Hourly electricity consumption forecasting for Antioquia-Colombia using statistical-machine learning models

dc.contributor.advisorGiraldo Gómez, Norman Diego
dc.contributor.authorRestrepo Gil, Adiel Ignacio
dc.coverage.regionAntioquia, Colombia
dc.date.accessioned2024-07-09T12:17:40Z
dc.date.available2024-07-09T12:17:40Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractEnergy sector plays a fundamental role in encouraging a country's economic growth and social progress due to its functionality as an input for productive processes and as a public service asset that provides greater welfare to the population. Electricity consumption forecasting is a valuable instrument for policy-makers to guide pricing, taxation and investment decisions, as well as energy and operational security planning, helping to ensure a continuous supply of electricity and reducing cost overruns associated with the provision of energy distribution services. The aim of this research is to forecast hourly electricity consumption in Antioquia-Colombia using Statiscal-Machine Learning models with exogenous variables such as day-type and maximum temperature. The results show that LSTM Neural Network can be an efficient model for the operational deployment of electricity distribution since its average electricity supply error for an operational week is estimated to be around 493 MWh, while XM Market Operator's benchmark model obtained an error of 3420 MWh during the evaluated week. (Tomado de la fuente)eng
dc.description.abstractEl sector energético desempeña un papel fundamental en el fomento del crecimiento económico y el progreso social de un país debido a su funcionalidad como insumo de los procesos productivos y como activo de servicio público que proporciona mayor bienestar a la población. La previsión del consumo de energía eléctrica es un valioso instrumento para que los hacedores de política orienten las decisiones de tarifas, impuestos e inversión, así como la planificación de la seguridad energética y operativa, contribuyendo a garantizar un suministro continuo de electricidad y reduciendo los sobrecostos asociados a la prestación de los servicios de distribución de energía. El objetivo de esta investigación es pronosticar el consumo de electricidad horario en Antioquia-Colombia utilizando modelos de Statistical-Machine Learning con variables exógenas como el tipo de día y la temperatura máxima. Los resultados muestran que la Red Neuronal LSTM puede ser un modelo eficiente para el despliegue operativo de la distribución eléctrica debido a que su error promedio de suministro de electricidad para una semana operativa se estima en alrededor de 493 MWh, mientras que el modelo de referencia del Operador de Mercado XM obtuvo un error de 3420 MWh durante la semana evaluada.spa
dc.description.curricularareaEstadística.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extent50 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86415
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesArora, S. and Taylor, J. W. (2018). Rule-based autoregressive moving average models for forecasting load on special days: A case study for france. European Journal of Operational Research, 266(1):259–268.spa
dc.relation.referencesBandara, K., Hyndman, R. J., and Bergmeir, C. (2021). Mstl: A seasonal-trend decomposition algorithm for time series with multiple seasonal patterns.spa
dc.relation.referencesBarrientos, A. F., Olaya, J., and Gonzalez, V. M. (2007). A spline model for electricity demand forescasting. Revista Colombiana de Estad ́ıstica, 30(2):187.spa
dc.relation.referencesBarrientos, J., Marquez Marulanda, L., and Villada Duque, F. (2023). Analyzing electricity demand in colombia: A functional time series approach. International Journal of Energy Economics and Policy, 13(1):75–84.spa
dc.relation.referencesBartz, E., Bartz-Beielstein, T., Zaefferer, M., and Mersmann, O. (2023). Hyperparameter Tuning for Machine and Deep Learning with R - A Practical Guide. Springer.spa
dc.relation.referencesBerbesi, L. and Pritchard, G. (2023). Modelling energy data in a generalized additive model: A case study of Colombia. Energies, 16(4).spa
dc.relation.referencesBergmeir, C., Hyndman, R. J., and Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics Data Analysis, 120:70–83.spa
dc.relation.referencesBontempi, G., Ben Taieb, S., and Le Borgne, Y.-A. (2013). Machine Learning Strategies for Time Series Forecasting, volume 138.spa
dc.relation.referencesCastaño, E. (2007). Reconstrucción de datos de series de tiempo: una aplicación a la demanda horaria de la electricidad. Revista Colombiana de Estadística, 30:247 – 263.spa
dc.relation.referencesChapagain, K. and Kittipiyakul, S. (2018). Performance analysis of short-term electricity demand with atmospheric variables. Energies, 11.spa
dc.relation.referencesChen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA. Association for Computing Machinery.spa
dc.relation.referencesCNO (2021). Consejo nacional de operación: Acuerdo 1303 por el cual se actualizan los procedimientos para la gestión integral de la demanda. Retrieved Dec 10, 2023 from https://bit.ly/3KSCHoI.spa
dc.relation.referencesCPC (2020). Informe Nacional de Competitividad 2020-2021. Bogotá: Consejo Privado de Competitividad.spa
dc.relation.referencesDiebold, F. and Mariano, R. (1995). Comparing predictive accuracy. Journal of Business Economic Statistics, 13(3):253–63.spa
dc.relation.referencesDiebold, F. X. and Rudebusch, G. D. (1999). Business cycles: Durations, dynamics, and forecasting. (6636).spa
dc.relation.referencesDivina, F., Gilson, A., Goméz-Vela, F., García Torres, M., and Torres, J. F. (2018). Stacking ensemble learning for short-term electricity consumption forecasting. Energies, 11(4).spa
dc.relation.referencesDNP (2017). Energy Demand Situation in Colombia. Enersinc.spa
dc.relation.referencesEIA (2023). Energy Information Administration: Electricity explained. Retrieved Dec 1, 2023 from www.eia.gov/energyexplained/electricity.spa
dc.relation.referencesEngle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2):251–276.spa
dc.relation.referencesGarcia, J., Rey Londoño, F., Arango Restrepo, L. J., and Bohorquez Correa, S. (2023). Sectoral analysis of electricity consumption during the covid-19 pandemic: Evidence for unregulated and regulated markets in colombia. Energy, 268:126614.spa
dc.relation.referencesGómez, D. (2001). Análisis espectral: consideraciones teóricas y aplicabilidad. Economía y Sociedad, 6.spa
dc.relation.referencesGoodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.spa
dc.relation.referencesHamilton, J. D. (1994). Time series analysis. 10.spa
dc.relation.referencesHarvey, D., Leybourne, S., and Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2):281–291.spa
dc.relation.referencesHastie, T. and Tibshirani, R. (2017). Generalized Additive Models. Taylor Francis Group., pages 249–307.spa
dc.relation.referencesHastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Series in Statistics. Springer, 2nd ed. 2009. corr. 3rd printing 5th printing. edition.spa
dc.relation.referencesHastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman Hall/CRC Monographs on Statistics Applied Probability. Chapman and Hall/CRC.spa
dc.relation.referencesHochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9:1735–80.spa
dc.relation.referencesJames, G., Tibshirani, R., Witten, D., and Hastie, T. (2021). An Introduction to Statistical Learning: With Applications in R. Springer Texts in Statistics. Springer, 2 edition.spa
dc.relation.referencesJiang, P., Li, R., Lu, H., and Zhang, X. (2020). Modeling of electricity demand forecast for power system. Neural Computing and Applications, 32:1–19.spa
dc.relation.referencesJimenez Mares, J., Pertuz, A., Quintero M., C., and Montana, J. (2019). Multivariate statistical analysis based methodology for long-term demand forecasting. IEEE Latin America Transactions, 17:93–101.spa
dc.relation.referencesJohansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. Econometrica, 59(6):1551–1580.spa
dc.relation.referencesKhalil, M., McGough, S. A., Pourmirza, Z., Pazhoohesh, M., and Walker, S. (2022). Machine learning, deep learning and statistical analysis for forecasting building energy consumption — a systematic review. Engineering Applications of Artificial Intelligence, 115:105287.spa
dc.relation.referencesKhan, A. M. and Osi ́nska, M. (2023). Comparing forecasting accuracy of selected grey and time series models based on energy consumption in brazil and india. Expert Systems with Applications, 212:118840.spa
dc.relation.referencesKim, Y.-J. and Gu, C. (2004). Smoothing spline gaussian regression: More scalable computation via efficient approximation. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 66(2):337–356.spa
dc.relation.referencesKumar, S., Viral, R., Deep, V., Sharma, P., Kumar, M., Mahmud, M., and Stephan, T. (2021). Forecasting major impacts of covid-19 pandemic on country-driven sectors: challenges, lessons, and future roadmap. Personal and Ubiquitous Computing.spa
dc.relation.referencesLa Tona, G., Luna, M., and Di Piazza, M. (2023). Day-ahead forecasting of residential electric power consumption for energy management using long short-term memory encoder–decoder model. Mathematics and Computers in Simulation.spa
dc.relation.referencesLi, R., Chen, X., Balezentis, T., Streimikiene, D., and Niu, Z. (2021). Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Comput. Appl., 33(1):301–320.spa
dc.relation.referencesMaltais, L.-G. and Gosselin, L. (2022). Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons. Applied Energy, 307:118229.spa
dc.relation.referencesMedina, S., Moreno, J., and Gallego, J. P. (2012). Pronóstico de la demanda de energía eléctrica horaria en Colombia mediante redes neuronales artificiales. Revista Facultad de Ingeniería Universidad de Antioquia, (59):98–107.spa
dc.relation.referencesMeng, Z., Sun, H., and Wang, X. (2022). Forecasting energy consumption based on svr and markov model: A case study of china. Frontiers in Environmental Science, page 363.spa
dc.relation.referencesMurat, N. (2022). Outlier detection in statistical modeling via multivariate adaptive regression splines. Communications in Statistics - Simulation and Computation, 0(0):1–12.spa
dc.relation.referencesMurillo, J., Trejos, A., and Carvajal, P. (2003). Estudio del pronostico de la demanda de energía eléctrica, utilizando modelos de series de tiempo. Scientia Et Technica, 3(23).spa
dc.relation.referencesPeters, J., Janzing, D., and Schlkopf, B. (2017). Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press.spa
dc.relation.referencesRibeiro, A., Carmo, P., Silva, I., Sadok, D., Lynn, T., and Endo, P. (2020). Short-term firm-level energy-consumption forecasting for energy-intensive manufacturing: A comparison of machine learning and deep learning models. Algorithms, 13:274.spa
dc.relation.referencesRosero, J., Gonzalez, F. A., Zambrano, A., and Toledo-Cortesa, S. (2023). Short-term forecasting of power demand: A case study with data from colombia. SSNR.spa
dc.relation.referencesSadeghian Broujeny, R., Ben Ayed, S., and Matalah, M. (2023). Energy consumption forecasting in a university office by artificial intelligence techniques: An analysis of the exogenous data effect on the modeling. Energies, 16(10).spa
dc.relation.referencesSafer, A. M. (2004). Multivariate adaptive regression splines and insider trading data for stock prediction. Journal of Interdisciplinary Mathematics, 7(1):79–93.spa
dc.relation.referencesSanta María, M., Von Der Fehr, N.-H., Millán, J., Benavides, J., and Gracia, O. (2009). El mercado de la energía eléctrica en Colombia: características, evolución e impacto sobre otros sectores. Bogotá: Fedesarrollo, 304 p.spa
dc.relation.referencesSaranj, A. and Zolfaghari, M. (2022). The electricity consumption forecast: Adopting a hybrid approach by deep learning and arimax-garch models. Energy Reports, 8:7657–7679.spa
dc.relation.referencesSarmiento, H. O. and Villa, W. M. (2008). Inteligencia artificial en pronóstico de demanda de energía eléctrica: una aplicación en optimización de recursos energéticos. Revista Colombiana de Tecnologías de Avanzada.spa
dc.relation.referencesSon, J., Cha, J., Kim, H., and Wi, Y.-M. (2022). Day-ahead short-term load forecasting for holidays based on modification of similar days’ load profiles. IEEE Access, 10:17864– 17880.spa
dc.relation.referencesSujan, R. A., Akashdeep, S., Harshvardhan, R., and Sowmya, K. S. (2022). Stacking deep learning and machine learning models for short-term energy consumption forecasting. Advanced Engineering Informatics, 52:101542.spa
dc.relation.referencesUPME (2021). Proyección de Demanda de Energía Eléctrica, Gas Natural y Combustibles Líquidos 2022-2036.spa
dc.relation.referencesUPME (2023). Proyecciión de la Demanda de Energía Eléctrica y Potencia Máxima 2023- 2037.spa
dc.relation.referencesUshiku, Y. (2020). Long Short-Term Memory, pages 1–7. Springer International Publishing, Cham.spa
dc.relation.referencesValencia, A., Moreno, C. A., and Lozano, C. A. (2007). Modelo de promedios móviles para el pronóstico horario de potencia y energía eléctrica. El Hombre y la Máquinaspa
dc.relation.referencesWasserman, L. (2010). All of Statistics : a concise course in statistical inference. Springer, New York.spa
dc.relation.referencesWen, L., Zhou, K., and Yang, S. (2020). Load demand forecasting of residential buildings using a deep learning model. Electric Power Systems Research, 179:106073.spa
dc.relation.referencesWood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition.spa
dc.relation.referencesXM (2023). Mercados. Retrieved Dec 10, 2023 from www.xm.com.co/consumo/mercados.spa
dc.relation.referencesYoung-Min, W., Sung-Kwan, J., and Kyung-Bin, S. (2012). Holiday load forecasting using fuzzy polynomial regression with weather feature selection and adjustment. IEEE Transactions on Power Systems, 27(2):596–603.spa
dc.relation.referencesZhou, C., Fang, Z., Xu, X., Zhang, X., Ding, Y., Jiang, X., and ji, Y. (2020). Using long short-term memory networks to predict energy consumption of air-conditioning systems. Sustainable Cities and Society, 55:102000.spa
dc.relation.referencesZhou, W., Tao, H., Ding, S., and Li, Y. (2023). Electricity consumption and production forecasting considering seasonal patterns: An investigation based on a novel seasonal discrete grey model. Journal of the Operational Research Society, 74(5):1346–1361.spa
dc.relation.referencesZhu, G., Peng, S., Lao, Y., Su, Q., and Sun, Q. (2021a). Short-term electricity consumption forecasting based on the emd-fbprophet-lstm method. Mathematical Problems in Engineering, 2021:1–9.spa
dc.relation.referencesZhu, K., Geng, J., and Wang, K. (2021b). A hybrid prediction model based on pattern sequence-based matching method and extreme gradient boosting for holiday load forecasting. Electric Power Systems Research, 190:106841.spa
dc.relation.referencesZolfaghari, M. and Sahabi, B. (2019). A hybrid approach to model and forecast the electricity consumption by neurowavelet and arimax-garch models. Energy Efficiency, 12.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembEstadística - Procesamiento de datos
dc.subject.lembPronóstico del tiempo por estadística - Antioquia, Colombia
dc.subject.lembConsumo de energía - Estadística - Antioquia, Colombia
dc.subject.lembRendimiento energético - Estadística - Antioquia, Colombia
dc.subject.proposalForecasteng
dc.subject.proposalElectricity consumptioneng
dc.subject.proposalMachine learningeng
dc.subject.proposalPronósticospa
dc.subject.proposalConsumo de electricidadspa
dc.titleHourly electricity consumption forecasting for Antioquia-Colombia using statistical-machine learning modelseng
dc.title.translatedPronóstico del consumo de electricidad horario para Antioquia-Colombia utilizando modelos de statistical-machine learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037664686.2024.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tésis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: