Quantitative analysis of nuclei relations by applying multiresolution representations and graph models : use cases in breast cancer and gastric premalignant lesions

dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorMoncayo Martínez, Ricardo Alexander
dc.contributor.researchgroupCim@Lab
dc.date.accessioned2026-01-19T15:16:03Z
dc.date.available2026-01-19T15:16:03Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, tablasspa
dc.description.abstractEl diagnóstico y la gradación del cáncer continúan dependiendo en gran medida de la interpretación subjetiva de imágenes histopatológicas, especialmente al evaluar el pleomorfismo nuclear (del griego antiguo πλ´ϵω- (plé¯o, ‘‘más’’) y −μρϕ´η (morph, ‘‘forma’’)), un criterio morfológico utilizado rutinariamente para estimar la agresividad tumoral mediante. A pesar de su importancia clínica, el pleomorfismo sigue estando pobremente definido, con bajo acuerdo interobservador y difícil de cuantificar objetivamente. Los sistemas de gradación convencionales reducen la complejidad morfológica a un conjunto limitado de puntuaciones categóricas, una simplificación que a menudo no refleja la heterogeneidad biológica presente en los tejidos. Esta tesis propone un marco computacional orientado a caracterizar el pleomorfismo como un fenómeno continuo y estructurado espacialmente, abordando limitaciones clave de los sistemas categóricos actuales. Como primera contribución, se desarrolló una técnica de preprocesamiento basada en transformadas noiselet multiresolución, diseñada para eliminar señales no nucleares que afectan la precisión de las etapas posteriores de análisis computacional. A diferencia de los esquemas de segmentación tradicionales, este enfoque reduce explícitamente la complejidad del fondo y el ruido estructural, especialmente en tejidos con alta variabilidad arquitectónica, mejorando así la consistencia en la segmentación de núcleos en conjuntos de datos heterogéneos. El marco de este trabajo es un descriptor multiescala que modela la variación nuclear a nivel individual, capturando la morfología en relación con su contexto espacial local y contextual. Este descriptor se aplicó a conjuntos de datos anotados de cáncer de mama y lesiones gástricas premalignas, permitiendo cuantificar cambios morfológicos que suelen no ser evaluadas por los sistemas de gradación. Se realizaron experimentos comparativos para evaluar el rendimiento del método propuesto en términos de separabilidad y estabilidad de clases, en comparación con enfoques categóricos tradicionales. En lugar de basarse en esquemas de clasificación estáticos, el marco genera una representación estructurada y continua del pleomorfismo, diseñada para respaldar tanto el análisis morfológico exploratorio como futuras aplicaciones de modelado. Este trabajo aporta una metodología modular e interpretable para el análisis de la morfología nuclear, proponiendo una perspectiva que valora la descripción morfológica detallada frente a la categorización rígida, el contexto relacional frente a las etiquetas aisladas, y la estructura interpretable frente a los sistemas de gradación convencionales. Al integrar la extracción multiescala de características y el modelado espacial, se introduce una nueva perspectiva para la caracterización computacional del pleomorfismo nuclear. Este enfoque contribuye a los esfuerzos actuales en patología computacional al ofrecer una representación estructurada y reproducible de la morfología nuclear, y proporciona una base sólida para futuras extensiones orientadas a la integración clínica (Texto tomado de la fuente).spa
dc.description.abstractThe diagnosis and grading of cancer continue to rely heavily on subjective interpretation of histopathological images, particularly when evaluating nuclear pleomorphism (from Ancient Greek πλϵ́ω- (pléō, ‘‘more’’) and −µρϕή (morph, ‘‘form’’)), one morphological criterion routinely used to estimate tumor aggressiveness. Despite its clinical importance, pleomorphism remains poorly defined, with low interobserver agreement, and difficult to quantify objectively. Conventional grading systems reduce complex morphological variation to a handful of categorical scores, a simplification that often fails to reflect the biological heterogeneity present across tissue regions. This thesis proposes a computational framework aimed at characterizing pleomorphism as a continuous and spatially structured phenomenon, addressing key limitations of current categorical grading systems. As an initial contribution, a preprocessing technique based on multiresolution noiselet transforms was developed to remove non-nuclear signals that impact the accuracy of subsequent computational analysis stages. Unlike traditional segmentation pipelines, this approach explicitly reduces background complexity and structural noise, particularly in tissues with high architectural variability, resulting in improved nuclei segmentation consistency across heterogeneous datasets. At the core of the framework is a multiscale descriptor that models nuclear variation at the individual level, capturing morphology in relation to local spatial context. This descriptor was applied to annotated datasets of breast cancer and gastric premalignant lesions, enabling the quantification of morphologic transitions that are typically flattened by global grading systems. Comparative experiments were conducted to evaluate the performance of the proposed method in terms of class separability and stability when compared to baseline categorical approaches. Instead of relying on a static classification scheme, the framework generates a continuous, structured feature representation of pleomorphism, designed to support both exploratory morphological analysis and future modeling applications. This work contributes a modular and interpretable methodology for nuclear morphology analysis, offering a perspective that values detailed morphological description over rigid categorization, relational context over isolated labels, and interpretable structure over conventional grading systems. By integrating multiscale feature extraction and spatial modeling, the framework introduces a novel perspective to the computational characterization of nuclear pleomorphism. It supports ongoing efforts in computational pathology by providing a structured and reproducible representation of nuclear morphology, and offers a principled foundation for future extensions aimed at clinical integration.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingenieria Eléctrica
dc.description.researchareaIngeniería en medicina y biología
dc.format.extentv, 55 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89243
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.relation.referencesAbdalla, F.; Boder, J.; Markus, R.; Hashmi, H.; Abdelbaset, B. & Collan, Y.: , 2009; Correlation of nuclear morphometry of breast cancer in histological sections with clinicopathological features and prognosis; Anticancer Research; 29 (5): 1771--1776; URL http://ar.iiarjournals.org/content/29/5/1771.abstract
dc.relation.referencesAhadi, M.; Sokolova, A.; Brown, I.; Chou, A. & Gill, A. J.: , 2021; The 2019 world health organization classification of appendiceal, colorectal and anal canal tumours: an update and critical assessment; Pathology; 53 (4): 454--461.
dc.relation.referencesAli, S.; Veltri, R.; Epstein, J. A.; Christudass, C. & Madabhushi, A.: , 2013; Cell cluster graph for prediction of biochemical recurrence in prostate cancer patients from tissue microarrays; en Medical Imaging 2013: Digital Pathology, tomo 8676; SPIE; págs. 164--174.
dc.relation.referencesAlvarez-Jimenez, C.; Sandino, A. A.; Prasanna, P.; Gupta, A.; Viswanath, S. E. & Romero, E.: , 2020; Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: preliminary results; Cancers; 12 (12): 3663
dc.relation.referencesAmin, M. B.: , 2009; Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications; Modern Pathology; 22: S96--S118.
dc.relation.referencesAmin, M. B.; Greene, F. L.; Edge, S. B.; Compton, C. C.; Gershenwald, J. E.; Brookland, R. K.; Meyer, L.; Gress, D. M.; Byrd, D. R. & Winchester, D. P.: , 2017; The eighth edition ajcc cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging; CA: a cancer journal for clinicians; 67 (2): 93--99.
dc.relation.referencesAnand, D.; Gadiya, S. & Sethi, A.: , 2020; Histographs: graphs in histopathology; en Medical Imaging 2020: Digital Pathology, tomo 11320; SPIE; págs. 150--155.
dc.relation.referencesAraújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polónia, A. & Campilho, A.: , 2017; Classification of breast cancer histology images using convolutional neural networks; PloS one; 12 (6).
dc.relation.referencesAtanda, A. T.; Imam, M. I.; Umar, A. B.; Yusuf, I. & Bello, S. S.: , 2017; Audit of nottingham system grades assigned to breast cancer cases in a teaching hospital; Annals of Tropical Pathology; 8 (2): 104--107.
dc.relation.referencesAydin, O.; Egilmez, R.; Karabacak, T. & Kanik, A.: , 2003; Interobserver variation in histopathological assessment of helicobacter pylori gastritis; World journal of gastroenterology; 9 (10): 2232.
dc.relation.referencesBalogh, E. P.; Miller, B. T.; Ball, J. R.; National Academies of Sciences, E.; Medicine et al.: , 2015; Overview of diagnostic error in health care; en Improving diagnosis in health care; National Academies Press (US).
dc.relation.referencesBasavanhally, A.; Feldman, M.; Shih, N.; Mies, C.; Tomaszewski, J.; Ganesan, S. & Madabhushi, A.: , 2012; Multi-field- of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to oncotype dx; Journal of pathology informatics; 2 (2): 1.
dc.relation.referencesBautista, P. A. & Yagi, Y.: , 2009; Detection of tissue folds in whole slide images; en 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; págs. 3669--3672; doi:10.1109/IEMBS.2009.5334529
dc.relation.referencesBecht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I. W.; Ng, L. G.; Ginhoux, F. & Newell, E. W.: , 2019; Dimensionality reduction for visualizing single-cell data using umap; Nature biotechnology; 37 (1): 38--44
dc.relation.referencesBedoya-Urresta, Á.; Yépez, Y.; Calvache, D.; Cifuentes, Y.; Lucero, N.; González, P.; Bedoya, Á.; Manosalva, E.; Martínez, T.; Peñalosa, A. et al.: , 2018; Proyecto urkunina 5000. investigación de la prevalencia de lesiones precursoras y del efecto de la erradicación de helicobacter pylori como prevención primaria del cáncer gástrico en el departamento de nariño; Revista Colombiana de Cirugía; 33 (4): 345--352.
dc.relation.referencesBosman, F. T.; Carneiro, F.; Hruban, R. H.; Theise, N. D. et al.: , 2010; WHO classification of tumours of the digestive system.; Ed. 4; World Health Organization.
dc.relation.referencesBrachtel, E. & Yagi, Y.: , 2012; Digital imaging in pathology--current applications and challenges; Journal of biophotonics; 5 (4): 327--335.
dc.relation.referencesBrierley, J. D.; Gospodarowicz, M. K. & Wittekind, C.: , 2017; TNM classification of malignant tumours; John Wiley & Sons.
dc.relation.referencesBussolati, G.; Marchiò, C.; Gaetano, L.; Lupo, R. & Sapino, A.: , 2008; Pleomorphism of the nuclear envelope in breast cancer: a new approach to an old problem; Journal of cellular and molecular medicine; 12 (1): 209--218.
dc.relation.referencesCelis, R.; Romo, D. & Romero, E.: , 2015; Blind colour separation of h&e stained histological images by linearly transforming the colour space; Journal of microscopy; 260 (3): 377--388.
dc.relation.referencesChen, J.-M.; Li, Y.; Xu, J.; Gong, L.; Wang, L.-W.; Liu, W.-L. & Liu, J.: , 2017; Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review; Tumor Biology; 39 (3): 1010428317694550.
dc.relation.referencesChen, R. J.; Ding, T.; Lu, M. Y.; Williamson, D. F.; Jaume, G.; Song, A. H.; Chen, B.; Zhang, A.; Shao, D.; Shaban, M. et al.: , 2024; Towards a general-purpose foundation model for computational pathology; Nature Medicine; 30 (3): 850--862.
dc.relation.referencesChen, Y.; Zhang, L.; Liu, W. & Liu, X.: , 2015; Prognostic significance of the tumor-stroma ratio in epithelial ovarian cancer; BioMed research international; 2015.
dc.relation.referencesChen, Z.; Zhang, Y.; Li, W.; Gao, C.; Huang, F.; Cheng, L.; Jin, M.; Xu, X. & Huang, J.: , 2023; Single cell profiling of female breast fibroadenoma reveals distinct epithelial cell compositions and therapeutic targets; Nature Communications; 14 (1): 3469.
dc.relation.referencesCoifman, R.; Geshwind, F. & Meyer, Y.: , 2001; Noiselets; Applied and Computational Harmonic Analysis; 10 (1): 27--44.
dc.relation.referencesCoroller, T. P.; Agrawal, V.; Huynh, E.; Narayan, V.; Lee, S. W.; Mak, R. H. & Aerts, H. J.: , 2017; Radiomic-based pathological response prediction from primary tumors and lymph nodes in nsclc; Journal of Thoracic Oncology; 12 (3): 467--476.
dc.relation.referencesCorrea, P.: , 1988; A Human Model of Gastric Carcinogenesis1; Cancer Research; 48 (13): 3554--3560.
dc.relation.referencesCorrea, P.: , 1992; Human gastric carcinogenesis: a multistep and multifactorial process--first american cancer society award lecture on cancer epidemiology and prevention.; Cancer research; 52 24: 6735--40; URL https://api.semanticscholar.org/CorpusID:27527914.
dc.relation.referencesCorredor, G.; Wang, X.; Zhou, Y.; Lu, C.; Fu, P.; Syrigos, K.; Rimm, D. L.; Yang, M.; Romero, E.; Schalper, K. A. et al.: , 2019; Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non--small cell lung cancer; Clinical cancer research; 25 (5): 1526--1534.
dc.relation.referencesDalle, J. e. a.: , 2008; Automatic grading of breast cancer histopathology using multiresolution images; en Proceedings of IEEE EMBC ; págs. 17--25.
dc.relation.referencesDas, A.; Nair, M. S. & Peter, D. S.: , 2020a; Batch mode active learning on the riemannian manifold for automated scoring of nuclear pleomorphism in breast cancer; Artificial Intelligence in Medicine; 103: 101805; doi:https://doi.org/10.1016/j.artmed.2020.101805; URL https://www.sciencedirect.com/science/article/pii/S0933365719306967.
dc.relation.referencesDas, A.; Nair, M. S. & Peter, S. D.: , 2020b; Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: a review; Journal of digital imaging; 33: 1091--1121.
dc.relation.referencesDavidson, T. M.; Rendi, M. H.; Frederick, P. D.; Onega, T.; Allison, K. H.; Mercan, E.; Brunyé, T. T.; Shapiro, L. G.; Weaver, D. L. & Elmore, J. G.: , 2019; Breast cancer prognostic factors in the digital era: comparison of nottingham grade using whole slide images and glass slides; Journal of Pathology Informatics; 10 (1): 11
dc.relation.referencesde Kruijf, E. M.; van Nes, J. G.; van de Velde, C. J.; Putter, H.; Smit, V. T.; Liefers, G. J.; Kuppen, P. J.; Tollenaar, R. A. & Mesker, W. E.: , 2011; Tumor--stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients; Breast cancer research and treatment; 125 (3): 687--696.
dc.relation.referencesDoyle, S.; Feldman, M. D.; Shih, N.; Tomaszewski, J. & Madabhushi, A.: , 2012; Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer; BMC bioinformatics; 13: 1--15.
dc.relation.referencesDunne, B. & Going, J.: , 2001; Scoring nuclear pleomorphism in breast cancer; Histopathology; 39 (3): 259--265.
dc.relation.referencesEl-Zimaity, H.; Riddell, R.; Abudayyeh, S.; Opekun, A. & Graham, D.: , 2009; Gastric atrophy diagnostic accuracy: comparison of olga with baylor system; 89: 128A--128A.
dc.relation.referencesFlanagan, M. B.; Dabbs, D. J.; Brufsky, A. M.; Beriwal, S. & Bhargava, R.: , 2008; Histopathologic variables predict oncotype dx™ recurrence score; Modern Pathology; 21 (10): 1255.
dc.relation.referencesFrable, W. J.: , 2006; Surgical pathology—second reviews, institutional reviews, audits, and correlations: what’s out there? error or diagnostic variation?; Archives of pathology & laboratory medicine; 130 (5): 620--625
dc.relation.referencesFreund, Y. & Schapire, R. E.: , 1997; A decision-theoretic generalization of on-line learning and an application to boosting; Journal of computer and system sciences; 55 (1): 119--139.
dc.relation.referencesFriedman, H. H.: , 2001; Problem-oriented medical diagnosis; tomo 43; Lippincott Williams & Wilkins.
dc.relation.referencesFrierson, H. F. e. a.: , 1995; Interobserver reproducibility of the bloom-richardson grading system; American Journal of Clinical Pathology; 103 (2): 195--198.
dc.relation.referencesGal, Y. & Ghahramani, Z.: , 2016; Dropout as a bayesian approximation: Representing model uncertainty in deep learning; en international conference on machine learning; PMLR; págs. 1050--1059
dc.relation.referencesGerlinger, M.; Rowan, A. J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P. et al.: , 2012; Intratumor heterogeneity and branched evolution revealed by multiregion sequencing; New England Journal of Medicine; 366 (10): 883--892
dc.relation.referencesGonzález, C. A.; Sanz-Anquela, J. M.; Gisbert, J. P. & Correa, P.: , 2013; Utility of subtyping intestinal metaplasia as marker of gastric cancer risk. a review of the evidence; International Journal of Cancer ; 133 (5): 1023--1032.
dc.relation.referencesGraham, S.; Vu, Q. D.; Raza, S. E. A.; Azam, A.; Tsang, Y. W.; Kwak, J. T. & Rajpoot, N.: , 2019a; Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images; Medical Image Analysis; 58: 101563; doi:https://doi.org/10.1016/j.media.2019.101563; URL https://www.sciencedirect.com/science/article/pii/S1361841519301045.
dc.relation.referencesGraham, S.; Vu, Q. D.; Raza, S. E. A.; Azam, A.; Tsang, Y. W.; Kwak, J. T. & Rajpoot, N.: , 2019b; Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images; Medical image analysis; 58: 101563.
dc.relation.referencesGurcan, M. N.; Boucheron, L. E.; Can, A.; Madabhushi, A.; Rajpoot, N. M. & Yener, B.: , 2009; Histopathological image analysis: A review; IEEE reviews in biomedical engineering; 2: 147--171.
dc.relation.referencesGuyatt, G.; Cairns, J.; Churchill, D.; Cook, D.; Haynes, B.; Hirsh, J.; Irvine, J.; Levine, M.; Levine, M.; Nishikawa, J. et al.: , 1992; Evidence-based medicine: a new approach to teaching the practice of medicine; jama; 268 (17): 2420--2425
dc.relation.referencesHaralick, R. M.; Shanmugam, K. & Dinstein, I. H.: , 1973; Textural features for image classification; IEEE Transactions on systems, man, and cybernetics; (6): 610--621.
dc.relation.referencesHayward, M.-K.; Jones, J. L.; Hall, A.; King, L.; Ironside, A. J.; Nelson, A. C.; Hwang, E. S. & Weaver, V. M.: , 2020; Derivation of a nuclear heterogeneity image index to grade dcis; Computational and Structural Biotechnology Journal; 18: 4063--4070.
dc.relation.referencesHe, K.; Zhang, X.; Ren, S. & Sun, J.: , 2016; Deep residual learning for image recognition; en Proceedings of the IEEE conference on computer vision and pattern recognition; págs. 770--778.
dc.relation.referencesHe, L.; Long, L. R.; Antani, S. & Thoma, G. R.: , 2012; Histology image analysis for carcinoma detection and grading; Computer methods and programs in biomedicine; 107 (3): 538--556
dc.relation.referencesHeindl, A.; Nawaz, S. & Yuan, Y.: , 2015; Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology; Laboratory investigation; 95 (4): 377--384
dc.relation.referencesHernández, G.: , 2021; Epidemiología del cáncer en colombia: una transición que debemos conocer; Medicina; 43 (1): 64--73.
dc.relation.referencesHollandi, R.; Moshkov, N.; Paavolainen, L.; Tasnadi, E.; Piccinini, F. & Horvath, P.: , 2022; Nucleus segmentation: towards automated solutions; Trends in Cell Biology.
dc.relation.referencesHortobagyi, G. N.; Edge, S. B. & Giuliano, A.: , 2018; New and important changes in the tnm staging system for breast cancer; Am Soc Clin Oncol Educ Book ; 38: 457--467.
dc.relation.referencesHou, L.; Nguyen, V.; Kanevsky, A. B.; Samaras, D.; Kurc, T. M.; Zhao, T.; Gupta, R. R.; Gao, Y.; Chen, W.; Foran, D. et al.: , 2019; Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images; Pattern recognition; 86: 188--200.
dc.relation.referencesHowley, T.; Madden, M. G.; O’Connell, M.-L. & Ryder, A. G.: , 2005; The effect of principal component analysis on machine learning accuracy with high dimensional spectral data; en International Conference on Innovative Techniques and Applications of Artificial Intelligence; Springer; págs. 209--222.
dc.relation.referencesHumphrey, P. A.: , 2017; Histopathology of prostate cancer; Cold Spring Harbor Perspectives in Medicine; 7 (10): a030411.
dc.relation.referencesIwata, H.: , 2016; Adenocarcinoma containing lepidic growth; Journal of Thoracic Disease; 8 (9): E1050.
dc.relation.referencesJ. Dalle, H. Li, C. H. e. a.: , 2009; "Nuclear Pleomorphism Scoring by Selective Cell Nuclei Detection"; IEEE Workshop on Applications of Computer Visionm Snowbird, Utah, USA
dc.relation.referencesJencks, D.; Adam, J.; Borum, M.; Koh, J.; Stephen, S. & Doman, D.: , 2018; Overview of current concepts in gastric intestinal metaplasia and gastric cancer; Gastroenterology and Hepatology; 14: 92--101.
dc.relation.referencesJohns Hopkins Medicine: , 2024; Breast cancer grading (nottingham); https://pathology.jhu.edu; accessed: 2024-04-02.
dc.relation.referencesKarimi Jafarbigloo, S. & Danyali, H.: , 2021; Nuclear atypia grading in breast cancer histopathological images based on cnn feature extraction and lstm classification; CAAI Transactions on Intelligence Technology; 6 (4): 426--439.
dc.relation.referencesKatayama, A.; Toss, M. S.; Parkin, M.; Ellis, I. O.; Quinn, C. & Rakha, E. A.: , 2022; Atypia in breast pathology: what pathologists need to know; Pathology; 54 (1): 20--31.
dc.relation.referencesKhan, A.; Sirinukunwattana, K. & Rajpoot, N.: , 2015; A global covariance descriptor for nuclear atypia scoring in breast histopathology images; Biomedical and Health Informatics, IEEE Journal of ; 19 (5): 1637--1647; doi:10.1109/JBHI.2015.2447008.
dc.relation.referencesKleihues, P. & Sobin, L. H.: , 2000; World health organization classification of tumors; Cancer ; 88 (12): 2887--2887.
dc.relation.referencesKumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A. & Sethi, A.: , 2017; A dataset and a technique for generalized nuclear segmentation for computational pathology; IEEE transactions on medical imaging; 36 (7): 1550--1560.
dc.relation.referencesKumar, V.; Abbas, A. & Aster, J.: , 2014; Robbins and Cotran Pathologic Basis of Disease; Elsevier Saunders, Philadelphia, PA; 9a edición.
dc.relation.referencesLapuente-Santana, Ó.; Kant, J. & Eduati, F.: , 2024; Integrating histopathology and transcriptomics for spatial tumor microenvi- ronment profiling in a melanoma case study; npj Precision Oncology; 8 (1): 254.
dc.relation.referencesLawler, M.; Keeling, P.; Kholmanskikh, O.; Minnaard, W.; Moehlig-Zuttermeister, H.; Normanno, N.; Philip, R.; Popp, C.; Salgado, R.; Santiago-Walker, A. E. et al.: , 2024; Empowering effective biomarker-driven precision oncology: A call to action; European Journal of Cancer ; 209: 114225.
dc.relation.referencesLee, A.; Gillett, C.; Ryder, K.; Fentiman, I.; Miles, D. & Millis, R.: , 2006; Different patterns of inflammation and prognosis in invasive carcinoma of the breast; Histopathology; 48 (6): 692--701.
dc.relation.referencesLee, J.; Warner, E.; Shaikhouni, S.; Bitzer, M.; Kretzler, M.; Gipson, D.; Pennathur, S.; Bellovich, K.; Bhat, Z.; Gadegbeku, C. et al.: , 2022; Unsupervised machine learning for identifying important visual features through bag-of-words using histopathology data from chronic kidney disease; Scientific reports; 12 (1): 4832
dc.relation.referencesLeslie, K. O.; Wick, M. R. & Smith, M. L.: , 2017; Practical pulmonary pathology: a diagnostic approach e-book: a volume in the pattern recognition series; Elsevier Health Sciences
dc.relation.referencesLiu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S. & Guo, B.: , 2021; Swin transformer: Hierarchical vision transformer using shifted windows; en Proceedings of the IEEE/CVF international conference on computer vision; págs. 10012--10022.
dc.relation.referencesLiu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T. & Xie, S.: , 2022; A convnet for the 2020s; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; págs. 11976--11986.
dc.relation.referencesLópez-Monroy, A. P.; Montes-y Gómez, M.; Escalante, H. J.; Cruz-Roa, A. & González, F. A.: , 2013; Bag-of-visual-ngrams for histopathology image classification; en IX International Seminar on Medical Information Processing and Analysis, tomo 8922; SPIE; págs. 197--208.
dc.relation.referencesLu, C.; Ji, M.; Ma, Z. & Mandal, M.: , 2015; Automated image analysis of nuclear atypia in high-power field histopathological image; journal of microscopy; 258 (3): 233--240
dc.relation.referencesLu, C.; Koyuncu, C.; Corredor, G.; Prasanna, P.; Leo, P.; Wang, X.; Janowczyk, A.; Bera, K.; Lewis Jr, J.; Velcheti, V. et al.: , 2021; Feature-driven local cell graph (flock): new computational pathology-based descriptors for prognosis of lung cancer and hpv status of oropharyngeal cancers; Medical image analysis; 68: 101903.
dc.relation.referencesMacenko, M.; Niethammer, M.; Marron, J. S.; Borland, D.; Woosley, J. T.; Guan, X.; Schmitt, C. & Thomas, N. E.: , 2009; A method for normalizing histology slides for quantitative analysis; en 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; IEEE; págs. 1107--1110
dc.relation.referencesMakki, J.: , 2015; Diversity of breast carcinoma: histological subtypes and clinical relevance; Clinical medicine insights: Pathology; 8: CPath--S31563.
dc.relation.referencesMarusyk, A. & Polyak, K.: , 2010; Tumor heterogeneity: causes and consequences; Biochimica et Biophysica Acta (BBA)-Reviews on Cancer ; 1805 (1): 105--117.
dc.relation.referencesMathew, T.; Johnpaul, C.; Ajith, B.; Kini, J. R. & Rajan, J.: , 2023; A deep learning based classifier framework for automated nuclear atypia scoring of breast carcinoma; Engineering Applications of Artificial Intelligence; 120: 105949.
dc.relation.referencesMeacham, C. E. & Morrison, S. J.: , 2013; Tumour heterogeneity and cancer cell plasticity; Nature; 501 (7467): 328--337.
dc.relation.referencesMercan, C.; Balkenhol, M.; Salgado, R.; Sherman, M.; Vielh, P.; Vreuls, W.; Polónia, A.; Horlings, H. M.; Weichert, W.; Carter, J. M. et al.: , 2022; Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer; NPJ breast cancer ; 8 (1): 120.
dc.relation.referencesMeyer, J. S.; Alvarez, C.; Milikowski, C.; Olson, N.; Russo, I.; Russo, J.; Glass, A.; Zehnbauer, B. a.; Lister, K. & Parwaresch, R.: , 2005; Breast carcinoma malignancy grading by Bloom-Richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index.; Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc; 18 (8): 1067--78; doi:10.1038/modpathol.3800388; URL http://www.ncbi.nlm.nih.gov/pubmed/15920556.
dc.relation.referencesMohan, H.: , 2015; Textbook of pathology; Jaypee Brothers Medical Publishers New Delhi.
dc.relation.referencesMolaei, M.; Ehtiati, A.; Mashayekhi, R.; Rafizadeh, M.; Zojaji, H.; Mirsattari, D. & Farahani, R. K.: , 2016; Gastric atrophy: use of olga staging system in practice; Gastroenterology and Hepatology from Bed to Bench; 9 (1): 25.
dc.relation.referencesMolano, L. T.; Moncayo, R. A. & Romero, E.: , 2021; Detecting micro-metastases in the sentinel lymph node by characterizing micro-environments; en 17th International Symposium on Medical Information Processing and Analysis, tomo 12088; SPIE; págs. 313--321.
dc.relation.referencesMuglia, V. F. & Prando, A.: , 2015; Renal cell carcinoma: histological classification and correlation with imaging findings; Radiologia brasileira; 48: 166--174.
dc.relation.referencesNaoi, Y.; Kishi, K.; Tanei, T.; Tsunashima, R.; Tominaga, N.; Baba, Y.; Kim, S. J.; Taguchi, T.; Tamaki, Y. & Noguchi, S.: , 2011; High genomic grade index associated with poor prognosis for lymph node-negative and estrogen receptor-positive breast cancers and with good response to chemotherapy; Cancer ; 117 (3): 472--479
dc.relation.referencesNazeri, K.; Aminpour, A. & Ebrahimi, M.: , 2018; Two-stage convolutional neural network for breast cancer histology image classification; en International Conference Image Analysis and Recognition; Springer; págs. 717--726.
dc.relation.referencesOfferhaus, G.; Price, A.; ten Kate, F. & Dixon, M.: , 1999; Observer agreement on the grading of gastric atrophy; Histopathology; 34 (4): 320--325.
dc.relation.referencesOrganization, W. H. et al.: , 2018; Global health observatory. geneva: World health organization; 2018.
dc.relation.referencesO’Sullivan, B.; Brierley, J.; Byrd, D.; Bosman, F.; Kehoe, S.; Kossary, C.; Piñeros, M.; Van Eycken, E.; Weir, H. K. & Gospodarowicz, M.: , 2017; The tnm classification of malignant tumours—towards common understanding and reasonable expectations; The Lancet Oncology; 18 (7): 849--851
dc.relation.referencesPapadopoulos, H.: , 2008; Inductive conformal prediction: Theory and application to neural networks; en Tools in artificial intelligence; Citeseer.
dc.relation.referencesPeikari, M. & Martel, A. L.: , 2016; Automatic cell detection and segmentation from h and e stained pathology slides using colorspace decorrelation stretching; en Medical Imaging 2016: Digital Pathology, tomo 9791; SPIE; págs. 292--297.
dc.relation.referencesPerry, A.: , 2003; Pathology of low-grade gliomas: an update of emerging concepts; Neuro-oncology; 5 (3): 168--178.
dc.relation.referencesPetushi, S. e. a.: , 2006; Computerized image analysis for breast cancer grading; BMC Medical Imaging; 6: 14.
dc.relation.referencesPostma, E. L.; Verkooijen, H. M.; van Diest, P. J.; Willems, S. M.; Van Den Bosch, M. A. & Van Hillegersberg, R.: , 2013; Discrepancy between routine and expert pathologists’ assessment of non-palpable breast cancer and its impact on locoregional and systemic treatment; European journal of pharmacology; 717 (1-3): 31--35
dc.relation.referencesPrvulović, I.; Kardum-Skelin, I.; Susterčić, D.; Jakić-Razumović, J. & Manojlović, S.: , 2010; Morphometry of tumor cells in different grades and types of breast cancer; Collegium antropologicum; 34 (1): 99--103.
dc.relation.referencesQuinn, L.; Tryposkiadis, K.; Deeks, J.; De Vet, H. C.; Mallett, S.; Mokkink, L. B.; Takwoingi, Y.; Taylor-Phillips, S. & Sitch, A.: , 2023; Interobserver variability studies in diagnostic imaging: a methodological systematic review; The British Journal of Radiology; 96 (1148): 20220972
dc.relation.referencesRakha, E. A.; Reis-Filho, J. S.; Baehner, F.; Dabbs, D. J.; Decker, T.; Eusebi, V.; Fox, S. B.; Ichihara, S.; Jacquemier, J.; Lakhani, S. R. et al.: , 2010; Breast cancer prognostic classification in the molecular era: the role of histological grade; Breast cancer research; 12: 1--12.
dc.relation.referencesRoux, L.; Capron, F.; Calvo, J.; Attieh, E.; Naour, G. L.; Gloaguen, A. & Racoceanu, D.: , 2014; MITOS & ATYPIA 14 Contest; [online]http://mitos-atypia-14.grand-challenge.org.
dc.relation.referencesRubin, R.; Strayer, D. S.; Rubin, E. et al.: , 2008; Rubin’s pathology: clinicopathologic foundations of medicine; Lippincott Williams & Wilkins
dc.relation.referencesSaito, A.; Numata, Y.; Hamada, T.; Horisawa, T.; Cosatto, E.; Graf, H.-P.; Kuroda, M. & Yamamoto, Y.: , 2016; A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix; Journal of pathology informatics; 7 (1): 36.
dc.relation.referencesSertel, O.; Kong, J.; Catalyurek, U. V.; Lozanski, G.; Saltz, J. H. & Gurcan, M. N.: , 2009; Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading; Journal of Signal Processing Systems; 55 (1-3): 169.
dc.relation.referencesSETALA, L.; LIPPONEN, P.; KOSMA, V.-M.; MARIN, S.; ESKELINEN, M.; SYRJAeNEN, K. & ALHAVA, E.: , 1997; Nuclear morphometry as a predictor of disease outcome in gastric cancer; The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland; 181 (1): 46--50.
dc.relation.referencesSingh, H.; Sethi, S.; Raber, M. & Petersen, L. A.: , 2007; Errors in cancer diagnosis: current understanding and future directions; Journal of clinical oncology; 25 (31): 5009--5018
dc.relation.referencesSmits, L. J.; Vink-Börger, E.; van Lijnschoten, G.; Focke-Snieders, I.; van der Post, R. S.; Tuynman, J. B.; van Grieken, N. C. & Nagtegaal, I. D.: , 2022; Diagnostic variability in the histopathological assessment of advanced colorectal adenomas and early colorectal cancer in a screening population; Histopathology; 80 (5): 790--798
dc.relation.referencesSotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B.; Desmedt, C.; Larsimont, D.; Cardoso, F.; Peterse, H.; Nuyten, D.; Buyse, M.; Van de Vijver, M. J.; Bergh, J.; Piccart, M. & Delorenzi, M.: , 2006a; Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis; JNCI: Journal of the National Cancer Institute; 98 (4): 262--272; doi:10.1093/jnci/djj052; URL https://doi.org/10.1093/jnci/djj052.
dc.relation.referencesSotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B. et al.: , 2006b; Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis; Journal of the National Cancer Institute; 98 (4): 262--272.
dc.relation.referencesSparks, R. & Madabhushi, A.: , 2013; Explicit shape descriptors: Novel morphologic features for histopathology classification; Medical image analysis; 17 (8): 997--1009.
dc.relation.referencesSui, X.; Jiang, W.; Chen, H.; Yang, F.; Wang, J. & Wang, Q.: , 2017; Validation of the stage groupings in the eighth edition of the tnm classification for lung cancer; Journal of Thoracic Oncology; 12 (11): 1679--1686.
dc.relation.referencesSung, H.; Ferlay, J. et al.: , 2021; Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries; CA: a cancer journal for clinicians; 71 (3): 209--249.
dc.relation.referencesTan, P. H.; Ellis, I.; Allison, K.; Brogi, E.; Fox, S. B.; Lakhani, S.; Lazar, A. J.; Morris, E. A.; Sahin, A.; Salgado, R. et al.: , 2020; The 2019 who classification of tumours of the breast; Histopathology.
dc.relation.referencesTomczak, K.; Czerwińska, P. & Wiznerowicz, M.: , 2015; The cancer genome atlas (tcga): an immeasurable source of knowledge; Contemporary oncology; 19 (1A): A68
dc.relation.referencesTravis, W.; Brambilla, E.; Burke, A.; Marx, A. & Nicholson, A.: , 2015; Who classification of tumours of the lung, pleura, thymus and hear. geneva: Iarc.
dc.relation.referencesVandana, B. & Antony, P.: , 2012; Automated segmentation using histopathology images as a diagnostic confirmatory tool in detection of bone cancer; International Journal of Computer Applications; 57 (11).
dc.relation.referencesVarghese, J. & Saleema, J.: , 2023; Machine learning techniques for automated nuclear atypia detection in histopathology images: A review; Inventive Computation and Information Technologies: Proceedings of ICICIT 2022 : 717--740.
dc.relation.referencesVeta, M.; Huisman, A.; Viergever, M. A.; van Diest, P. J. & Pluim, J. P.: , 2011; Marker-controlled watershed segmentation of nuclei in h&e stained breast cancer biopsy images; en 2011 IEEE international symposium on biomedical imaging: from nano to macro; IEEE; págs. 618--621.
dc.relation.referencesVeta, M.; Kornegoor, R.; Huisman, A.; Verschuur-Maes, A. H. J.; Viergever, M. a.; Pluim, J. P. W. & van Diest, P. J.: , 2012; Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer.; Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc; 25 (12): 1559--65; doi:10.1038/modpathol.2012.126; URL http://www.ncbi.nlm.nih.gov/pubmed/22899294
dc.relation.referencesvon F. Zernike: , 1934; Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode; Physica; 1 (7): 689--704; doi:https://doi.org/10.1016/S0031-8914(34)80259-5; URL https://www.sciencedirect.com/science/article/pii/ S0031891434802595.
dc.relation.referencesWang, J.; Chen, R. J.; Lu, M. Y.; Baras, A. & Mahmood, F.: , 2020; Weakly supervised prostate tma classification via graph convolutional networks; en 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); IEEE; págs. 239--243.
dc.relation.referencesWang, M.; Klevebring, D.; Lindberg, J.; Czene, K.; Grönberg, H. & Rantalainen, M.: , 2016; Determining breast cancer histological grade from rna-sequencing data; Breast Cancer Research; 18: 1--13.
dc.relation.referencesWang, R. C. & Wang, Z.: , 2023; Precision medicine: disease subtyping and tailored treatment; Cancers; 15 (15): 3837.
dc.relation.referencesWasserman, S.: , 1994; Social network analysis: methods and applications; Cambridge University Press, Cambridge, UK.
dc.relation.referencesWieslander, H.; Harrison, P. J.; Skogberg, G.; Jackson, S.; Fridén, M.; Karlsson, J.; Spjuth, O. & Wählby, C.: , 2020; Deep learning with conformal prediction for hierarchical analysis of large-scale whole-slide tissue images; IEEE journal of biomedical and health informatics; 25 (2): 371--380
dc.relation.referencesYang, Q.; Mori, I.; Sakurai, T.; Yoshimura, G.; Suzuma, T.; Nakamura, Y.; Nakamura, M.; Taniguchi, E.; Tamaki, T.; Umemura, T. et al.: , 2001; Correlation between nuclear grade and biological prognostic variables in invasive breast cancer; Breast Cancer ; 8: 105--110
dc.relation.referencesYuan, Y.: , 2016; Spatial heterogeneity in the tumor microenvironment; Cold Spring Harbor perspectives in medicine; 6 (8): a026583.
dc.relation.referencesYuan, Y.; Zhao, Z.; Fang, X.; Zhang, Q.; Zhong, W.; Xu, M.; Li, G.; Jiao, R.; Yu, H.; Wang, R. et al.: , 2025; Cell graph analysis in hepatocellular carcinoma: predicting local recurrence and identifying spatial relationship biomarkers; npj Precision Oncology; 9 (1): 261
dc.relation.referencesYue, H.; Shan, L. & Bin, L.: , 2018; The significance of olga and olgim staging systems in the risk assessment of gastric cancer: a systematic review and meta-analysis; Gastric Cancer ; 21: 579--587.
dc.relation.referencesZhang, R.; Chen, H.-j.; Wei, B.; Zhang, H.-y.; Pang, Z.-g.; Zhu, H.; Zhang, Z.; Fu, J. & Bu, H.: , 2010; Reproducibility of the nottingham modification of the scarff-bloom-richardson histological grading system and the complementary value of ki-67 to this system; Chinese medical journal; 123 (15): 1976--1982.
dc.relation.referencesZhu, Y.-Z.; Li, W.-P.; Wang, Z.-Y.; Yang, H.-F.; He, Q.-L.; Zhu, H.-G. & Zheng, G.-J.: , 2013; Primary pulmonary adenocarcinoma mimicking papillary thyroid carcinoma; Journal of Cardiothoracic Surgery; 8 (1): 1--4.
dc.relation.referencesZuo, D.; Yang, L.; Jin, Y.; Qi, H.; Liu, Y. & Ren, L.: , 2023; Machine learning-based models for the prediction of breast cancer recurrence risk; BMC Medical Informatics and Decision Making; 23 (1): 276.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.decsDetección Precoz del Cáncerspa
dc.subject.decsEarly Detection of Cancereng
dc.subject.decsClasificación del Tumorspa
dc.subject.decsNeoplasm Gradingeng
dc.subject.decsMODELOS BIOLOGICOSspa
dc.subject.decsBiological modelseng
dc.subject.lembMODELOS MATEMATICOSspa
dc.subject.lembMathematical modelseng
dc.subject.lembTOMA DE DECISIONES-MODELOS MATEMATICOSspa
dc.subject.lembDecision-making - Mathematical modelseng
dc.subject.proposalProcesamiento de imágenes médicasspa
dc.subject.proposalReconocimiento de patronesspa
dc.subject.proposalPleomorfismo de núcleosspa
dc.subject.proposalSegmentación de imágenesspa
dc.subject.proposalImágenes biomédicasspa
dc.subject.proposalClasificación de imágenesspa
dc.subject.proposalExtracción de característicasspa
dc.subject.proposalAnálisis de morfología tisularspa
dc.subject.proposalMedical Image Processingeng
dc.subject.proposalPattern Recognitioneng
dc.subject.proposalNuclei Pleomorphismeng
dc.subject.proposalImage Segmentationeng
dc.subject.proposalBiomedical Imagingeng
dc.subject.proposalImage Classificationeng
dc.subject.proposalFeature Extractioneng
dc.subject.proposalTissue Morphology Analysiseng
dc.titleQuantitative analysis of nuclei relations by applying multiresolution representations and graph models : use cases in breast cancer and gastric premalignant lesionseng
dc.title.translatedAnálisis cuantitativo de las relaciones entre núcleos mediante la aplicación de representaciones multirresolución y modelos gráficos : casos de uso en cáncer de mama y lesiones premalignas gástricasspa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PhD_Tesis_Ricardo-1.pdf
Tamaño:
13.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: