández, and I. MacGregor-Fors. 2020. The Greener the Better! Avian Communities Across a Neotropical Gradient of Urbanization Density. Frontiers in Ecology and Evolution 8:500791.
dc.relation.referencesEvans, K. L., D. E. Chamberlain, B. J. Hatchwell, R. D. Gregory, and K. J. Gaston. 2011. What makes an urban bird? Global Change Biology 17:32–44.
dc.relation.referencesFerger, S. W., M. Schleuning, A. Hemp, K. M. Howell, and K. Böhning-Gaese. 2014. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography 23:541–549.
dc.relation.referencesFernández-Juricic, E. 2000. Local and regional effects of pedestrians of forest birds in a fragmented landscape. The Condor 102:247–255.
dc.relation.referencesFernández-Juricic, E. 2004. Spatial and temporal analysis of the distribution of forest specialists in an urban-fragmented landscape (Madrid, Spain) Implications for local and regional bird conservation. Landscape and Urban Planning 69:17–32.
dc.relation.referencesFischer, J. D., S. C. Schneider, A. A. Ahlers, and J. R. Miller. 2015. Categorizing wildlife responses to urbanization and conservation implications of terminology. Conservation Biology 29:1246–1248.
dc.relation.referencesForman, R. T. T. 1995. Some general principles of landscape and regional ecology. Landscape Ecology 10:133–142.
dc.relation.referencesForman, R. T. T. 2014. Urban ecology: science of cities. Cambridge University Press, New Jersey.
dc.relation.referencesFraissinet, M., L. Ancillotto, A. Migliozzi, S. Capasso, L. Bosso, D. E. Chamberlain, and D. Russo. 2022. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landscape Ecology 38:293–305.
dc.relation.referencesFraixedas, S., A. Lindén, M. Piha, M. Cabeza, R. Gregory, and A. Lehikoinen. 2020. A state of-the-art review on birds as indicators of biodiversity: Advances, challenges, and future directions. Ecological Indicators 118:106728.
dc.relation.referencesGalbraith, J. A., D. N. Jones, J. R. Beggs, K. Parry, and M. C. Stanley. 2017. Urban Bird Feeders Dominated by a Few Species and Individuals. Frontiers in Ecology and Evolution 5.
dc.relation.referencesGarcía-Arroyo, M., M. A. Gómez-Martínez, and I. MacGregor-Fors. 2023. Litter buffet: On the use of trash bins by birds in six boreal urban settlements. Avian Research 14:100094.
dc.relation.referencesGarizábal, J. A., C. A. Gutiérrez-Vásquez, and S. David. 2014. Diversidad de aves en cuatro localidades con bosques fragmentados en el municipio de Medellín (Bird diversity in four locations with fragmented forests in Medellín). Pages 164–199 in C. A. Gutiérrez-Vásquez, editor. Más bosques para Medellín: sembrando árboles para la vida. Alcaldía de Medellín, Fundación CIPAV, Medellín.
dc.relation.referencesGarizábal-Carmona, J. A., J. S. Betancur, S. Montoya-Arango, L. Franco-Espinosa, N. Ruíz Giraldo, and N. J. Mancera-Rodríguez. 2023. Bird diversity across an Andean city: the limitation of species richness values and watershed scales. Acta Biológica Colombiana 28:506–516.
dc.relation.referencesGarizábal-Carmona, J. A., H. D. Cáceres-López, N. J. Mancera-Rodríguez, and I. MacGregor-Fors. 2025. Supplementary information on the manuscript: “Urban landscapes as ecological filters: insights from a Neotropical bird species assemblage.” Repository, Figshare.
dc.relation.referencesGarizábal-Carmona, J. A., and N. J. Mancera-Rodríguez. 2021. Bird species richness across a Northern Andean city: Effects of size, shape, land cover, and vegetation of urban green spaces. Urban Forestry & Urban Greening 64:127243.
dc.relation.referencesGermain, R. R., S. Feng, L. Buffan, C. P. Carmona, G. Chen, G. R. Graves, J. A. Tobias, C. Rahbek, F. Lei, J. Fjeldså, P. A. Hosner, M. T. Gilbert, G. Zhang, and D. Nogués Bravo. 2023. Changes in the functional diversity of modern bird species over the last million years. PNAS 120:e2201945119.
dc.relation.referencesGómez-Martínez, M. A., M. García-Arroyo, E. R. Inzunza, A. Ruiz-Sánchez, and I. MacGregor-Fors. 2025. A tale of two worlds: spatial arrangement of avian communities in a Neotropical city. Urban Ecosystems 28:88.
dc.relation.referencesGonzález-Oreja, J. A. 2011. Birds of different biogeographic origins respond in contrasting ways to urbanization. Biological Conservation 144:234–242.
dc.relation.referencesGonzález-Oreja, J. A., A. L. Barillas-Gómez, C. Bonache-Regidor, D. Buzo-Franco, J. García-Guzmán, and L. Hernández-Santín. 2012. Does habitat heterogeneity affect bird community structure in urban parks? Pages 1–15 in C. A. Lepczyk and P. S. Warren, editors. Urban bird ecology and conservation. Studies in avian biology. University of California Press, Berkeley.
dc.relation.referencesGotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379–391.
dc.relation.referencesGrueber, C. E., S. Nakagawa, R. J. Laws, and I. G. Jamieson. 2011. Multimodel inference in ecology and evolution: challenges and solutions: Multimodel inference. Journal of Evolutionary Biology 24:699–711.
dc.relation.referencesGrünwald, J., and J. Reif. 2025. Urban bird assemblages in India: the role of traffic, greenspaces, and dietary traits in shaping community composition. Urban Ecosystems 28:118
dc.relation.referencesGuo, Y., X. Lu, and Y. Wang. 2025. Responses of birds with different habitat preferences to urban blue-green spaces: A systematic review and meta-analysis at a global scale. Biological Conservation 307:111190.
dc.relation.referencesGutiérrez-Vásquez, C. A., and L. F. Osorio-Vélez. 2014. Más bosques para Medellín: sembrando árboles para Medellín. Alcaldía de Medellín, Fundación CIPAV, Medellín.
dc.relation.referencesHagen, E. O., O. Hagen, J. D. Ibañez-Álamo, O. L. Petchey, and K. L. Evans. 2017. Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity. Frontiers in Ecology and Evolution 5:1–15.
dc.relation.referencesHahs, A. K., B. Fournier, M. F. J. Aronson, C. H. Nilon, A. Herrera-Montes, A. B. Salisbury, C. G. Threlfall, C. C. Rega-Brodsky, C. A. Lepczyk, F. A. La Sorte, I. MacGregor Fors, J. Scott MacIvor, K. Jung, M. R. Piana, N. S. G. Williams, S. Knapp, A. Vergnes, A. A. Acevedo, A. M. Gainsbury, A. Rainho, A. J. Hamer, A. Shwartz, C. C. Voigt, D. Lewanzik, D. M. Lowenstein, D. O’Brien, D. Tommasi, E. Pineda, E. S. Carpenter, E. Belskaya, G. L. Lövei, J. C. Makinson, J. L. Coleman, J. P. Sadler, J. Shroyer, J. T. Shapiro, K. C. R. Baldock, K. Ksiazek-Mikenas, K. C. Matteson, K. Barrett, L. Siles, L. F. Aguirre, L. O. Armesto, M. Zalewski, M. I. Herrera-Montes, M. K. Obrist, R. K. Tonietto, S. A. Gagné, S. J. Hinners, T. Latty, T. D. Surasinghe, T. Sattler, T. Magura, W. Ulrich, Z. Elek, J. Castañeda-Oviedo, R. Torrado, D. J. Kotze, and M. Moretti. 2023. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nature Communications 14:4751.
dc.relation.referencesHanski, I., and O. Ovaskainen. 2003. Metapopulation theory for fragmented landscapes. Theoretical Population Biology 64:119–127.
dc.relation.referencesHastedt, A., and D. T. Tietze. 2023. The importance of unsealed areas in the urban core and periphery for bird diversity in a large central european city. Urban Ecosystems 26: 1015–1028
dc.relation.referencesHilty, S. L., and W. L. Brown. 1986. A guide to the Birds of Colombia. Princeton University Press, Princeton, New Jersey, USA.
dc.relation.referencesHoulden, V., A. Jani, and A. Hong. 2021. Is biodiversity of greenspace important for human health and wellbeing? A bibliometric analysis and systematic literature review. Urban Forestry & Urban Greening 66:127385.
dc.relation.referencesHsieh, T. C., K. H. Ma, and A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:1451–1456.
dc.relation.referencesJetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of birds in space and time. Nature 491:444–448.
dc.relation.referencesJohnston, A. S. A. 2024. Predicting emergent animal biodiversity patterns across multiple scales. Global Change Biology 30:e17397.
dc.relation.referencesKeddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157–164.
dc.relation.referencesKopp, J., and L. M. Leveau. 2025. Bird metacommunities of urban parks in the pampean region, Argentina. Landscape and Urban Planning 253:105202.
dc.relation.referencesLa Sorte, F. A., and M. L. McKinney. 2007. Compositional changes over space and time along an occurrence-abundance continuum: Anthropogenic homogenization of the North American avifauna. Journal of Biogeography 34:2159–2167.
dc.relation.referencesLancaster, R. K., and W. E. Rees. 1979. Bird communities and the structure of urban habitats. Canadian Journal of Zoology 57:2358–2368.
dc.relation.referencesLee, M.-B., M. Zhang, S. Chan, Q. Zhang, X. Che, K. C. Wong, X. Zhao, and F. Zou. 2021. Environmental determinants of avian species richness in forests in a highly urbanized subtropical city: The effects of spatial scale and open space feature. Global Ecology and Conservation 30:e01802.
dc.relation.referencesLegendre, P., and L. Legendre. 2012. Numerical Ecology. Elsevier B. V., Amsterdam.
dc.relation.referencesLemoine-Rodríguez, R., M. García-Arroyo, M. A. Gómez-Martínez, M. Back, T. Lindeman, and I. MacGregor-Fors. 2024. Unveiling urban ecological integrity: spatially explicit assessment in contrasting environments. Urban Ecosystems 27:1167–1174.
dc.relation.referencesLepczyk, C. A., C. H. Flather, V. C. Radeloff, A. M. Pidgeon, R. B. Hammer, and J. Liu. 2008. Human Impacts on Regional Avian Diversity and Abundance. Conservation Biology 22:405–416.
dc.relation.referencesLepczyk, C. A., F. A. La Sorte, M. F. J. Aronson, I. MacGregor-Fors, C. H. Nilon, and P. S. Warren. 2017. Global patterns and drivers of urban bird diversity. Pages 13–33 in E. Murgui and M. Hedblom, editors. Ecology and Conservation of Birds in Urban Environments. Springer International Publishing.
dc.relation.referencesLeveau, L. M. 2018. Urbanization, environmental stabilization and temporal persistence of bird species: A view from Latin America. PeerJ 6:e6056.
dc.relation.referencesLeveau, L. M. 2024. Urban Parks Are Related to Functional and Phylogenetic Filtering of Raptor Assemblages in the Austral Pampas, Argentina. Birds 5:38–47.
dc.relation.referencesLeveau, L. M., L. Bocelli, S. G. Quesada-Acuña, C. González-Lagos, P. G. Tapia, G. F. Dri, C. A. Delgado-V, A. Garitano-Zavala, J. Campos, Y. Benedetti, R. Ortega-Álvarez, A. I. Contreras-Rodríguez, D. Souza López, C. S. Fontana, T. W. D. Silva, S. S. Zalewski Vargas, M. C. B. Toledo, J. A. Sarquis, A. Giraudo, A. L. Echevarria, M. E. Fanjul, M. V. Martínez, J. Haedo, L. Gonzalo Cano Sanz, Y. A. Peña Dominguez, V. Fernandez-Maldonado, V. Marinero, V. Abilhoa, R. Amorin, J. F. Escobar-Ibáñez, M. D. Juri, S. R. Camín, L. Marone, A. J. Piratelli, A. G. Franchin, L. Crispim, and F. Morelli. 2024. Drivers of Seasonal Change of Avian Communities in Urban Parks and Cemeteries of Latin America. Animals 14:3564.
dc.relation.referencesLeveau, L. M., A. S. Vaccaro, and M. I. Bellocq. 2022. Urbanization and bird diversity: does the relationship change in deserts and subtropical forests? Urban Ecosystems 25:1891–1900.
dc.relation.referencesLevey, D. R., and I. MacGregor-Fors. 2024. Don’t count your eggs before they hatch: differential survival of artificial bird nests in an anthropogenically modified landscape in western Mexico. Revista Mexicana de Biodiversidad 95:e955381 e955381.
dc.relation.referencesLevin, S. A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology 73:1943–1967.
dc.relation.referencesLi, X., X. Ou, X. Sun, H. Li, Y. Li, and X. Zheng. 2024. Urban biodiversity conservation: A framework for ecological network construction and priority areas identification considering habit differences within species. Journal of Environmental Management 365:121512.
dc.relation.referencesLim, H. C., and N. S. Sodhi. 2004. Responses of avian guilds to urbanisation in a tropical city. Landscape and Urban Planning 66:199–215.
dc.relation.referencesMacGregor-Fors, I. 2011. Misconceptions or misunderstandings? On the standardization of basic terms and definitions in urban ecology. Landscape and Urban Planning 100:347–349.
dc.relation.referencesMacGregor-Fors, I., and M. García-Arroyo. 2017. Who Is Who in the City? Bird Species Richness and Composition in Urban Latin America. Pages 33–55 in I. MacGregor Fors and J. F. Escobar-Ibáñez, editors. Avian Ecology in Latin American Cityscapes. Springer International Publishing, Cham.
dc.relation.referencesMacGregor-Fors, I., M. García-Arroyo, and J. Quesada. 2022. Keys to the city: an integrative conceptual framework on avian urban filtering. Journal of Urban Ecology 8:1–5.
dc.relation.referencesMacGregor-Fors, I., and R. Ortega-Álvarez. 2013. Ecología urbana: Experiencias en América Latina (Urban ecology: experiences in Latin America). D.R., Ciudad de México.
dc.relation.referencesMacGregor-Fors, I., and M. E. Payton. 2013. Contrasting Diversity Values: Statistical Inferences Based on Overlapping Confidence Intervals. PLoS ONE 8:e56794.
dc.relation.referencesMacGregor-Fors, I., and J. E. Schondube. 2011. Gray vs. green urbanization: Relative importance of urban features for urban bird communities. Basic and Applied Ecology 12:372–381.
dc.relation.referencesMagurran, A. E. 2004. Measuring biological diversity. Blackwell Science Ltd, Oxford, UK.
dc.relation.referencesMainwaring, M. C., G. Song, and S. Zhang. 2024. Urban biodiversity in the Anthropocene. Scientific Reports 14:27851
dc.relation.referencesMarzluff, J. M. 2017. A decadal review of urban ornithology and a prospectus for the future. Ibis 159:1–13.
dc.relation.referencesMatsuba, M., S. Nishijima, and K. Katoh. 2016. Effectiveness of corridor vegetation depends on urbanization tolerance of forest birds in central Tokyo, Japan. Urban Forestry & Urban Greening 18:173–181.
dc.relation.referencesMatthies, S. A., S. Rüter, F. Schaarschmidt, and R. Prasse. 2017. Determinants of species richness within and across taxonomic groups in urban green spaces. Urban Ecosystems 20:897–909.
dc.relation.referencesMcDonnell, M. J., and A. K. Hahs. 2008. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecology 23:1143–1155.
dc.relation.referencesMcDonnell, M. J., and A. K. Hahs. 2015. Adaptation and Adaptedness of Organisms to Urban Environments. Annual Review of Ecology, Evolution, and Systematics 46:261–280.
dc.relation.referencesMcGlinn, D. J., T. Engel, S. A. Blowes, N. J. Gotelli, T. M. Knight, B. J. McGill, N. J. Sanders, and J. M. Chase. 2021. A multiscale framework for disentangling the roles of evenness, density, and aggregation on diverity gradients. Ecology 102:e03233.
dc.relation.referencesMcGlinn, D. J., X. Xiao, F. May, N. J. Gotelli, T. Engel, S. A. Blowes, T. M. Knight, O. Purschke, J. M. Chase, and B. J. McGill. 2018. Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution 10:258–269.
dc.relation.referencesMcKinney, M. L. 2002. Urbanization, biodiversity, and conservation. BioScience 52:883 890.
dc.relation.referencesMcKinney, M. L. 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation 127:247–260.
dc.relation.referencesMcKinney, M. L. 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems 11:161–176.
dc.relation.referencesMelo, M. A., P. M. Sanches, D. F. Silva Filho, and A. J. Piratelli. 2022. Influence of habitat type and distance from source area on bird taxonomic and functional diversity in a Neotropical megacity. Urban Ecosystems 25:545–560.
dc.relation.referencesMoctezuma, V., G. Halffter, and A. Arriaga-Jiménez. 2018. Archipelago reserves, a new option to protect montane entomofauna and beta-diverse ecosystems. Revista Mexicana de Biodiversidad 89:927–937.
dc.relation.referencesMolina-Franco, D. A. 2015. Los árboles se toman la ciudad: el proceso de modernización y la transformación del paisaje en Medellín, 1890-1950 (The trees are taking the city: the process of modernization and landscape transformation in Medellín, 1890-1950). Universidad de Antioquia, Medellín, Colombia.
dc.relation.referencesMontgomery, M. R. 2008. The Urban Transformation of the Developing World. Science 319:761–764
dc.relation.referencesMontoya-Tangarife, C., N. Villamizar Duarte, F. Jorquera Guajardo, M. F. Cardenas, and T. Giraldo-Ospina. 2022. Accessibility to public spaces: Boosting ecosystem services in urban areas in four Latin American cities. Frontiers in Sustainable Cities 4:796122.
dc.relation.referencesMyers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.
dc.relation.referencesNaranjo, L. G., J. D. Amaya, D. E. Eusse-González, and Y. Cifuentes-Sarmiento. 2012. Guía de las Especies Migratorias de la Biodiversidad en Colombia. Aves (A guide to migratory species of Colombian biodiversity: birds). Page (M. de A. y D. S. / WWF, Ed.). Ministerio de Ambiente y Desarrollo Sostenible / WWF, Bogotá.
dc.relation.referencesNor, A. N. M., R. Corstanje, J. A. Harris, D. R. Grafius, and G. M. Siriwardena. 2017. Ecological connectivity networks in rapidly expanding cities. Heliyon 3:e00325.
dc.relation.referencesOropeza-Sánchez, M., I. Solano-Zavaleta, W. Cuandón-Hernández, J. Martínez-Villegas, V. Palomera-Hernández, and J. Zúñiga-Vega. 2024. Urban green spaces with high connectivity and complex vegetation promote occupancy and richness of birds in a tropical megacity.
dc.relation.referencesOrtega-Álvarez, R., and I. MacGregor-Fors. 2009. Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning 90:189–195.
dc.relation.referencesOrtega-Álvarez, R., and I. MacGregor-Fors. 2011. Dusting-off the file: A review of knowledge on urban ornithology in Latin America. Landscape and Urban Planning 101:1–10.
dc.relation.referencesPaker, Y., Y. Yom-Tov, T. Alon-Mozes, and A. Barnea. 2014. The effect of plant richness and urban garden structure on bird species richness, diversity and community structure. Landscape and Urban Planning 122:186–195.
dc.relation.referencesPalacio, F. X. 2020. Urban exploiters have broader dietary niches than urban avoiders. Ibis 162:42–49.
dc.relation.referencesPaniagua-Villada, C., J. A. Garizábal-Carmona, V. M. Martínez-Arias, and N. J. Mancera Rodríguez. 2024. Built vs Green cover: an unequal struggle for urban space in Medellín (Colombia). Urban Ecosystems 27:1055–1065.
dc.relation.referencesParés-Ramos, I., N. Álvarez-Berríos, and T. Aide. 2013. Mapping Urbanization Dynamics in Major Cities of Colombia, Ecuador, Perú, and Bolivia Using Night-Time Satellite Imagery. Land 2:37–59.
dc.relation.referencesPedersen, E. J., D. L. Miller, G. L. Simpson, and N. Ross. 2019. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7:e6876.
dc.relation.referencesPellissier, V., M. Cohen, A. Boulay, and P. Clergeau. 2012. Birds are also sensitive to landscape composition and configuration within the city centre. Landscape and Urban Planning 104:181–188.
dc.relation.referencesPeterson, B. G., P. Carl, K. Boudt, R.Bennet, J. Ulrich, E. Zivot, D. Cornilly, E. Hung, M. Lestel, K. Balkissoon, D. Wertz, A. Alexander, R. D. Martin, Z. Zhou, and J. M. Shea. 2019. Package “PerformanceAnalytics.” CRAN - Rproject.
dc.relation.referencesPickett, S. T. A. 1989. Space-for-time substitution as an alternative to long-term studies. Pages 110–135 in G. E. Likens, editor. Long-Term Studies in Ecology: Approaches and Alternatives. Springer-Verlag New York Inc., New York.
dc.relation.referencesPickett, S. T. A., M. L. Cadenasso, J. M. Grove, C. H. Nilon, R. V. Pouyat, W. C. Zipperer, and R. Costanza. 2001. Urban ecological systems: Linking Terrestrial Ecological, Physical , and Socioeconomic Components of Metropolitan Areas. Annu. Rev. Ecol. Syst. 32:127–157.
dc.relation.referencesPoff, N. L. R. 1997. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16:391–409.
dc.relation.referencesPotgieter, L. J., D. Li, B. Baiser, I. Kühn, M. F. J. Aronson, M. Carboni, L. Celesti-Grapow, A. C. L. De Matos, Z. Lososová, F. A. Montaño-Centellas, P. Pyšek, D. M. Richardson, T. P. N. Tsang, R. D. Zenni, and M. W. Cadotte. 2024. Cities Shape the Diversity and Spread of Nonnative Species. Annual Review of Ecology, Evolution, and Systematics 55:157–180.
dc.relation.referencesRahbek, C., M. K. Borregaard, R. K. Colwell, B. Dalsgaard, B. G. Holt, N. Morueta-Holme, D. Nogues-Bravo, R. H. Whittaker, and J. Fjeldsa. 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365:1108–1113.
dc.relation.referencesRamalho, C. E., and R. J. Hobbs. 2012. Time for a change: Dynamic urban ecology. Trends in Ecology and Evolution 27:179–188.
dc.relation.referencesRega-Brodsky, C. C., M. F. J. Aronson, M. R. Piana, E.-S. Carpenter, A. K. Hahs, A. Herrera-Montes, S. Knapp, D. J. Kotze, C. A. Lepczyk, M. Moretti, A. B. Salisbury, N. S. G. Williams, K. Jung, M. Katti, I. MacGregor-Fors, J. S. MacIvor, F. A. La Sorte, V. Sheel, C. G. Threfall, and C. H. Nilon. 2022. Urban biodiversity: State of the science and future directions. Urban Ecosystems 25:1083–1096.
dc.relation.referencesRemsen, J. V. J., J. I. Areta, E. Bonaccorso, S. Claramunt, A. Jaramillo, J. F. Pacheco, M. B. Robbins, F. G. Stiles, D. F. Stotz, and K. J. Zimmer. 2025. A classification of the bird species of South http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm. America.
dc.relation.referencesRestall, R., C. Rodner, and M. Lentino. 2006. Birds of Northern South America Volume 1: Species Accounts. Yale University Press, New Haven and London.
dc.relation.referencesSan Martín-Cruz, M. Á., R. Villegas-Patraca, J. E. Martínez-Gómez, and E. Ruelas Inzunza. 2021. Raptors of A Neotropical City: Diversity And Habitat Relationships Along An Urbanization Gradient. Research Square Pre-print:1–22.
dc.relation.referencesSavard, J. P. L., P. Clergeau, and G. Mennechez. 2000. Biodiversity concepts and urban ecosystems. Landscape and Urban Planning 48:131–142.
dc.relation.referencesScheiner, S. M., and M. R. Willig. 2008. A general theory of ecology. Theoretical Ecology 1:21–28.
dc.relation.referencesSchneiberg, I., D. Boscolo, M. Devoto, V. Marcilio-Silva, C. A. Dalmaso, J. W. Ribeiro, M. C. Ribeiro, A. de Camargo Guaraldo, B. B. Niebuhr, and I. G. Varassin. 2020. Urbanization homogenizes the interactions of plant-frugivore bird networks. Urban Ecosystems 23:457–470.
dc.relation.referencesŞekercioĝlu, Ç. H., R. B. Primack, and J. Wormworth. 2012. The effects of climate change on tropical birds. Biological Conservation 148:1–18.
dc.relation.referencesSherry, T. W., C. M. Kent, N. V. Sánchez, and Ç. H. Şekercioğlu. 2020. Insectivorous birds in the Neotropics: Ecological radiations, specialization, and coexistence in species rich communities. The Auk 137.
dc.relation.referencesShwartz, A., A. Muratet, L. Simon, and R. Julliard. 2013. Local and management variables outweigh landscape effects in enhancing the diversity of different taxa in a big metropolis. Biological Conservation 157:285–292.
dc.relation.referencesShwartz, A., S. Shirley, and S. Kark. 2008. How do habitat variability and management regime shape the spatial heterogeneity of birds within a large Mediterranean urban park? Landscape and Urban Planning 84:219–229.
dc.relation.referencesda Silva, B. F., J. C. Pena, A. B. Viana-Junior, M. Vergne, and M. A. Pizo. 2021. Noise and tree species richness modulate the bird community inhabiting small public urban green spaces of a Neotropical city. Urban Ecosystems 24:71–81.
dc.relation.referencesSilva, C. P., R. D. Sepúlveda, and O. Barbosa. 2016. Nonrandom filtering effect on birds: species and guilds response to urbanization. Ecology and Evolution 6:3711–3720.
dc.relation.referencesŠímová, I., and D. Storch. 2017. The enigma of terrestrial primary productivity: measurements, models, scales and the diversity–productivity relationship. Ecography 40:239–252.
dc.relation.referencesSol, D., C. González-Lagos, D. Moreira, J. Maspons, and O. Lapiedra. 2014. Urbanisation tolerance and the loss of avian diversity. Ecology Letters 17:942–950.
dc.relation.referencesSouza, F. L., F. Valente-Neto, F. Severo-Neto, B. Bueno, J. M. Ochoa-Quintero, R. R. Laps, F. Bolzan, and F. de O. Roque. 2019. Impervious surface and heterogeneity are opposite drivers to maintain bird richness in a Cerrado city. Landscape and Urban Planning 192:103643.
dc.relation.referencesSultana, M., L. Corlatti, and I. Storch. 2023. Are the same factors determining biodiversity in cities across different regions? Comparing drivers of urban bird richness patterns in Southern Asia vs. Western Europe. Urban Ecosystems 26:1545–1557.
dc.relation.referencesTallamy, D. W., and W. G. Shriver. 2021. Are declines in insects and insectivorous birds related? Ornithological Applications 123:1–8.
dc.relation.referencesTews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography 31:79–92.
dc.relation.referencesThaweepworadej, P., and K. L. Evans. 2022. Avian species richness and tropical urbanization gradients: Effects of woodland retention and human disturbance. Ecological Applications 32:e2586.
dc.relation.referencesThrelfall, C. G., L. Mata, J. A. Mackie, A. K. Hahs, N. E. Stork, N. S. G. Williams, and S. J. Livesley. 2017. Increasing biodiversity in urban green spaces through simple vegetation interventions. Journal of Applied Ecology 54:1874–1883.
dc.relation.referencesTian, Y., N. Tsendbazar, E. V. Leeuwen, R. Fensholt, and M. Herold. 2022. A global analysis of multifaceted urbanization patterns using Earth Observation data from 1975 to 2015. Landscape and Urban Planning 219:104316.
dc.relation.referencesTscharntke, T., J. M. Tylianakis, T. A. Rand, R. K. Didham, L. Fahrig, P. Batáry, J. Bengtsson, Y. Clough, T. O. Crist, C. F. Dormann, R. M. Ewers, J. Fründ, R. D. Holt, A. Holzschuh, A. M. Klein, D. Kleijn, C. Kremen, D. A. Landis, W. Laurance, D. Lindenmayer, C. Scherber, N. Sodhi, I. Steffan-Dewenter, C. Thies, W. H. van der Putten, and C. Westphal. 2012. Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews 87:661–685.
dc.relation.referencesTurner, W. R. 2003. Citywide biological monitoring as a tool for ecology and conservation in urban landscapes: the case of the Tucson Bird Count. Landscape and Urban Planning 65:149–166.
dc.relation.referencesUebel, K., A. Bonn, M. Marselle, A. J. Dean, and J. R. Rhodes. 2025. Understory vegetation can promote bird sounds and reduce traffic noise in urban park soundscapes. Urban Ecosystems 28:71.
dc.relation.referencesVillaseñor, N. R., C. B. Muñoz-Pacheco, and M. A. H. Escobar. 2024. Opposite Responses of Native and Nonnative Birds to Socioeconomics in a Latin American City. Animals 14:299.
dc.relation.referencesVillegas, M., and Á. Garitano-Zavala. 2010. Bird community responses to different urban conditions in La Paz, Bolivia. Urban Ecosystems 13:375–391.
dc.relation.referencesWang, J. W., C. H. Poh, C. Y. T. Tan, V. N. Lee, A. Jain, and E. L. Webb. 2017. Building biodiversity: Drivers of bird and butterfly diversity on tropical urban roof gardens. Ecosphere 8:1–22.
dc.relation.referencesWikelski, M., M. Hau, W. D. Robinson, and J. C. Wingfield. 2003. Reproductive seasonality of seven Neotropical Passerine species. The Condor 105:683–695.
dc.relation.referencesWilliams, N. S. G., M. W. Schwartz, P. A. Vesk, M. A. McCarthy, A. K. Hahs, S. E. Clemants, R. T. Corlett, R. P. Duncan, B. A. Norton, K. Thompson, and M. J. McDonnell. 2009. A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology 97:4–9.
dc.relation.referencesWilman, H., J. Belmaker, J. Simpson, C. de la Rosa, M. M. Rivadeneira, and W. Jetz. 2014. Elton Traits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027.
dc.relation.referencesWu, J. 2014. Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning 125:209–221.
dc.relation.referencesWu, R., Q. Zhang, Z. Hao, L. Li, B. Gao, J. Li, X. Liu, C. Liao, and N. Pei. 2024. Insectivorous birds are more sensitive to urban greenspace changes in Guangzhou city, China. Urban Forestry & Urban Greening 94:128243.
dc.relation.referencesWyndham, E. 1986. Length of Birds’ Breeding Seasons. The American Naturalist 128:155 164.
dc.relation.referencesZhou, W., J. Wang, Y. Qian, S. T. A. Pickett, W. Li, and L. Han. 2018. The rapid but invisible changes in urban greenspace: A comparative study of nine Chinese cities. Science of the Total Environment 627:1572–1584.
dc.relation.referencesZuñiga-Palacios, J., I. Zuria, I. Castellanos, C. Lara, and G. Sánchez-Rojas. 2021. What do we know (and need to know) about the role of urban habitats as ecological traps? Systematic review and meta-analysis. Science of the Total Environment 780:146559.
dc.relation.referencesZuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:3–14.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.lembEcología urbana
dc.subject.lembSociología urbana
dc.subject.proposalBiodiversity driverseng
dc.subject.proposalEvironmental filteringeng
dc.subject.proposalTropical Andeseng
dc.subject.proposalUrban ecologyeng
dc.subject.proposalUrbanizationeng
dc.subject.proposalEcología urbanaspa
dc.subject.proposalAndes Tropicalesspa
dc.subject.proposalFiltro ambientalspa
dc.subject.proposalImpulsores de biodiversidadspa
dc.subject.proposalUrbanizaciónspa
dc.titleBird diversity in the urban system of Medellín (Colombia) and its surrounding non-urban landscapeeng
dc.title.translatedDiversidad de aves en el sistema urbano de Medellín (Colombia) y su paisaje circundantespa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBiodiversidad y ciudad: descifrando patrones locales para entender problemas globales
oaire.fundernameUniversidad Nacional de Colombia
oaire.fundernameMinisterio de Ciencias, Tecnología e Innovación
oaire.fundernameLahden Yliopistokampus
oaire.fundernameUniversity of Helsinki

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Bird diversity in the urban system of Medellín (Colombia) and its surrounding non-urban landscape
Tamaño:
5.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ecología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: