Sistema de soporte al diseño activo y pasivo de construcciones sostenibles

dc.contributor.advisorEspinosa Oviedo, Jairo José
dc.contributor.advisorPortilla Caicedo, Christian
dc.contributor.authorLage Cano, Esteban Camilo
dc.contributor.orcidLage, Esteban [0000-0002-9842-3313]spa
dc.contributor.orcidEspinosa Oviedo, Jairo [0000-0002-0969-741X]spa
dc.contributor.orcidPortilla Caicedo, Christian [0000-0003-0302-0763]spa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunalspa
dc.date.accessioned2023-06-30T15:31:14Z
dc.date.available2023-06-30T15:31:14Z
dc.date.issued2022-10-28
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este trabajo se presenta una herramienta desarrollada con el objetivo de brindar soporte al diseño activo y pasivo de una construcción. Esta herramienta utiliza la metodología de modelado de resistencia y capacitancia térmica para estimar las dinámicas térmicas y energéticas de una construcción. El soporte consiste en proporcionar sugerencias al profesional diseñador principalmente sobre el diseño pasivo de la construcción. Estas sugerencias se producen mediante la solución de un problema de optimización multiobjetivo basado en simulación en el que se optimiza el costo de inversión inicial de los materiales de construcción, el confort y el consumo energético. El método de optimización es desarrollado mediante la integración del algoritmo de evolución diferencial programado en Python con OpenModelica como el software de simulación de la construcción. Esta herramienta utiliza las librerías Aixlib y Buildings desarrolladas en el marco del proyecto IEA EBC Annex 60 en el lenguaje Modelica. Esta herramienta metodológica es aplicada al caso de estudio establecido en la Sección 5.2.1 de la norma ANSI/ASHRAE 140-2001, el Caso de Prueba 600. En el método de optimización, se toman como variables de decisión la orientación, la inclusión o exclusión de toldos, las propiedades térmicas de la envolvente térmica y el tamaño y propiedades térmicas de las ventanas. Como función objetivo para optimizar el confort, se cuenta con el índice PPD desarrollado por Fanger [19], para cuantificar el consumo energético se cuenta con las cargas anuales de refrigeración y calentamiento, y para optimizar la inversión inicial en el costo de los materiales, se presentan tablas con los valores estimados de los mismos. Tras utilizar la herramienta en el caso de estudio, se obtuvo un ahorro en la carga de refrigeración del 72 % y del 83 % en la carga de calentamiento, con respecto a la configuración inicial, interviniendo únicamente en el diseño pasivo de la construcción. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, a tool developed with the objective of providing support to the active and passive design of a construction is presented. This tool uses the thermal resistance and capacitance modeling methodology to estimate the thermal and energetic dynamics of a building. The support consists of providing suggestions to the professional designer mainly on the passive design of the construction. These suggestions are produced by solving a simulation-based multi-objective optimization problem, in which the initial investment cost of building materials, comfort, and energy consumption are optimized. The optimization method is developed by integrating the differential evolution algorithm programmed in Python with OpenModelica as the construction simulation software. This tool uses the Aixlib and Buildings libraries developed within the framework of the IEA EBC Annex 60 project in the Modelica language. This methodological tool is applied to the case study established in Section 5.2.1 of the ANSI/ASHRAE 140-2001 standard, Test Case 600. In the optimization method, orientation, inclusion or exclusion of sunblinds, the thermal properties of the building envelope and the size and thermal properties of the windows are taken as decision variables. As an objective function to optimize comfort, the PPD index developed by Fanger is used [19], to quantify energy consumption, annual cooling and heating loads are used, and to optimize the initial investment in the cost of materials, tables are presented with their estimated values. After using the tool in the case study, a saving of 72 % in the cooling load and 83 % in the heating load were obtained, with respect to the initial configuration, intervening only in the passive design of the construction.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaConstrucciones Sosteniblesspa
dc.description.sponsorshipMincienciasspa
dc.format.extentxii, 77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84114
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA review and outlook for integrated BIM application in green building assessment. En: Sustainable Cities and Society 48 (2019), p. 101576. – ISSN 2210–6707spa
dc.relation.referencesAhi, Payman ; Searcy, Cory: A comparative literature analysis of definitions for green and sustainable supply chain management. En: J. Clean. Prod. 52 (2013), p. 329–341. – ISSN 09596526spa
dc.relation.referencesAkba, Tufan ; Baker, Derek ; G ̈uvenc ̧ Yazıcıo ̆glu, Almıla: Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage. (2020)spa
dc.relation.referencesAscione, Fabrizio ; Bianco, Nicola ; Mauro, Gerardo M. ; Napolitano, Davide F.: Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. En: Energy 174 (2019), p. 359–374. – ISSN 03605442spa
dc.relation.referencesAthienitis, Andreas ; Brien, William O.: Andreas Athienitis William O ’ Brien Optimization of Net-Zero Energy Buildings Related Titles Solar and Heat Pump Systems for Residential Buildings Performance Based Building Design 2 Solution Sets for Net Zero Energy Buildings Performance Based. 2015. – ISBN 9783433030400spa
dc.relation.referencesBiyik, Emrah ; Araz, Mustafa ; Hepbasli, Arif ; Shahrestani, Mehdi ; Yao, Runming ; Shao, Li ; Essah, Emmanuel ; Oliveira, Armando C. ; del Ca ̃no, Teodosio ; Rico, Elena ; Lech ́on, Juan L. ; Andrade, Luisa ; Mendes, Ad ́elio ; Atlı, Yusuf B.: A key review of building integrated photovoltaic (BIPV) systems. En: Engineering Science and Technology, an International Journal 20 (2017), Nr. 3, p. 833–858. – ISSN 22150986spa
dc.relation.referencesBre, Facundo ; Fachinotti, V ́ıctor D.: A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. En: Energy and Buildings 154 (2017), p. 283–294. – ISSN 03787788spa
dc.relation.referencesBuxey, D.: Solar Water Heaters.. Vol. 2. Elsevier Inc., 1980. – 793–801 p.. – ISBN 9780128114797spa
dc.relation.referencesCaniato, Marco ; Marzi, Arianna ; Monteiro da Silva, Sandra ; Gasparella, Andrea: A review of the thermal and acoustic properties of materials for timber building construction. En: Journal of Building Engineering 43 (2021), p. 103066. – ISSN 2352– 7102spa
dc.relation.referencesCastilla, M. ; ́Alvarez, J. D. ; Ortega, M. G. ; Arahal, M. R.: Neural network and polynomial approximated thermal comfort models for HVAC systems. En: Build. Environ. (2013). – ISSN 03601323spa
dc.relation.referencesDavid, Miguel ; L ́opez, Rojas ; Arango, Carlos R. ; Bastidas, Lina: Modelamiento del ciclo de la construcci ́on en Colombia mediante din ́amica de sistemas *. 15, Nr. 29, p. 43–62spa
dc.relation.referencesDelgarm, Navid ; Sajadi, Behrang ; Delgarm, Saeed: Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). En: Energy and Buildings 131 (2016), p. 42–53. – ISSN 03787788spa
dc.relation.referencesDiego-Mas, Jose A.: Evaluacíon del confort térmico con el método de Fanger. (2015)spa
dc.relation.referencesDiez, F J. ; Navas-Gracia, L M. ; Martínez-Rodríguez, A ; Correa Guimaraes, A ; Chico Santamarta, L: Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates. (2019)spa
dc.relation.referencesDuffie, John A. ; Beckman, William A.: Wiley: Solar Engineering of Thermal Processes, 4th Edition - John A. Duffie, William A. Beckman. 2013. – 936 p.. – ISBN 978–1–118–41541–2spa
dc.relation.referencesEvangelisti, Luca ; De Lieto Vollaro, Roberto ; Asdrubali, Francesco: Latest advances on solar thermal collectors: A comprehensive review. En: Renewable and Sustainable Energy Reviews 114 (2019), Nr. August, p. 109318. – ISSN 18790690spa
dc.relation.referencesFajardo Cuadro, Juan G. ; Sarria López, Bienvenido ; Álvarez Guerra Plasencia, Mario: Estudio exergético del espacio climatizado en una embarcación fluvial. En: Ing. Eléctrica 36 (2015), Nr. 2, p. 127–135. – ISSN 02535645spa
dc.relation.referencesFanger, Povl O.: Calculation of Thermal Comfort, Introduction of a Basic Comfort Equation. En: Ashrae Transactions 73 (1967)spa
dc.relation.referencesFine, Jamie P. ; Nguyen, Hiep V. ; Friedman, Jacob ; Leong, Wey H. ; Dworkin, Seth B.: A simplified ground thermal response model for analyzing solar-assisted ground source heat pump systems. (2018)spa
dc.relation.referencesGaneson, Anand K. ; Fritzson, Peter A. ; Rogovchenko, Olena ; Asghar, Adeel; Sj ̈olund, Martin ; Pfeiffer, Andreas: An OpenModelica Python Interface and its use in PySimulator, 2012spa
dc.relation.referencesGarde, Fran ̧cois ; Donn, Michael: IEA SHC Task 40 / EBC Annex 52 Towards Net Zero Energy Solar Buildings: A review of 30 Net ZEBs case studies. En: International Energy Agency (IEA) (2014), Nr. May, p. 130spa
dc.relation.referencesHan, Jingyang ; Cui, Minghui ; Chen, Junyi ; Lv, Wenjuan: Analysis of thermal performance and economy of ground source heat pump system: a case study of the large building. (2020)spa
dc.relation.referencesHegedus, S: Photovoltaic Science. 2003. – 0–471 p.. – ISBN 047149196spa
dc.relation.referencesHuide, Fu ; Xuxin, Zhao ; Lei, Ma ; Tao, Zhang ; Qixing, Wu ; Hongyuan, Sun: A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. En: Energy Conversion and Management 140 (2017), p. 1–13. – ISSN 01968904spa
dc.relation.referencesIlbeigi, Marjan ; Ghomeishi, Mohammad ; Dehghanbanadaki, Ali: Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. En: Sustainable Cities and Society 61 (2020), p. 102325. – ISSN 22106707spa
dc.relation.referencesIneichen, Pierre ; Perez, Richard ; Seals, Robert: The importance of correct albedo determination for adequately modeling energy received by tilted surfaces. En: Solar Energy 39 (1987), Nr. 4, p. 301–305. – ISSN 0038–092Xspa
dc.relation.referencesIshaque, Kashif ; Salam, Zainal ; Taheri, Hamed: Simple, fast and accurate two-diode model for photovoltaic modules. (2010)spa
dc.relation.referencesJelle, Bjørn P. ; Breivik, Christer: State-of-the-art building integrated photovoltaics. En: Energy Procedia 20 (2012), Nr. 1876, p. 68–77. – ISBN 9781627484299spa
dc.relation.referencesKhalid, Chennoufi ; Mohammed, Ferfra ; Mohcine, Mokhlis: Journal Pre-proof An accurate modelling of PV Modules based on two-diode model CRediT author statement An accurate modelling of PV Modules based on two-diode model. (2020)spa
dc.relation.referencesKhalifa, Abdul-Jabbar N.: Natural convective heat transfer coefficient – a review: I. Isolated vertical and horizontal surfaces. En: Energy Conversion and Management 42 (2001), Nr. 4, p. 491–504. – ISSN 0196–8904spa
dc.relation.referencesKloepffer, Walter: Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p. 95). En: International Journal of Life Cycle Assessment Vol. 13, Springer Verlag, 3 2008. – ISSN 09483349, p. 89–95spa
dc.relation.referencesLauster, Moritz ; Constantin, Ana ; Remmen, Peter ; Fuchs, Marcus ; M ̈uller, Dirk: Verification of a low order building model for the modelica library aixlib using ashrae standard 140. En: Building Simulation Conference Proceedings 5 (2017), p. 2525–2534. – ISBN 9781510870673spa
dc.relation.referencesLo Brano, Valerio ; Orioli, Aldo ; Ciulla, Giuseppina ; Gangi, Alessandra D.: An improved five-parameter model for photovoltaic modules. En: Solar Energy Materials and Solar Cells 94 (2010), p. 1358–1370spa
dc.relation.referencesLuo, Na ; Pritoni, Marco ; Hong, Tianzhen: An overview of data tools for representing and managing building information and performance data. En: Renewable and Sustainable Energy Reviews 147 (2021), 9. – ISSN 18790690spa
dc.relation.referencesMéndez, Ana ; Alba, Pazos ; Martín, Sáez ; Aplicada, Macroeconomía: Desarrollo sostenible y economía: una mirada hacia el futuro. 2007. – Informe de Investigaciónspa
dc.relation.referencesBy Michael ; Polak, Elijah ; chair P Van Carey, Co ; chair M Alice Agogino Alexandre J Chorin, Co. Simulation-Based Building Energy Optimization Committee in charge. 2004spa
dc.relation.referencesMichailidis, Iakovos T.: Balancing Energy Efficiency with Indoor Comfort. (2020), p. 1–28spa
dc.relation.referencesMuller, Dirk ; Remmen, Peter ; Constantin, Ana ; Lauster, Moritz ; Fuchs, Marcus: AixLib - An Open-Source Modelica Library within the IEA-EBC Annex60 Framework, 2016spa
dc.relation.referencesNayak, Byamakesh ; Mohapatra, Alivarani ; Mohanty, Kanungo B.: Parameter estimation of single diode PV module based on GWO algorithm. En: Renewable Energy Focus 30 (2019)spa
dc.relation.referencesNdiaye, Demba: Simplified Model for Dynamic Simulation of Solar Systems with Evacuated Tube Collector. En: Procedia Engineering 118 (2015), p. 1250–1257. – ISBN 1704687160spa
dc.relation.referencesPablo-Romero, María del P. ; Pozo-Barajas, Rafael ; Yñiguez, Rocío: Global changes in residential energy consumption. En: Energy Policy 101 (2017), Nr. September, p. 342–352. – ISSN 03014215spa
dc.relation.referencesPearce, David: Is the construction sector sustainable?: Definitions and reflections. En: Build. Res. Inf. (2006). – ISSN 09613218spa
dc.relation.referencesPerez, Richard ; Seals, Robert ; Ineichen, Pierre ; Stewart, Ronald ; Menicucci, David: A new simplified version of the perez diffuse irradiance model for tilted surfaces. En: Solar Energy 39 (1987), Nr. 3, p. 221–231. – ISSN 0038–092Xspa
dc.relation.referencesPippia, Tomas ; Lago, Jesus ; Coninck, Roel D. ; Schutter, Bart D.: Scenario-based Nonlinear Model Predictive Control for Building Heating Systems. (2020). – ISSN 03787788spa
dc.relation.referencesPippia, Tomas ; Lago, Jesus ; Coninck, Roel D. ; Sijs, Joris ; Schutter, Bart D.: Scenario-based model predictive control approach for heating systems in an office building. En: IEEE International Conference on Automation Science and Engineering 2019- Augus (2019), p. 1243–1248. – ISBN 9781728103556spa
dc.relation.referencesRazmaray, Meysam ; Maasoumy, Mehdi ; Shahbakhtiy, Mahdi ; Robinett, Rush D.: Exergy-based model predictive control for building HVAC systems. En: Proc. Am. Control Conf. July (2015), p. 1677–1682. – ISBN 9781479986842spa
dc.relation.referencesSchlueter, Arno ; Thesseling, Frank: Building information model based energy/exergy performance assessment in early design stages. En: Autom. Constr. 18 (2009), Nr. 2, p. 153–163. – ISSN 09265805spa
dc.relation.referencesSharif, Seyed A. ; Hammad, Amin: Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment. En: Journal of Building Engineering 21 (2019), p. 429–445. – ISSN 23527102spa
dc.relation.referencesSong, Yingjie ; Wu, Daqing ; Deng, Wu ; Gao, Xiao-Zhi ; Li, Taiyong ; Zhang, Bin ; Li, Yuangang: MPPCEDE: Multi-population parallel co-evolutionary differential evolution for parameter optimization. En: Energy Conversion and Management 228 (2021), p. 113661spa
dc.relation.referencesStorn, Rainer ; Price, Kenneth: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. En: Journal of Global Optimization 11 (1997), 01, p. 341–359spa
dc.relation.referencesSwan, Lukas G. ; Ugursal, V. I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. 2009spa
dc.relation.referencesTorío, Herena ; Angelotti, Adriana ; Schmidt, Dietrich. Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view. 2009spa
dc.relation.referencesTushar, Quddus ; Bhuiyan, Muhammed A. ; Zhang, Guomin ; Maqsood, Tariq: An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development. En: Journal of Cleaner Production 289 (2021), p. 125622. – ISSN 09596526spa
dc.relation.referencesVisentin, Caroline ; William Da, Adan ; Trentin, Silva ; Braun, Adeli B.: Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. (2020)spa
dc.relation.referencesVogel, J ; Keller, M ; Johnson, M: Numerical modeling of large-scale finned tube latent thermal energy storage systems. (2020)spa
dc.relation.referencesWang, Yingying ; Liu, Kang ; Liu, Yanfeng ; Wang, Dengjia ; Liu, Jiaping: The impact of temperature and relative humidity dependent thermal conductivity of insulation materials on heat transfer through the building envelope. En: Journal of Building Engineering 46 (2022), p. 103700. – ISSN 2352–7102spa
dc.relation.referencesWang, Yingying ; Zhang, Sudan ; Wang, Dengjia ; Liu, Yanfeng: Experimental study on the influence of temperature and humidity on the thermal conductivity of building insulation materials. En: Energy and Built Environment (2022). – ISSN 2666–1233spa
dc.relation.referencesYahya-Khotbehsara, Amin ; Shahhoseini, Ali: A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach. (2018)spa
dc.relation.referencesYang, Ming ; Wang, Zhifeng ; Chen, Longfei ; Tang, Wenxue: Dynamic heat transfer model of flat plate solar water collectors with consideration of variable flow rate. En: Solar Energy 212 (2020), p. 34–47spa
dc.relation.referencesYong, Zhang ; Li-juan, Yuan ; Qian, Zhang ; Xiao-yan, Sun: Multi-objective optimization of building energy performance using a particle swarm optimizer with less control parameters. En: Journal of Building Engineering 32 (2020), p. 101505. – ISSN 23527102spa
dc.relation.referencesZhang, Yiying ; Jin, Zhigang ; Mirjalili, Seyedali: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. (2020)spa
dc.relation.referencesRodríguez, John Alexander P.: Propuesta de un sistema de indicadores de sostenibilidad en construcciones para el municipio de Ibagué, periodo 2016 – 2030., universidad de Manizales, tesis de grado, 2018. – 121 p.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc690 - Construcción de edificiosspa
dc.subject.lembIndustria de la construcciónspa
dc.subject.lembConstruction industryeng
dc.subject.lembConstruction technology - Appropriate technologyeng
dc.subject.lembIndustria de la construcción-Tecnología apropiadaspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalConstrucción sosteniblespa
dc.subject.proposalResistencia y capacitancia térmicaspa
dc.subject.proposalOptimizationeng
dc.subject.proposalSustainable constructioneng
dc.subject.proposalThermal resistance and capacitanceeng
dc.titleSistema de soporte al diseño activo y pasivo de construcciones sosteniblesspa
dc.title.translatedSupport system for active and passive design of sustainable constructionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstrategia de transformación del sector energético Colombiano en el horizonte de 2030spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035875023.2022.pdf
Tamaño:
2.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: