Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia

dc.contributor.advisorEspinosa Oviedo, Jairo José
dc.contributor.authorNavarro Quintero, Carlos Eduardo
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional, GAUNALspa
dc.date.accessioned2024-01-15T19:55:43Z
dc.date.available2024-01-15T19:55:43Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractCon la integración de las energías renovables no convencionales al proceso de electrolisis para la obtención de hidrógeno a partir del agua, los costos de producción de este potencial vector energético se han logrado disminuir, proyectando precios competitivos a un mediano plazo frente al hidrógeno “negro”, hidrógeno “gris” e hidrógeno “azul”, producidos a partir del carbón, del gas natural y de combustibles fósiles con sistemas de captura de carbono, correspondientemente, los cuales son los más utilizados en los procesos de obtención de H2 actualmente. El hidrógeno se ha visualizado como un elemento clave no solo para dar un alto a la contaminación, sino para iniciar un proceso de descarbonización, descentralización y democratización de los actuales sistemas energéticos. Esto ha llevado a que se sueñe con una sociedad sostenible basada en hidrógeno, cuyo objetivo es reducir la dependencia a los combustibles fósiles [1] y compuestos químicos contaminantes en sectores como el eléctrico, el transporte, el agrícola, entre otros. Uno de los retos que tiene el hidrógeno verde es resolver su alto costo de almacenamiento y transporte, buscando así ser más competitivo frente a los tipos de hidrógeno convencionales, los cuales son producidos en grandes cantidades directamente en el sitio de consumo. Para esto, se han evaluado diferentes alternativas como hidruros metálicos y compuestos químicos, de los cuales resalta el amoniaco como una solución prometedora. La urea, al ser un derivado del amoniaco, ser transportado de manera muy fácil y tener un amplio uso actualmente en el sector agrícola, se postula también como una solución frente a la problemática antes expuesta. Este trabajo final de maestría compara técnica y financieramente el transporte de hidrógeno puro frente al amoniaco y la urea, realizando un contexto inicial de las características fisicoquímicas de los compuestos propuestos como portadores de hidrogeno, sus usos, su mercado nacional e internacional actual y las maneras como son transportados, incluyendo costos, recomendaciones y restricciones. Además, se presentan los métodos de producción presentes en el mercado y los que aún se encuentran en investigación para la obtención de ambos compuestos, con el fin de tomar el proceso con mayor madurez tecnológica y proyectar una planta de amoniaco de 160 toneladas por día y una planta de urea de 392,82 toneladas por día en el departamento de La Guajira. Con lo anterior y apoyado de estudios previos similares, se hace una estimación financiera para encontrar el costo nivelado el amoniaco y la urea producido en Colombia, considerando una vida útil de la planta de 25 años. También se mencionan los procesos para el uso directo de los portadores de hidrógeno como materia prima de motores de combustión, turbinas de gas y celdas de combustible, junto con los métodos de reconversión para recuperar nuevamente el hidrógeno después de ser transportado al lugar de destino. Por último, recopilada toda la información, se hace el comparativo para encontrar la forma de transporte y almacenamiento de hidrógeno más adecuada, con un caso de estudio que consiste en trasladarlo desde La Guajira hasta la ciudad de Medellín. Se analizan tres opciones en destino: 1. Costo del Hidrógeno, amoniaco y urea sin sufrir ninguna transformación y antes de cualquier uso. 2. Costo del hidrógeno y sus portadores después de utilizarse como materia prima en motores de combustión y celdas de combustible. 3. Costo del hidrógeno al recuperarse del amoniaco y la urea. (texto tomado de la fuente)spa
dc.description.abstractWith the integration of non-conventional renewable energies into the electrolysis process for obtaining hydrogen from water, the production costs of this potential energy vector have been reduced, projecting competitive prices in the medium term compared to "black" hydrogen, "gray" hydrogen and "blue" hydrogen, produced from coal, natural gas, and fossil fuels with carbon capture systems, correspondingly, which are currently the most used in the processes of obtaining H2. Hydrogen has been seen as a key element to stop pollution and initiate decarbonization, decentralization, and democratization of current energy systems. This has led to the dream of a sustainable society based on hydrogen, which aims to reduce dependence on fossil fuels [1] and polluting chemical compounds in sectors such as electricity, transportation, and agriculture. One of the challenges of green hydrogen is to solve its high storage and transportation cost, seeking to be more competitive with conventional types of hydrogen, which are produced in large quantities directly at the site of consumption. For this purpose, different alternatives have been evaluated, such as metal hydrides and chemical compounds, of which ammonia stands out as a promising solution. Urea, being a derivative of ammonia, being easily transported and having wide use in the agricultural sector, is also postulated as a solution to the above-mentioned problems. This thesis compares technically and financially the transport of pure hydrogen versus ammonia and urea, making an initial context of the physicochemical characteristics of the compounds proposed as hydrogen carriers, their uses, their current national and international market, and how they are transported, including costs, recommendations, and restrictions. In addition, the production methods present in the market and those that are still under research for obtaining both compounds are presented, to take the process with greater technological maturity and project an ammonia plant of 160 tons per day and a urea plant of 392.82 tons per day in the department of La Guajira. With the above and supported by similar previous studies, a financial estimate is made to find the levelized cost of ammonia and urea, considering a useful life of the plant of 25 years. The processes for the direct use of hydrogen carriers as raw material for combustion engines, gas turbines, and fuel cells are also mentioned, together with the conversion methods to recover the hydrogen again after being transported to the destination site. Finally, once all the information has been compiled, a comparison is made to find the most appropriate way of transporting and storing hydrogen, with a case study that consists of transporting it from La Guajira to the city of Medellin. Three destination options are analyzed: 1. Cost of Hydrogen, ammonia and urea without undergoing any transformation and before any use. 2. Cost of hydrogen and its carriers after being used as raw material in combustion engines and fuel cells. 3. Cost of hydrogen when recovered from ammonia and urea.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaCalidad de la Energía, Electrónica de Potencia y Fuentes Alternas de Energíaspa
dc.format.extent81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85295
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesU. Khan, T. Yamamoto, and H. Sato, “An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan,” Int J Hydrogen Energy, vol. 46, no. 18, pp. 10589–10607, 2021, doi: 10.1016/j.ijhydene.2020.12.173.spa
dc.relation.referencesR. Marin, Subido por : 2003.spa
dc.relation.references“Global Energy Review 2019,” Global Energy Review 2019, 2020, doi: 10.1787/90c8c125-en.spa
dc.relation.referencesMinisterio de Energía, “Estrategia nacional de hidrógeno verde,” p. 33, 2020.spa
dc.relation.referencesE. Javier and B. Castro, “Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano,” 2021.spa
dc.relation.referencesR. A. Molina et al., Hidrógeno y su almacenamiento. 2021.spa
dc.relation.referencesM. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, “Seasonal storage and alternative carriers: A flexible hydrogen supply chain model,” Appl Energy, vol. 200, pp. 290–302, 2017, doi: 10.1016/j.apenergy.2017.05.050.spa
dc.relation.referencesM. Aziz, A. TriWijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies (Basel), vol. 13, no. 12, Jun. 2020, doi: 10.3390/en13123062.spa
dc.relation.referencesM. Ravi and J. W. Makepeace, “Facilitating green ammonia manufacture under milder conditions: What do heterogeneous catalyst formulations have to offer?,” Chem Sci, vol. 13, no. 4, pp. 890–908, Jan. 2022, doi: 10.1039/d1sc04734e.spa
dc.relation.referencesIndustria del Amoníaco: estado actual y oportunidades para la descarbonización. 2022. [Online]. Available: www.energia.gob.clspa
dc.relation.referencesIndustria del Amoníaco: estado actual y oportunidades para la descarbonización. 2022. [Online]. Available: www.energia.gob.clspa
dc.relation.referencesJ. Guo and P. Chen, “Catalyst: NH 3 as an Energy Carrier.” [Online]. Available: http://wwwspa
dc.relation.referencesN. Salmon and R. Bañares-Alcántara, “A global, spatially granular techno-economic analysis of offshore green ammonia production,” J Clean Prod, vol. 367, Sep. 2022, doi: 10.1016/j.jclepro.2022.133045.spa
dc.relation.referencesD. R. MacFarlane et al., “A Roadmap to the Ammonia Economy,” Joule, vol. 4, no. 6. Cell Press, pp. 1186–1205, Jun. 17, 2020. doi: 10.1016/j.joule.2020.04.004.spa
dc.relation.referencesY. International ASA, “Fertilizer Industry Handbook 2022 with notes,” 2022. [Online]. Available: www.yara.com/investor-relations/reports-presentations/spa
dc.relation.references“Amoniaco: usos, características, seguridad y manejo,” Amoquimicos Colombia SAS. https://www.amoquimicos.com/usos-del-amoniaco-liquido (accessed Mar. 11, 2023).spa
dc.relation.referencesR. Lan, J. T. S. Irvine, and S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials,” Int J Hydrogen Energy, vol. 37, no. 2, pp. 1482–1494, Jan. 2012, doi: 10.1016/J.IJHYDENE.2011.10.004.spa
dc.relation.referencesC. Smith, A. K. Hill, and L. Torrente-Murciano, “Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape,” Energy Environ Sci, vol. 13, no. 2, pp. 331– 344, Feb. 2020, doi: 10.1039/c9ee02873k.spa
dc.relation.referencesS. Ghavam, M. Vahdati, I. A. G. Wilson, and P. Styring, “Sustainable Ammonia Production Processes,” Frontiers in Energy Research, vol. 9. Frontiers Media S.A., Mar. 29, 2021. doi: 10.3389/fenrg.2021.580808.spa
dc.relation.referencesJ. Cha et al., “An efficient process for sustainable and scalable hydrogen production from green ammonia,” Renewable and Sustainable Energy Reviews, vol. 152, p. 111562, Dec. 2021, doi: 10.1016/J.RSER.2021.111562.spa
dc.relation.referencesW. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renewable and Sustainable Energy Reviews, vol. 147, p. 111254, Sep. 2021, doi: 10.1016/J.RSER.2021.111254.spa
dc.relation.referencesS. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. Van Der Gryp, and D. G. Bessarabov, “Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review,” Int J Hydrogen Energy, vol. 38, no. 35, pp. 14968–14991, Nov. 2013, doi: 10.1016/J.IJHYDENE.2013.09.067.spa
dc.relation.referencesI. Lucentini, X. Garcia, X. Vendrell, and J. Llorca, “Review of the Decomposition of Ammonia to Generate Hydrogen,” Ind Eng Chem Res, vol. 60, no. 51, pp. 18560–18611, Dec. 2021, doi: 10.1021/acs.iecr.1c00843.spa
dc.relation.referencesA. Lipman and T. Shah, “UC Berkeley Recent Work Title Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report Permalink https://escholarship.org/uc/item/7z69v4wp Publication Date,” 2007. [Online]. Available: https://escholarship.org/uc/item/7z69v4wpspa
dc.relation.referencesY. R. Hossein Ali and D. Shin, “Green Hydrogen Production Technologies from Ammonia Cracking,” Energies, vol. 15, no. 21. MDPI, Nov. 01, 2022. doi: 10.3390/en15218246.spa
dc.relation.referencesD. Cheddie, “Ammonia as a Hydrogen Source for Fuel Cells: A Review,” in Hydrogen Energy - Challenges and Perspectives, InTech, 2012. doi: 10.5772/47759.spa
dc.relation.referencesT. J. Pearsall and C. G. Garabedian, “Combustion of Anhydrous Ammonia in Diesel Engines,” 1968. [Online]. Available: https://about.jstor.org/termsspa
dc.relation.referencesM. Aziz, A. TriWijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies (Basel), vol. 13, no. 12, Jun. 2020, doi: 10.3390/en13123062.spa
dc.relation.referencesJ. María Álvarez Reyes, “‘ANÁLISIS DE IMPLEMENTACIÓN DE AMONÍACO COMO COMBUSTIBLE PARA LA PROPULSIÓN DE BUQUES MERCANTES’ ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS.”spa
dc.relation.referencesJ. Atchison, “Ammonia-powered cargo shipping in Finland,” AMMONIA ENERGY ASSOCIATION, Oct. 06, 2022. https://www.ammoniaenergy.org/articles/ammonia-poweredcargo-shipping-in-finland/ (accessed Feb. 13, 2023).spa
dc.relation.referencesJ. Atchison, “Wärtsilä & Møkster join forces, Japanese maritime consortium takes next steps,” Wärtsilä & Møkster join forces, Japanese maritime consortium takes next steps, Nov. 01, 2021. https://www.ammoniaenergy.org/articles/wartsila-mokster-join-forces-japanesemaritime-consortium-takes-next-steps/ (accessed Feb. 13, 2023).spa
dc.relation.referencesJ. Atchison, “Fortescue, LMG Marin and Eidesvik to launch ammonia-powered ships,” AMMONIA ENERGY ASSOCIATION, Nov. 17, 2021. https://www.ammoniaenergy.org/articles/fortescue-lmg-marin-and-eidesvik-to-launchammonia-powered-ships/ (accessed Feb. 11, 2023).spa
dc.relation.referencesJ. Atchison, “WinGD to develop ammonia maritime engines by 2025,” WinGD to develop ammonia maritime engines by 2025, Dec. 08, 2021. https://www.ammoniaenergy.org/articles/wingd-to-develop-ammonia-maritime-enginesby-2025/ (accessed Feb. 09, 2023).spa
dc.relation.referencesJ. Atchison, “Retrofitting vessels for ammonia fuel: new technical study from Grieg Star,” AMMONIA ENERGY ASSOCIATION, Mar. 21, 2023. https://www.ammoniaenergy.org/articles/retrofitting-vessels-for-ammonia-fuel-newtechnical-study-from-grieg-star/ (accessed Apr. 03, 2023).spa
dc.relation.referencesJ. Atchison, “Maritime developments: on-water cracking, AiPs and Singapore bunker study releases first results,” AMMONIA ENERGY ASSOCIATION, May 2023. https://www.ammoniaenergy.org/articles/maritime-developments-on-water-cracking-aipsand-singapore-bunker-study-releases-first-results/ (accessed May 05, 2023).spa
dc.relation.referencesG. Jeerh, M. Zhang, and S. Tao, “Recent progress in ammonia fuel cells and their potential applications,” Journal of Materials Chemistry A, vol. 9, no. 2. Royal Society of Chemistry, pp. 727–752, Jan. 14, 2021. doi: 10.1039/d0ta08810b.spa
dc.relation.referencesM. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ionconducting electrolyte,” J Power Sources, vol. 183, no. 2, pp. 682–686, Sep. 2008, doi: 10.1016/J.JPOWSOUR.2008.05.022.spa
dc.relation.referencesD. Faehn, M. G. Bull, and J. R. Shekleton, “Experimental Investigation of Ammonia as a Gas Turbine Engine Fuel SOCIETY OF AUTOMOTIVE ENGINEERS,” 2018.spa
dc.relation.referencesA. Karabeyoglu and B. Evans, “Fuel Conditioning System for Ammonia-Fired Power Plants 9th Annual NH3 Fuel Association Conference,” 2012.spa
dc.relation.referencesD. Lee and H. H. Song, “Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics,” Journal of Mechanical Science and Technology, vol. 32, no. 4, pp. 1905–1925, Apr. 2018, doi: 10.1007/s12206-018-0347-x.spa
dc.relation.referencesA. Sánchez, E. Castellano, M. Martín, and P. Vega, “Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective,” Appl Energy, vol. 293, p. 116956, Jul. 2021, doi: 10.1016/J.APENERGY.2021.116956spa
dc.relation.referencesH. Zhang, L. Wang, J. Van herle, F. Maréchal, and U. Desideri, “Techno-economic comparison of 100% renewable urea production processes,” Appl Energy, vol. 284, p. 116401, Feb. 2021, doi: 10.1016/J.APENERGY.2020.116401spa
dc.relation.referencesS. Argentina de Gastroenterología Argentina Parquet and R. A. Herman Boerhaave, “Acta Gastroenterológica Latinoamericana,” vol. 43, no. 1, p. 8, 2013, [Online]. Available: http://www.redalyc.org/articulo.oa?id=199326065017spa
dc.relation.references“INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS TESIS EVALUACIÓN TÉCNICA Y ECONÓMICA PARA LA FABRICACIÓN DE LA UREA EN MÉXICO.”spa
dc.relation.referencesA. N. Rollinson, J. Jones, V. Dupont, and M. V. Twigg, “Urea as a hydrogen carrier: A perspective on its potential for safe, sustainable and long-term energy supply,” Energy and Environmental Science, vol. 4, no. 4. pp. 1216–1224, Apr. 2011. doi: 10.1039/c0ee00705f.spa
dc.relation.referencesJ. Meessen, “Urea synthesis,” Chemie-Ingenieur-Technik, vol. 86, no. 12. Wiley-VCH Verlag, pp. 2180–2189, Dec. 01, 2014. doi: 10.1002/cite.201400064.spa
dc.relation.references“1454430885_ficha-de-seguridad-verde-urea-web-”spa
dc.relation.references“Urea,” Thechemicalcompany, Nov. 12, 2021. https://thechemco.com/chemical/urea/#:~:text=Urea%20is%20a%20raw%20material,prod ucts%2C%20and%20in%20resin%20production. (accessed Apr. 19, 2023).spa
dc.relation.references“NR09142”.spa
dc.relation.referencesJ. Piquero-Casals, D. Morgado-Carrasco, J. Delgado, and A. Garre, “Indications of topical urea in dermatology,” Piel, vol. 36, no. 10, pp. 689–694, Dec. 2021, doi: 10.1016/j.piel.2021.06.008spa
dc.relation.referencesT. Fin and D. E. Máster, “ESCOLA TÉCNICA SUPERIOR DE NÁUTICA E MÁQUINAS UNIVERSIDADE DA CORUÑA ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS.”spa
dc.relation.references“UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA,” 2019.spa
dc.relation.referencesB. Guan, R. Zhan, H. Lin, and Z. Huang, “Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust,” Appl Therm Eng, vol. 66, no. 1–2, pp. 395–414, May 2014, doi: 10.1016/J.APPLTHERMALENG.2014.02.021.spa
dc.relation.references“UNIVERSIDAD POLITÉCNICA DE CARTAGENA.”spa
dc.relation.references“TOTAL RECYCLE PROCESSES,” CASALE. https://www.casale.ch/revamping/urearevamping/total-recycleprocesses#:~:text=In%20Total%20Recycle%20processes%20the,dioxide%20and%20ammoni a%20are%20recovered. (accessed May 23, 2023).spa
dc.relation.references“STRIPPER,” STAMICARBON. https://www.stamicarbon.com/advance-design-safurex-highpressure-stripper (accessed May 19, 2023).spa
dc.relation.referencesN. Zhu, F. Qian, X. Xu, M. Wang, and Q. Teng, “Thermogravimetric experiment of urea at constant temperatures,” Materials, vol. 14, no. 20, Oct. 2021, doi: 10.3390/ma14206190.spa
dc.relation.referencesA. N. Rollinson, G. L. Rickett, A. Lea-Langton, V. Dupont, and M. V. Twigg, “Hydrogen from urea-water and ammonia-water solutions,” Appl Catal B, vol. 106, no. 3–4, pp. 304–315, Aug. 2011, doi: 10.1016/j.apcatb.2011.05.031.spa
dc.relation.referencesR. L. King and G. G. Botte, “Hydrogen production via urea electrolysis using a gel electrolyte,” J Power Sources, vol. 196, no. 5, pp. 2773–2778, Mar. 2011, doi: 10.1016/j.jpowsour.2010.11.006.spa
dc.relation.referencesS. Paygozar, A. Sabour Rouh Aghdam, E. Hassanizadeh, R. Andaveh, and G. Barati Darband, “Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production,” International Journal of Hydrogen Energy, vol. 48, no. 20. Elsevier Ltd, pp. 7219–7259, Mar. 05, 2023. doi: 10.1016/j.ijhydene.2022.11.087.spa
dc.relation.referencesH. Sun et al., “Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide,” Sci Bull (Beijing), vol. 67, no. 17, pp. 1763–1775, Sep. 2022, doi: 10.1016/j.scib.2022.08.008.spa
dc.relation.referencesH. Liu, D. Wen, and B. Zhu, “In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis,” Journal of Electroanalytical Chemistry, vol. 928, Jan. 2023, doi: 10.1016/j.jelechem.2022.117082.spa
dc.relation.referencesR. L. King, “Investigation of Anode Catalysts and Alternative Electrolytes for Stable Hydrogen Production from Urea Solutions,” 2010.spa
dc.relation.referencesB. K. Boggs, R. L. King, and G. G. Botte, “Urea electrolysis: Direct hydrogen production from urine,” Chemical Communications, no. 32, pp. 4859–4861, 2009, doi: 10.1039/b905974a.spa
dc.relation.referencesB. Guan, R. Zhan, H. Lin, and Z. Huang, “Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust,” Applied Thermal Engineering, vol. 66, no. 1–2. Elsevier Ltd, pp. 395–414, 2014. doi: 10.1016/j.applthermaleng.2014.02.021.spa
dc.relation.referencesM. Tayyeb Javed, N. Irfan, and B. M. Gibbs, “Control of combustion-generated nitrogen oxides by selective non-catalytic reduction,” J Environ Manage, vol. 83, no. 3, pp. 251–289, May 2007, doi: 10.1016/J.JENVMAN.2006.03.006.spa
dc.relation.referencesY. Liao, P. Dimopoulos Eggenschwiler, D. Rentsch, F. Curto, and K. Boulouchos, “Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems,” Appl Energy, vol. 205, pp. 964–975, Nov. 2017, doi: 10.1016/J.APENERGY.2017.08.088.spa
dc.relation.referencesR. Lan, S. Tao, and J. T. S. Irvine, “A direct urea fuel cell - Power from fertiliser and waste,” Energy Environ Sci, vol. 3, no. 4, pp. 438–441, 2010, doi: 10.1039/b924786f.spa
dc.relation.referencesG. Gnana kumar, A. Farithkhan, and A. Manthiram, “Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis,” Advanced Energy and Sustainability Research, vol. 1, no. 1, p. 2000015, Nov. 2020, doi: 10.1002/aesr.202000015.spa
dc.relation.referencesY. M. T. A. Putri, J. Gunlazuardi, Y. Yulizar, R. Wibowo, Y. Einaga, and T. A. Ivandini, “Recent progress in direct urea fuel cell,” Open Chemistry, vol. 19, no. 1. De Gruyter Open Ltd, pp. 1116–1133, Jan. 01, 2021. doi: 10.1515/chem-2021-0100.spa
dc.relation.referencesF. Ishak, “Thermodynamic Analysis of Ammonia and Urea fed Solid Oxide Fuel Cells,” 2011.spa
dc.relation.references“Estadisticas.” https://www-legiscomexcom.luisamigo.proxybk.com/Home/Estadisticas?id=a528a9624a5a4596b8d4aa2efa701838 (accessed Feb. 05, 2023).spa
dc.relation.references“¿Cómo debe ser el almacenamiento y transporte del amoniaco?,” Amoquimicos Colombia SAS. https://www.amoquimicos.com/almacenamiento-y-transporte-de-amoniaco (accessed May 19, 2023).spa
dc.relation.references“Clasificación de sustancias químicas según las Naciones Unidas,” SURA. https://www.arlsura.com/index.php?option=com_content&view=article&id=47 (accessed May 17, 2023).spa
dc.relation.references“Control para el manejo de productos y sustancias químicas,” Ministerio de Justicia. https://www.minjusticia.gov.co/programas-co/control-para-el-manejo-sustancias-quimicas (accessed May 20, 2023).spa
dc.relation.references“Autorización extraordinaria.”spa
dc.relation.references“¿Qué es la urea y por qué Colombia no la produce?,” Periódico UNAL. https://periodico.unal.edu.co/articulos/que-es-la-urea-y-por-que-colombia-no-la-produce/ (accessed May 18, 2023).spa
dc.relation.references“Manejo y transporte de fertilizantes minerales,” YARA. https://www.yara.com.pe/nutricion-vegetal/almacenaje-y-manejo/manejo-y-transporte/ (accessed May 18, 2023).spa
dc.relation.referencesR. M. Nayak-Luke, C. Forbes, Z. Cesaro, and R. Bãnares-Alcántara, “Techno-Economic Aspects of Production, Storage and Distribution of Ammonia,” in Techno-Economic Challenges of Green Ammonia as an Energy Vector, Elsevier, 2020, pp. 191–207. doi: 10.1016/B978-0-12-820560-0.00008-4.spa
dc.relation.referencesG. Subbaraman, “Final Report-Rev0 Emerging and Existing Oxygen Production Technology Scan and Evaluation,” 2018. [Online]. Available: www.gastechnology.orgspa
dc.relation.referencesM. Jain, R. Muthalathu, and X. Y. Wu, “Electrified ammonia production as a commodity and energy storage medium to connect the food, energy, and trade sectors,” iScience, vol. 25, no. 8, Aug. 2022, doi: 10.1016/j.isci.2022.104724.spa
dc.relation.referencesM. Rivarolo, G. Riveros-Godoy, L. Magistri, and A. F. Massardo, “Clean hydrogen and ammonia synthesis in paraguay from the Itaipu 14 GW hydroelectric plant,” ChemEngineering, vol. 3, no. 4, pp. 1–11, Dec. 2019, doi: 10.3390/chemengineering3040087.spa
dc.relation.references“Fuel ammonia supply cost analysis (Interim report) Fuel ammonia supply chain publicprivate task force,” 2022.spa
dc.relation.referencesAmmonia : zero-carbon fertiliser, fuel and energy storespa
dc.relation.references“Fuel production cost estimates and assumptions.”spa
dc.relation.referencesS. Y. Lee, J.-H. Ryu, and I.-B. Lee, “A PRELIMINARY TECHNO-ECONOMIC ANALYSIS OF POWER TO AMMNONIA PROCESSES USING ALKALINE ELECTROLYSIS AND AIR SEPARATION UNIT,” 2019.spa
dc.relation.referencesW. C. Leighty, “Alternatives to Electricity for Transmission and Annual-scale Firming Storage for Diverse, Stranded, Renewable Energy Resources: Hydrogen and Ammonia.”spa
dc.relation.referencesA. Castañeda, A. Sofía, G. Diego, M. Castrillón, and J. C. Farfán, “Cartagena como centro industrial de hidrógeno bajo en carbono,” 2022.spa
dc.relation.references“Working_Paper_Costo_de_Transporte_vf”spa
dc.relation.referencesAmmonia : zero-carbon fertiliser, fuel and energy store.spa
dc.relation.referencesW. C. Leighty, “Alternatives to Electricity for Transmission and Annual-scale Firming Storage for Diverse, Stranded, Renewable Energy Resources: Hydrogen and Ammonia.”spa
dc.relation.referencesH. Zhang, L. Wang, J. Van herle, F. Maréchal, and U. Desideri, “Techno-economic comparison of 100% renewable urea production processes,” Appl Energy, vol. 284, Feb. 2021, doi: 10.1016/j.apenergy.2020.116401.spa
dc.relation.referencesC. Fernando and W. W. Purwanto, “Techno-economic analysis of a small-scale power-togreen urea plant,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1755-1315/716/1/012010spa
dc.relation.references“TFG_JOSE_MANUEL_PERALES_FERNANDEZ”.spa
dc.relation.references“INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS TESIS EVALUACIÓN TÉCNICA Y ECONÓMICA PARA LA FABRICACIÓN DE LA UREA EN MÉXICO.”spa
dc.relation.referencespidjoe, “The Future of Hydrogen.”spa
dc.relation.referencesR. E. Beu and S. Transporte, “Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética.”spa
dc.relation.referencesY. Rizi, H. Ali, and D. Shin, “Process of Converting Ammonia to Hydrogen.”spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalHaber Boschspa
dc.subject.proposalBosch Meiserspa
dc.subject.proposalHidrógeno verdespa
dc.subject.proposalAmoniaco Verdespa
dc.subject.proposalUrea verdespa
dc.subject.proposalportador de hidrógenospa
dc.subject.proposalcelda de combustiblespa
dc.subject.proposalelectrolisisspa
dc.subject.proposalGreen Hydrogeneng
dc.subject.proposalGreen Ammoniaeng
dc.subject.proposalGreen Ureaeng
dc.subject.proposalHaber Boscheng
dc.subject.proposalBosch Meisereng
dc.subject.proposalhydrogen carriereng
dc.subject.proposalfuel celleng
dc.subject.proposalelectrolysiseng
dc.subject.wikidataHidrógeno verde
dc.subject.wikidataAmoniaco
dc.titleUrea y amoniaco para el transporte y uso del hidrógeno verde en Colombiaspa
dc.title.translatedUrea and ammonia for transport and use of green hydrogen in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098775727.2023.pdf
Tamaño:
2.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: