Optimización del esquema secuencial coagulación-floculación-oxidación BAP (Co2+/HCO3-/H2O2) para el tratamiento de un agua residual textil
dc.contributor.advisor | Sanabria González, Nancy Rocío | |
dc.contributor.advisor | Macías Quiroga, Iván Fernando | |
dc.contributor.author | Ariza Pineda, Francisco Javier | |
dc.contributor.orcid | Ariza Pineda[, Francisco Javier 0009000277287014] | |
dc.date.accessioned | 2025-09-05T14:45:26Z | |
dc.date.available | 2025-09-05T14:45:26Z | |
dc.date.issued | 2025-07 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | En este trabajo final de maestría se investigó la aplicación del esquema secuencial coagulación–floculación–oxidación BAP (Co2+/HCO3⁻/H2O2) para el tratamiento de un agua residual proveniente de una industria textil (ARnD) de la región, contaminada con el colorante negro ácido 194 (NA–194). La investigación se desarrolló en el marco de la Convocatoria 852–2019 “Convocatoria de Proyectos Conectando Conocimiento 2019” del Ministerio de Ciencia, Tecnología e Innovación – Minciencias. Los resultados obtenidos para la oxidación de un agua residual textil contaminada con el colorante NA–194 con el sistema Co2+–BAP mostraron el potencial de este proceso de oxidación avanzada. Mediante un diseño central compuesto (DCC) basado en la metodología de superficie de respuesta se estudió el efecto de las concentraciones de H2O2 y NaHCO3 sobre la decoloración, mineralización y remoción de DQO. Para los ensayos realizados en el diseño experimental se obtuvieron decoloraciones mayores al 95.40%, con concentraciones medias y altas de peróxido de hidrógeno (450 – 1300 mM) y concentraciones medias de bicarbonato de sodio (100 – 250 mM). En los rangos mencionados anteriormente para decoloración, la mineralización y remoción de DQO alcanzaron valores mayores al 28.2 y 47.6%, respectivamente. La optimización multiobjetivo para la degradación del agua residual textil, enfocada en maximizar la decoloración, mineralización y remoción de DQO, con concentraciones de peróxido de hidrógeno y bicarbonato de sodio en el rango de estudio, se logró con 788.24 mM de H2O2, 183.26 mM de NaHCO3 y 45 µM de Co2+ (< 0.5 mg/L). Bajo las condiciones anteriores se obtuvo decoloración > 99.40%, mineralización de 32.51% y remoción de DQO de 56.02%. En el estudio cinético de decoloración se encontró que el proceso de oxidación ocurre a condiciones ambiente de 25 y 35 °C y presión atmosférica, y las diferencias en decoloración, mineralización y remoción de DQO a estas dos temperaturas fueron mínimas. El costo operativo de tratamiento del agua residual textil bajo las condiciones óptimas es de 28.85 USD/m3. Los altos costos de tratamiento se deben a las concentraciones elevadas de H2O2 y NaHCO3 requeridas para la degradación (Texto tomado de la fuente). | spa |
dc.description.abstract | In this master's thesis, the application of the sequential coagulation–flocculation–oxidation BAP (Co2+/HCO3⁻/H2O2) scheme for the treatment of wastewater from a textile industry (ARnD) in the region contaminated with acid black dye 194 (NA–194), was investigated. The research was developed in the Convocatoria 852–2019 "Conectando Conocimiento 2019 del Ministerio de Ciencia, Tecnología e Innovación – Minciencias. The results obtained for the oxidation of textile wastewater contaminated with NA–194 dye with the Co2+–BAP system showed the potential of this advanced oxidation process. Using a central composite design (CCD) based on response surface methodology, the effect of H2O2 and NaHCO3 concentrations on decolorization, mineralization, and COD removal was studied. For the tests performed in the experimental design, decolorizations greater than 95.40% were obtained with medium and high concentrations of hydrogen peroxide (450 – 1300 mM) and medium concentrations of sodium bicarbonate (100 – 250 mM). In the aforementioned ranges for decolorization, mineralization, and COD removal, values greater than 28.2 and 47.6%, respectively, were reached. Multi–objective optimization for textile wastewater degradation focused on maximizing decolorization, mineralization, and COD removal, with hydrogen peroxide and sodium bicarbonate concentrations in the study range, was achieved with 788.24 mM H2O2, 183.26 mM NaHCO3, and 45 µM Co2+ (< 0.5 mg/L). Under the above conditions, decolorization > 99.40%, mineralization of 32.51%, and COD removal of 56.02% were obtained. The decolorization kinetic study found that the oxidation process occurs at ambient conditions of 25 and 35 °C and atmospheric pressure, and the differences in decolorization, mineralization, and COD removal at these two temperatures were minimal. The operating costs of treating textile wastewater under the optimum conditions is 28.85 USD/m3. The high treatment costs are due to the high concentrations of H2O2 and NaHCO3 required for degradation. | eng |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | |
dc.format.extent | xiii, 87 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88627 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | |
dc.publisher.place | Manizales, Colombia | |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental | |
dc.relation.references | Mordor Intelligence. Global Textile Industry - Growth, Trends, and Forecast (2019 - 2024). Accesed: January 10, 2025; Available from: https://www.mordorintelligence.com/industry-reports/global-textile-industry---growth-trends-and-forecast-2019---2024. | |
dc.relation.references | Mordor Intelligence. Industria textil - Análisis de tamaño y participación - Tendencias y pronósticos de crecimiento (2024 - 2029). Access: January 15, 2025; Available from: https://www.mordorintelligence.com/es/industry-reports/global-textile-industry---growth-trends-and-forecast-2019---2024. | |
dc.relation.references | European Parliament. The impact of textile production and waste on the environment (infographics). Access: Diciembre 17, 2024; Available from: https://www.europarl.europa.eu/topics/en/article/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographics. | |
dc.relation.references | Akter, T.; Protity, A.T.; Shaha, M.; Al Mamun, M.; Hashem, A., The Impact of Textile Dyes on the Environment, in: Nanohybrid Materials for Treatment of Textiles Dyes. Ahmad, A.; Jawaid, M.; Mohamad Ibrahim, M.N.; Yaqoob, A.A.; Alshammari, M.B., (Eds.). 2023. Springer Nature Singapore: Singapore. p. 401-431. | |
dc.relation.references | Romero López, T.d.J.; Rodríguez Fiallo, H.; Masó Mosqueda, A. Caracterización de las aguas residuales generadas en una industria textil cubana. Ingeniería Hidráulica y Ambiental, 2016. 37: p. 46-58. | |
dc.relation.references | López Grimau, V.; Crespi Rosell, M. Gestión de los efluentes de la industria textil. Cuaderno Tecnológico N° 18. 2015. Instituto Nacional de Tecnología Industrial, Delegación de la Comisión Europea en Argentina: Buenos Aires-Argentina. p. 1-22. | |
dc.relation.references | GilPavas, E.; Arbeláez-Castaño, P.E.; Medina-Arroyave, J.D.; Gómez-Atehortua, C.M. Tratamiento de aguas residuales de la industria textil mediante coagulación química acoplada a procesos Fenton intensificados con ultrasonido de baja frecuencia. Revista Internacional de Contaminación Ambiental, 2018. 34(1): p. 157-167. | |
dc.relation.references | GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.-Á. Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment. Journal of Electroanalytical Chemistry, 2020. 878: p. 114578. | |
dc.relation.references | Bidu, J.M.; Njau, K.N.; Rwiza, M.; Van der Bruggen, B. Textile wastewater treatment in anaerobic reactor: Influence of domestic wastewater as co-substrate in color and COD removal. South African Journal of Chemical Engineering, 2023. 43: p. 112-121. | |
dc.relation.references | Khelifi, S.; Choukchou-Braham, A.; Sbihi, H.M.; Azam, M.; Al-Resayes, S.I.; Ayari, F. Treatment of textile dyeing wastewater using advanced photo-oxidation processes for decolorization and COD reduction. Desalination and Water Treatment, 2021. 217: p. 350-357. | |
dc.relation.references | Rodríguez, M.; Sánchez, A.; Agudelo, R. Electrocoagulación con radiación UV para remover DQO, COT y SDT en aguas residuales de la industria textil empleando electrodos de grafito. Revista de Investigación Agraria y Ambiental, 2022. 13(2): p. 201 - 219. | |
dc.relation.references | Ramírez-Franco, J.H.; Zea-Ramírez, H.R. Decontamination of industrial textile wastewater using photocatalysis. DYNA, 2016. 83: p. 80-85. | |
dc.relation.references | Hayat, H.; Mahmood, Q.; Pervez, A.; Bhatti, Z.A.; Baig, S.A. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 2015. 154: p. 149-153. | |
dc.relation.references | Carneiro, P.A.; Umbuzeiro, G.A.; Oliveira, D.P.; Zanoni, M.V.B. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of Hazardous Materials, 2010. 174(1): p. 694-699. | |
dc.relation.references | Kriek, E. Carcinogenesis by aromatic amines. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1974. 355(2): p. 177-203. | |
dc.relation.references | Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 2011. 276(1): p. 13-27. | |
dc.relation.references | Sahu, A.; Poler, J.C. Removal and degradation of dyes from textile industry wastewater: Benchmarking recent advancements, toxicity assessment and cost analysis of treatment processes. Journal of Environmental Chemical Engineering, 2024. 12(5): p. 113754. | |
dc.relation.references | Çınar, Ö.; Yaşar, S.; Kertmen, M.; Demiröz, K.; Yigit, N.Ö.; Kitis, M. Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Process Safety and Environmental Protection, 2008. 86(6): p. 455-460. | |
dc.relation.references | Chavan, R.B., Environmentally Friendly Dyes, in: Handbook of Textile and Industrial Dyeing. Clark, M., (Ed.). 2011. Woodhead Publishing. p. 515-561. | |
dc.relation.references | Clark, M., Fundamental Principles of Dyeing, in: Handbook of Textile and Industrial Dyeing. Clark, M., (Ed.). 2011. Woodhead Publishing. p. 3-27. | |
dc.relation.references | Dobrosz-Gómez, I.; Quintero-Arias, J.D.; Gómez-García, M.Á. Fenton advanced oxidation process for the treatment of industrial textile wastewater highly polluted with acid-black 194 dye. Case Studies in Chemical and Environmental Engineering, 2024. 9: p. 100672. | |
dc.relation.references | Jawad, A.; Chen, Z.; Yin, G. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 2016. 37(6): p. 810-825. | |
dc.relation.references | Xu, A.; Li, X.; Ye, S.; Yin, G.; Zeng, Q. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental and Energy, 2011. 102(1): p. 37-43. | |
dc.relation.references | Luo, M.; Lv, L.; Deng, G.; Yao, W.; Ruan, Y.; Li, X.; Xu, A. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 2014. 469: p. 198-205. | |
dc.relation.references | González, A.L.; Carrillo, G.G. Producción textil y su relación con la responsabilidad social corporativa. Dimensión Empresarial, 2019. 17: p. 59-76. | |
dc.relation.references | Observatorio de Complejidad Económica (OEC). Textiles (HS Sección: XI) Comercio de Productos, Exportadores e Importadores. Access: January 15, 2025; Available from: https://oec.world/es/profile/hs/textiles. | |
dc.relation.references | Informes de Expertos (EMR). Mercado Global de Textil – Por Material (Algodón, Químico, Lana, Seda, Otros); Por Tipo de Producto (Fibras Naturales, Poliéster, Nylon, Otros); Por Aplicación (Hogar, Ropa de Cama, Cocina, Tapicería, Toalla, Técnica, Construcción, Transporte, Protección, Médica, Moda y Confección, Prendas de Vestir, Corbatas y Complementos de Ropa, Bolsos, Otros); Por Región (América del Norte, Europa, Asia Pacífico, América Latina y Medio Oriente y África); Dinámica del Mercado (2025-2034) y Panorama Competitivo. Accesed: January 10, 2025; Available from: https://www.informesdeexpertos.com/informes/mercado-de-textil. | |
dc.relation.references | Bárcia de Mattos, F.; Eisenbraun, J.; Kucera, D.; Rossi, A. Automatización, empleo y relocalización. ¿Disrupción en la industria de la confección? Revista Internacional del Trabajo, 2021. 140(4): p. 565-585. | |
dc.relation.references | Velásquez, S.M.; Giraldo, D.H.; Botero, L.E. Análisis ocupacional y de tecnologías emergentes para identificación de brechas tecnológicas en el sector diseño, confección y moda. Revista Espacios, 2020. 41(32): p. 140-159. | |
dc.relation.references | Correa-Ríos, L.M., Creación del modelo y plan de negocio de una empresa importadora, exportadora y comercializadora de prendas de vestir con fibras naturales desde Colombia hacia México, in Facultad De Ciencias Económicas Y Administrativas. 2023, Universitaria Agustiniana. | |
dc.relation.references | López Juárez, P.; Rodríguez Suárez, P.M. El liderazgo de los países asiáticos en el sector del vestido: repercusiones para América Latina. Tla-Melaua, revista de Ciencias Sociales, 2016. 10(40): p. 152-175. | |
dc.relation.references | Khan, W.U.; Ahmed, S.; Dhoble, Y.; Madhav, S. A critical review of hazardous waste generation from textile industries and associated ecological impacts. Journal of the Indian Chemical Society, 2023. 100(1): p. 100829. | |
dc.relation.references | Samsami, S.; Mohamadizaniani, M.; Sarrafzadeh, M.-H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 2020. 143: p. 138-163. | |
dc.relation.references | Chakraborty, R.; Ahmad, F. Economical use of water in cotton knit dyeing industries of Bangladesh. Journal of Cleaner Production, 2022. 340: p. 130825. | |
dc.relation.references | Thamer, B.M.; Aldalbahi, A.; Moydeen A., M.; El-Newehy, M.H. In situ preparation of novel porous nanocomposite hydrogel as effective adsorbent for the removal of cationic dyes from polluted water. Polymers, 2020. 12(12): p. 3002. | |
dc.relation.references | Sadeghi, M.H.; Tofighy, M.A.; Mohammadi, T. One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere, 2020. 253: p. 126647. | |
dc.relation.references | Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M.R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega, 2020. 5(33): p. 20684-20697. | |
dc.relation.references | Giraldo-Loaiza, C.; Salazar-Loaiza, A.M.; Sandoval-Barrera, M.A.; Macías-Quiroga, I.F.; Ocampo-Serna, D.M.; Sanabria-González, N.R. Integration of ion exchange—AOP—biological system for the treatment of real textile wastewater. ChemEngineering, 2024. 8(4): p. 76-92. | |
dc.relation.references | Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 2018. 209: p. 201-219. | |
dc.relation.references | Sahu, A.; Sheikh, R.; Poler, J.C. Green sonochemical synthesis, kinetics and functionalization of nanoscale anion exchange resins and their performance as water purification membranes. Ultrasonics Sonochemistry, 2020. 67: p. 105163. | |
dc.relation.references | Zinicovscaia, I., Conventional Methods of Wastewater Treatment, in: Cyanobacteria for Bioremediation of Wastewaters. Zinicovscaia, I.; Cepoi, L., (Eds.). 2016. Springer International Publishing: Cham, France. p. 17-25. | |
dc.relation.references | Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 2021. 9(2): p. 105012. | |
dc.relation.references | Kumar, A.; Dalan, E.; Carless, M.A., Chapter Three - Analysis of DNA methylation using pyrosequencing, in: Epigenetics Methods. Tollefsbol, T., (Ed.). 2020. Academic Press: Birmingham - Ciudad en Alabama. p. 37-62. | |
dc.relation.references | Chen, P.; Cheng, Z.; Zhang, X.; Zhang, L.; Zhang, X.; Tang, J.; Qiu, F. Efficient degradation of dye wastewater by catalytic ozonation reactive ceramic membrane with facile spraying of nano TiMn oxides: A pilot scale attempt. Journal of Water Process Engineering, 2023. 55: p. 104143. | |
dc.relation.references | Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 2018. 139: p. 118-131. | |
dc.relation.references | Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 2019. 358: p. 992-1001. | |
dc.relation.references | Bhardwaj, A.; Kaur, S.; Shukla, A.P.; Shukla, M.K. A novel method for despeckling of ultrasound images using cellular automata-based despeckling filter. International Journal of E-Health and Medical Communications (IJEHMC), 2021. 12(5): p. 16-35. | |
dc.relation.references | Kumar, L.; Bharadvaja, N., 12 - Microorganisms: A Remedial Source for Dye Pollution, in: Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment. Shah, M.P., (Ed.). 2020. Elsevier: India. p. 309-333. | |
dc.relation.references | PubChem. Acid Black 194 - PubChem Compound Summary. Accesed: January 10, 2025; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Acid-Black-194. | |
dc.relation.references | Vidal, J.; Villegas, L.; Peralta-Hernández, J.M.; Salazar González, R. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health, Part A, 2016. 51(4): p. 289-296. | |
dc.relation.references | Toronto Research Chemicals. Certificate of Analysis: Acid Black 194 (TRC-A189860-50MG). Access: January 15, 2025; Available from: https://assets.lgcstandards.com/sys-master%2Fpdfs%2Fh2d%2Fhae%2F10614501277726%2FCOA_TRC-A189860-50MG_ST-WB-CERT-4044176-1-1-1.PDF. | |
dc.relation.references | Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon, 2019. 5(11): p. e02711. | |
dc.relation.references | BenchChem. Product Information: B1251916 (Acid Black 194). Accesed: January 10, 2025; Available from: https://www.benchchem.com/product/b1251916. | |
dc.relation.references | EPA. Chromium Compounds Hazard Summary. Accesed: January 10, 2025; Available from: https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdf. | |
dc.relation.references | Macías-Quiroga, I.F.; Henao-Aguirre, P.A.; Marín-Flórez, A.; Arredondo-López, S.M.; Sanabria-González, N.R. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environmental Science and Pollution Research, 2021. 28(19): p. 23791-23811. | |
dc.relation.references | Ahn, Y.Y.; Choi, J.; Kim, M.; Kim, M.S.; Lee, D.; Bang, W.H.; Yun, E.T.; Lee, H.; Lee, J.H.; Lee, C.; Maeng, S.K.; Hong, S.; Lee, J. Chloride-mediated enhancement in heat-induced activation of peroxymonosulfate: New reaction pathways for oxidizing radical production. Environmental Science and Technology, 2021. 55(8): p. 5382-5392. | |
dc.relation.references | Andrade, T.S.; Papagiannis, I.; Dracopoulos, V.; Pereira, M.C.; Lianos, P. Visible-light activated titania and its application to photoelectrocatalytic hydrogen peroxide production. Materials, 2019. 12(24). | |
dc.relation.references | Ariza-Pineda, F.J.; Macías-Quiroga, I.F.; Hinojosa-Zambrano, D.F.; Rivera-Giraldo, J.D.; Ocampo-Serna, D.M.; Sanabria-González, N.R. Treatment of textile wastewater using the Co(II)/NaHCO3/H2O2 oxidation system. Heliyon, 2023. 9(12). | |
dc.relation.references | Balagam, B.; Richardson, D.E. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorganic Chemistry, 2008. 47(3): p. 1173-1178. | |
dc.relation.references | Basiri Parsa, J.; Hagh Negahdar, S. Treatment of wastewater containing Acid Blue 92 dye by advanced ozone-based oxidation methods. Separation and Purification Technology, 2012. 98: p. 315-320. | |
dc.relation.references | Bennedsen, L.R.; Søgaard, E.G.; Muff, J. Development of a spectrophotometric method for on-site analysis of peroxygens during in-situ chemical oxidation applications. Water Science and Technology, 2014. 70(10): p. 1656-1662. | |
dc.relation.references | Berruti, I.; Oller, I.; Polo-López, M.I. Direct oxidation of peroxymonosulfate under natural solar radiation: Accelerating the simultaneous removal of organic contaminants and pathogens from water. Chemosphere, 2021. 279. | |
dc.relation.references | Cabrera-Reina, A.; Aliste, M.; Polo-López, M.I.; Malato, S.; Oller, I. Individual and combined effect of ions species and organic matter on the removal of microcontaminants by Fe3+-EDDS/solar-light activated persulfate. Water Research, 2023. 230. | |
dc.relation.references | Can-Güven, E.; Daniser, Y.; Yazici Guvenc, S.; Ghanbari, F.; Varank, G. Effective removal of furfural by ultraviolet activated persulfate, peroxide, and percarbonate oxidation: Focus on influencing factors, kinetics, and water matrix effect. Journal of Photochemistry and Photobiology A: Chemistry, 2022. 433. | |
dc.relation.references | Chai, Y.; Cai, Y.; Guan, Y.; Hongxia, A.; Yang, Z. Enhanced degradation of organic dye in aqueous solutions by bicarbonate-activated hydrogen peroxide with a rosin-based copper catalyst. Journal of Water Process Engineering, 2024. 66. | |
dc.relation.references | Chatel, G.; Goux-Henry, C.; Kardos, N.; Suptil, J.; Andrioletti, B.; Draye, M. Ultrasound and ionic liquid: An efficient combination to tune the mechanism of alkenes epoxidation. Ultrasonics Sonochemistry, 2012. 19(3): p. 390-394. | |
dc.relation.references | Chávez, A.M.; Quiñones, D.H.; Rey, A.; Beltrán, F.J.; Álvarez, P.M. Simulated solar photocatalytic ozonation of contaminants of emerging concern and effluent organic matter in secondary effluents by a reusable magnetic catalyst. Chemical Engineering Journal, 2020. 398. | |
dc.relation.references | Chen, H.; Carroll, K.C. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene. Environmental Pollution, 2016. 215: p. 96-102. | |
dc.relation.references | Chen, Y.; Liu, Y.; Zhang, L.; Xie, P.; Wang, Z.; Zhou, A.; Fang, Z.; Ma, J. Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. Journal of Hazardous Materials, 2018. 353: p. 18-25. | |
dc.relation.references | Cheng, X.; Liang, L.; Ye, J.; Li, N.; Yan, B.; Chen, G. Influence and mechanism of water matrices on H2O2-based Fenton-like oxidation processes: A review. Science of the Total Environment, 2023. 888: p. 164086. | |
dc.relation.references | Cui, C.; Jin, L.; jiang, L.; Han, Q.; Lin, K.; Lu, S.; Zhang, D.; Cao, G. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Science of the Total Environment, 2016. 572: p. 244-251. | |
dc.relation.references | Dai, C.; Li, S.; Duan, Y.; Leong, K.H.; Liu, S.; Zhang, Y.; Zhou, L.; Tu, Y. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: implications for groundwater remediation. Water Research, 2022. 216: p. 118347. | |
dc.relation.references | Deng, J.; Xu, M.; Feng, S.; Qiu, C.; Li, X.; Li, J. Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: Performance, mechanism and degradation pathway. Science of the Total Environment, 2019. 658: p. 343-356. | |
dc.relation.references | Devi, P.; Dalai, A.K.; Chaurasia, S.P. Activity and stability of biochar in hydrogen peroxide based oxidation system for degradation of naphthenic acid. Chemosphere, 2020. 241: p. 125007. | |
dc.relation.references | Dong, C.; Yang, Y.; Hu, X.; Cho, Y.; Jang, G.; Ao, Y.; Wang, L.; Shen, J.; Park, J.H.; Zhang, K. Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%. Nature Communications, 2022. 13(1): p. 4982 | |
dc.relation.references | Dong, H.; Feng, X.; Guo, Y.; Jia, Z.; Zhang, X.; Xu, A.; Li, X. Bicarbonate activated hydrogen peroxide with cobalt nanoparticles embedded in nitrogen-doped carbon nanotubes for highly efficient organic dye degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 630: p. 127645. | |
dc.relation.references | Epperlein, M.M.; Nourooz-Zadeh, J.; Jayasena, S.D.; Hothersall, J.S.; Noronha-Dutra, A.; Neild, G.H. Nature and biological significance of free radicals generated during bicarbonate hemodialysis. Journal of the American Society of Nephrology, 1998. 9(3): p. 457-463. | |
dc.relation.references | Erkurt, F.E.; Mert, A. Eco-friendly oxidation of a reactive textile dye by CaO2: effects of specific independent parameters. Environmental Technology (United Kingdom), 2023. 44(21): p. 3294-3315. | |
dc.relation.references | Eslami, A.; Mahdipour, F.; Maleksari, H.S.; Varank, G.; Ghasemi, S.M.; Nejatian, P.; Bagheri, A.; Madihi-Bidgoli, S. Enhanced degradation of 2,4-dichlorphenoxyacetic acid herbicide by CaO2 activated by Fe(II) and ultrasound irradiation: Practical insight and mineralization. Korean Journal of Chemical Engineering, 2023. 40(12): p. 2866-2875. | |
dc.relation.references | Fakhraian, H.; Valizadeh, F. Activation of hydrogen peroxide via bicarbonate, sulfate, phosphate and urea in the oxidation of methyl phenyl sulfide. Journal of Molecular Catalysis A: Chemical, 2010. 333(1-2): p. 69-72. | |
dc.relation.references | Francis, R.C.; Luukkonen, A.; Attiogbe, F.K.; Kamdem, D.P. Bicarbonate anion and TAED as activators in peroxide bleaching of a mechanical pulp. Cellulose Chemistry and Technology, 2020. 54(3-4): p. 319-326 | |
dc.relation.references | Fu, J.; Feng, L.; Liu, Y.; Zhang, L.; Li, S. Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation. Chemosphere, 2022. 287: p. 132094. | |
dc.relation.references | Gawankar, S.; Masten, S.J. Persulfate/peroxide oxidation activated by ferrous ions using methylene blue: Development of a screening technique for the production of radicals. Environmental Engineering Science, 2023. 40(11): p. 614-623. | |
dc.relation.references | Guo, J.; Wen, X.; Yang, J.; Fan, T. Removal of benzo(a)pyrene in polluted aqueous solution and soil using persulfate activated by corn straw biochar. Journal of Environmental Management, 2020. 272: p. 111058. | |
dc.relation.references | Guo, Y.; Shen, T.; Wang, C.; Sun, J.; Wang, X. Rapid removal of caffeine in aqueous solutions by peroxymonosulfate oxidant activated with cobalt ion. Water Science and Technology, 2015. 72(3): p. 478-483. | |
dc.relation.references | Hu, W.; Chen, S.; Wu, D.; Zheng, J.; Ye, X. Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis. Ultrasonics Sonochemistry, 2019. 58: p. 104576. | |
dc.relation.references | Jawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 2015. 289: p. 165-173. | |
dc.relation.references | Jawad, A.; Lu, X.; Chen, Z.; Yin, G. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. Journal of Physical Chemistry A, 2014. 118(43): p. 10028-10035. | |
dc.relation.references | Jiang, M.; Lu, J.; Ji, Y.; Kong, D. Bicarbonate-activated persulfate oxidation of acetaminophen. Water Research, 2017. 116: p. 324-331. | |
dc.relation.references | Jiang, W.; Tang, P.; Liu, Z.; He, H.; Sui, Q.; Lyu, S. Enhanced carbon tetrachloride degradation by hydroxylamine in ferrous ion activated calcium peroxide in the presence of formic acid. Frontiers of Environmental Science and Engineering, 2020. 14(2): p. 1-14. | |
dc.relation.references | Kan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 2020. 232: p. 115974. | |
dc.relation.references | Kim, Y.E.; Ahn, Y.Y.; Kim, M.; Choi, J.; Min, D.; Kim, J.; Moon, G.H.; Lee, J. Role of inorganic anions in improving the oxidizing capacity of heat-activated peroxymonosulfate: Identification of primary degradative pathways. Chemical Engineering Journal, 2023. 478: p. 147472. | |
dc.relation.references | Koo, P.L.; Choong, Z.Y.; Gasim, M.F.; Khoerunnisa, F.; Jaafar, N.F.; Saputra, E.; Oh, W.D. Promotional effect of Ca doping on Bi2Fe4O9 as peroxymonosulfate activator for gatifloxacin removal. Chemosphere, 2022. 307: p. 135619. | |
dc.relation.references | Kou, M.; Hu, Z.; Xu, W.; Chang, R.; Guo, M.; Zheng, F.; Shen, W.; Guo, N.; Liao, B. Efficient degradation of 2,4-DCP by bicarbonate-modified Fenton under near-neutral conditions. Journal of Water Process Engineering, 2024. 63: p. 105515. | |
dc.relation.references | Li, C.; Goetz, V.; Chiron, S. Peroxydisulfate activation process on copper oxide: Cu(III) as the predominant selective intermediate oxidant for phenol and waterborne antibiotics removal. Journal of Environmental Chemical Engineering, 2021. 9(2): p. 105145. | |
dc.relation.references | Li, F.; Wang, Y.; Zhang, J. Kinetic isotope effect study of N-6 methyladenosine chemical demethylation in bicarbonate-activated peroxide system. Journal of Chemical Physics, 2023. 159(12): p. 124103. | |
dc.relation.references | Li, L.; Guo, R.; Zhang, S.; Yuan, Y. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environmental Research, 2022. 207: p. 112176. | |
dc.relation.references | Li, L.; Huang, J.; Hu, X.; Zhang, S.; Dai, Q.; Chai, H.; Gu, L. Activation of sodium percarbonate by vanadium for the degradation of aniline in water: Mechanism and identification of reactive species. Chemosphere, 2019. 215: p. 647-656. | |
dc.relation.references | Li, L.; Niu, X.; Zhang, D.; Ye, X.; Zhang, Z.; Liu, Q.; Ding, L.; Chen, K.; Chen, Y.; Chen, K.; Shi, Z.; Lin, Z. A systematic review on percarbonate-based advanced oxidation processes in wastewater remediation: From theoretical understandings to practical applications. Water Research, 2024. 259: p. 121842. | |
dc.relation.references | Li, X.; Yin, H.; Luo, H.Y.; Ouyang, X.F.; Liu, H.; Zhu, M.H. Degradation 2, 2', 4, 4'-tetrabromodiphenyl ether by activated peroxymonosulfate using magnetic biochar supported α-MnO2. Huanjing Kexue/Environmental Science, 2021. 42(10): p. 4798-4806. | |
dc.relation.references | Li, Y.; Guo, L.; Huang, D.; Jawad, A.; Chen, Z.; Yang, J.; Liu, W.; Shen, Y.; Wang, M.; Yin, G. Support-dependent active species formation for CuO catalysts: Leading to efficient pollutant degradation in alkaline conditions. Journal of Hazardous Materials, 2017. 328: p. 56-62. | |
dc.relation.references | Li, Y.; Li, L.; Chen, Z.X.; Zhang, J.; Gong, L.; Wang, Y.X.; Zhao, H.Q.; Mu, Y. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 2018. 192: p. 372-378. | |
dc.relation.references | Lin, J.; Zou, J.; Cai, H.; Huang, Y.; Li, J.; Xiao, J.; Yuan, B.; Ma, J. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters. Water Research, 2021. 207: p. 117796. | |
dc.relation.references | Liu, X.; Xia, Q.; Zhou, J.; Li, B.; Zhao, S.; Chen, L.; Khan, A.; Li, X.; Xu, A. Morphology-dependent activation of hydrogen peroxide with Cu2O for tetracycline hydrochloride degradation in bicarbonate aqueous solution. Journal of Environmental Sciences, 2024. 137: p. 567-579. | |
dc.relation.references | Liu, Y.; Guo, H.; Zhang, Y.; Cheng, X.; Zhou, P.; Wang, J.; Li, W. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation. Environmental Pollution, 2019. 252: p. 1042-1050. | |
dc.relation.references | Liu, Y.; Wang, S.; Fu, D.; Fu, Y. Effect of bicarbonate on nitrate-induced photosensitive degradation of sulfamethoxazole under UV irradiation. Environmental Technology, 2024. 45(1): p. 170-179. | |
dc.relation.references | Liu, Z.; Ding, H.; Zhao, C.; Wang, T.; Wang, P.; Dionysiou, D.D. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential. Water Research, 2019. 159: p. 111-121. | |
dc.relation.references | Long, X.; Xu, C.; Fu, S. Low-temperature and near-neutral bleaching of cotton with the TAED-activated peroxide system. American Association of Textile Chemists and Colorists International Conference, AATCC 2013, 2013: p. 39-46. | |
dc.relation.references | Lu, C.; Yao, J.; Knudsen, T.Š.; Amde, M.; Gu, J.; Liu, J.; Li, H.; Zhang, J. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. Journal of Cleaner Production, 2019. 238: p. 117942. | |
dc.relation.references | Luo, X.; Li, A.; Xia, X.; Liang, P.; Huang, X. Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic solutions. Frontiers of Environmental Science and Engineering, 2023. 17(9): p. 108. | |
dc.relation.references | Luo, X.; Shao, D.; Wang, X.; Xu, C.; Gao, W. Whitening citric acid treated cotton fabrics by a TBCC-activated peroxide post-bleaching. Cellulose, 2020. 27(9): p. 5367-5376. | |
dc.relation.references | Luo, X.; Sui, X.; Yao, J.; Fei, X.; Du, J.; Sun, C.; Xiang, Z.; Xu, C.; Wang, S. Performance modelling of the TBCC-activated peroxide system for low-temperature bleaching of cotton using response surface methodology. Cellulose, 2015. 22(5): p. 3491-3499. | |
dc.relation.references | Luo, Y.; Zhang, C.; Wang, J.; Liu, F.; Chau, K.W.; Qin, L.; Wang, J. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioactive Materials, 2021. 6(10): p. 3231-3243. | |
dc.relation.references | Luukkonen, T.; von Gunten, U. Oxidation of organic micropollutant surrogate functional groups with peracetic acid activated by aqueous Co(II), Cu(II), or Ag(I) and geopolymer-supported Co(II). Water Research, 2022. 223: p. 118984. | |
dc.relation.references | Ma, J.; Xia, X.; Ma, Y.; Luo, Y.; Zhong, Y. Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosphere, 2018. 205: p. 41-44. | |
dc.relation.references | Macías-Quiroga, I.F.; Pérez-Flórez, A.; Arcila, J.S.; Giraldo-Goméz, G.I.; Sanabria-Gonzalez, N.R. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters, 2022. 152(7): p. 1905-1916. | |
dc.relation.references | Macías-Quiroga, I.F.; Rojas-Méndez, E.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 2020. 30: p. 105463. | |
dc.relation.references | Mahdi-Ahmed, M.; Chiron, S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. Journal of Hazardous Materials, 2014. 265: p. 41-46. | |
dc.relation.references | Mallozzi, C.; Di Stasi, M.A.M.; Minetti, M. Peroxynitrite-dependent activation of src tyrosine kinases lyn and hck in erythrocytes is under mechanistically different pathways of redox control. Free Radical Biology and Medicine, 2001. 30(10): p. 1108-1117. | |
dc.relation.references | Marín-González, N.; Giraldo-Loaiza, C.; Macías-Quiroga, I.F.; Rivera-Giraldo, J.D.; Cardona-Castaño, J.A.; Sanabria-González, N.R. Oxidation of Allura Red AC using the NaHCO3-activated H2O2 system catalyzed with cobalt supported on Al-PILC. ChemEngineering, 2024. 8(1): p. 14. | |
dc.relation.references | Monfared, H.H.; Aghapoor, V.; Ghorbanloo, M.; Mayer, P. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(III) meso-tetraphenylporphyrin complex: Optimization of effective parameters using the Taguchi method. Applied Catalysis A: General, 2010. 372(2): p. 209-216. | |
dc.relation.references | Mora-Bonilla, K.Y.; Macías-Quiroga, I.F.; Sanabria-González, N.R.; Dávila-Arias, M.T. Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design. ChemEngineering, 2023. 7(5): p. 86. | |
dc.relation.references | Neacșu, V.A.; Tudorache, A.; Bilea, F.; Oancea, P.; Răducan, A. Cobalt-catalysed bicarbonate-activated peroxide as a promising system for the advanced oxidation of epirubicin in wastewaters. Journal of Cleaner Production, 2024. 458: p. 142462. | |
dc.relation.references | Oguz, E.; Keskinler, B. Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3. Journal of Hazardous Materials, 2008. 151(2-3): p. 753-760. | |
dc.relation.references | Pagano, M.; Ciannarella, R.; Locaputo, V.; Mascolo, G.; Volpe, A. Oxidation of azo and anthraquinonic dyes by peroxymonosulphate activated by UV light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018. 53(4): p. 393-404. | |
dc.relation.references | Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 2021. 408: p. 127332. | |
dc.relation.references | Puiu, M.; Galaon, T.; Bondilə, L.; Rəducan, A.; Oancea, D. Feed-back action of nitrite in the oxidation of nitrophenols by bicarbonate-activated peroxide system. Applied Catalysis A: General, 2016. 516: p. 90-99. | |
dc.relation.references | Punith, N.; Avaneesh, A.V.; Prasad, B.; Ravikrishna, R.V.; Rao, L. Unveiling the Impact of Operating Current on Active Species Generation in Pin-To-Water Plasma Activated Water System. Plasma Processes and Polymers, 2025. 22(1): p. 2400190. | |
dc.relation.references | Raducan, A.; Bogdan, D.; Galaon, T.; Oancea, P. Oxidative removal of Fast Green FCF and ponceaux 4R dyes by H2O2/NaHCO3, UV and H2O2/UV processes: A comparative study. Journal of Photochemistry and Photobiology A: Chemistry, 2022. 431: p. 114040. | |
dc.relation.references | Răducan, A.; Puiu, M.; Oancea, P.; Colbea, C.; Velea, A.; Dinu, B.; Mihăilescu, A.M.; Galaon, T. Fast decolourization of Indigo Carmine and Crystal Violet in aqueous environments through micellar catalysis. Separation and Purification Technology, 2019. 210: p. 698-709. | |
dc.relation.references | Rajput, R.; Sharma, R.; Gupta, R. Biochemical characterization of a thiol-activated, oxidation stable leratinase from Bacillus pumilus KS12. Enzyme Research, 2010. 2010(1): p. 132148. | |
dc.relation.references | Rasskazova, A.V.; Sekisov, A.G.; Galim’yanov, A.A. Copper leaching using mixed explosive-and-reagent pretreatment of ore body. Journal of Mining Science, 2023. 59(6): p. 1036-1044. | |
dc.relation.references | Richardson, D.E.; Yao, H.; Frank, K.M.; Bennett, D.A. Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate. Journal of the American Chemical Society, 2000. 122(8): p. 1729-1739. | |
dc.relation.references | Rivas Ibáñez, G.; Casas López, J.L.; Esteban García, B.; Sánchez Pérez, J.A. Controlling pH in biological depuration of industrial wastewater to enable micropollutant removal using a further advanced oxidation process. Journal of Chemical Technology and Biotechnology, 2014. 89(8): p. 1274-1282. | |
dc.relation.references | Rodríguez, S.; Lorenzo, D.; Santos, A.; Romero, A. Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II). Journal of Environmental Management, 2020. 255: p. 109926. | |
dc.relation.references | Sánchez-Polo, M.; Méndez-Díaz, J.D.; Rivera-Utrilla, J.; Bautista-Toledo, M.I.; Ferro-Garcia, M.A. Influence of presence of tannic acid on removal of sodium dodecylbenzenesulphonate by O3 and advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 2009. 84(3): p. 367-375. | |
dc.relation.references | Sánchez-Yepes, A.; Santos, A.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T.; Lorenzo, D. Sustainable reuse of toxic spent granular activated carbon by heterogeneous fenton reaction intensified by temperature changes. Chemosphere, 2023. 341: p. 140047. | |
dc.relation.references | Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative removal of bisphenol a by UV-c/peroxymonosulfate (pms): Kinetics, influence of co-existing chemicals and degradation pathway. Chemical Engineering Journal, 2015. 276: p. 193-204. | |
dc.relation.references | Shen, Y.; Wang, H.; Guo, X.; Gao, S. Environment-friendly chemical mechanical polishing using NaHCO3-activated H2O2 slurry for highly efficient finishing of 4H-SiC (0001) surface. Journal of Manufacturing Processes, 2024. 109: p. 213-221. | |
dc.relation.references | Tian, W.; Sun, H.; Duan, X.; Zhang, H.; Ren, Y.; Wang, S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. Journal of Hazardous Materials, 2020. 389: p. 121881. | |
dc.relation.references | Tian, X.; Liu, S.; Zhang, B.; Wang, S.; Dong, S.; Liu, Y.; Feng, L.; Zhang, L. Carbonized polyaniline-activated peracetic acid advanced oxidation process for organic removal: Efficiency and mechanisms. Environmental Research, 2023. 219: p. 115035. | |
dc.relation.references | Van der Vliet, A.; Smith, D.; O'Neill, C.A.; Kaur, H.; Darley-Usmar, V.; Cross, C.E.; Halliwell, B. Interactions of peroxynitrite with human plasma and its constituents: Oxidative damage and antioxidant depletion. Biochemical Journal, 1994. 303(1): p. 295-301. | |
dc.relation.references | Varani, J.; Ginsburg, I.; Gibbs, D.F.; Mukhopadhyay, P.S.; Sulavik, C.; Johnson, K.J.; Weinberg, J.M.; Ryan, U.S.; Ward, P.A. Hydrogen peroxide-induced cell and tissue injury: Protective effects of Mn2+|. Inflammation, 1991. 15(4): p. 291-301. | |
dc.relation.references | Voeikov, V.L.; Ming Ha, D.O.; Mukhitova, O.G.; Vilenskaya, N.D.; Malishenko, S.I.; Bogachuk, A.S. Activated bicarbonate solutions as models of confined ontic open system and prototypes of living respiring systems. International Journal of Design and Nature and Ecodynamics, 2010. 5(1): p. 30-38. | |
dc.relation.references | Wagner, G.W. Hydrogen peroxide-based decontamination of chemical warfare agents. Main Group Chemistry, 2010. 9(3-4): p. 257-263. | |
dc.relation.references | Wang, B.; Sun, Y.; Shang, J.; Tao, J.; Li, S.; Ren, H. Degradation of SMP by BAP/O3 composite oxidation system. Chinese Journal of Environmental Engineering, 2024. 18(2): p. 335-342. | |
dc.relation.references | Wang, F.; Wu, C.; Li, Q. Treatment of refractory organics in strongly alkaline dinitrodiazophenol wastewater with microwave irradiation-activated persulfate. Chemosphere, 2020. 254: p. 126773. | |
dc.relation.references | Wang, Q.; Rao, P.; Li, G.; Dong, L.; Zhang, X.; Shao, Y.; Gao, N.; Chu, W.; Xu, B.; An, N.; Deng, J. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: Kinetics, impact of key factors and degradation pathway. Ecotoxicology and Environmental Safety, 2020. 187: p. 109779. | |
dc.relation.references | Wang, T.; Wang, Q.; Soklun, H.; Qu, G.; Xia, T.; Guo, X.; Jia, H.; Zhu, L. A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chemical Engineering Journal, 2019. 370: p. 1298-1309. | |
dc.relation.references | Wu, J.; Xiao, H.; Wang, T.; Hong, T.; Fu, B.; Bai, D.; He, Z.; Peng, S.; Xing, X.; Hu, J.; Guo, P.; Zhou, X. N6-Hydroperoxymethyladenosine: A new intermediate of chemical oxidation of N6-methyladenosine mediated by bicarbonate-activated hydrogen peroxide. Chemical Science, 2015. 6(5): p. 3013-3017. | |
dc.relation.references | Xia, Q.; Liu, X.; Zhou, J.; Khan, A.; Zhao, S.; Li, X.; Xu, A. Activation of H2O2-HCO3− by Ca2Co2O5 for pollutant degradation. Environmental Science and Pollution Research, 2024. 31(35): p. 48450-48459. | |
dc.relation.references | Xin, L.H.; Yan, C.X.; Nie, M.H.; Zhang, Y.M.; Yuan, Y.L.; Ding, M.J.; Wang, P. Degradation of bisphenol A by Fenton-like system using trace copper ions combined with bicarbonate in water. Zhongguo Huanjing Kexue/China Environmental Science, 2023. 43(3): p. 1186-1196. | |
dc.relation.references | Xu, A.; Li, X.; Xiong, H.; Yin, G. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 2011. 82(8): p. 1190-1195. | |
dc.relation.references | Xu, C.; Hinks, D.; Sun, C.; Wei, Q. Establishment of an activated peroxide system for low-temperature cotton bleaching using N-[4-(triethylammoniomethyl)benzoyl]butyrolactam chloride. Carbohydrate Polymers, 2015. 119: p. 71-77. | |
dc.relation.references | Xu, W.; Wang, B.; Yan, F.; Zeng, Y.; Liu, S.; Fang, W.; Chen, L.; Yan, X.; Li, Y. A novel, green strategy based on bicarbonate activated hydrogen peroxide system for triazine hindered amines nitroxide radicalization for halogen-free flame retardants. Journal of Vinyl and Additive Technology, 2022. 28(3): p. 530-541. | |
dc.relation.references | Xu, X.; Chen, J.; Qu, R.; Wang, Z. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere, 2017. 185: p. 833-843. | |
dc.relation.references | Yadav, S.; Sharma, N.; Dalal, A.; Panghal, P.; Sharma, A.K.; Kumar, S. Cutting-edge regeneration technologies for saturated adsorbents: a systematic review on pathways to circular wastewater treatment system. Environmental Monitoring and Assessment, 2025. 197(2): p. 1-37. | |
dc.relation.references | Yan, N.; Liu, F.; Chen, Y.; Brusseau, M.L. Influence of Groundwater Constituents on 1,4-Dioxane Degradation by a Binary Oxidant System. Water, Air, and Soil Pollution, 2016. 227(12): p. 1-7. | |
dc.relation.references | Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials, 2010. 179(1-3): p. 552-558. | |
dc.relation.references | Yang, Y.; Banerjee, G.; Brudvig, G.W.; Kim, J.H.; Pignatello, J.J. Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environmental Science and Technology, 2018. 52(10): p. 5911-5919. | |
dc.relation.references | Yang, Y.; Gu, Y.; Lin, H.; Jie, B.; Zheng, Z.; Zhang, X. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol. Journal of Colloid and Interface Science, 2022. 608: p. 2884-2895. | |
dc.relation.references | Yanmei, L.; Jinliang, T.; Jiao, S.; Wenyi, C. Removing polysaccharides-and saccharides-related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/ NaHCO3 system. Carbohydrate Polymers, 2014. 112: p. 416-421. | |
dc.relation.references | Yao, H.; Richardson, D.E. Bicarbonate surfoxidants: Micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 2003. 125(20): p. 6211-6221. | |
dc.relation.references | Ye, M.; Li, C.; Liu, X.; Wang, L.; Chen, R. UV-activated permanganate process for micro-organic pollutant degradation: Efficiency, mechanism and influencing factors. Water Science and Technology, 2021. 83(6): p. 1278-1285. | |
dc.relation.references | Yu, D.; Wu, M.; Lin, J.; Zhu, J. Economical low-temperature bleaching of cotton fabric using an activated peroxide System coupling cupric Ions with bicarbonate. Fibers and Polymers, 2018. 19(9): p. 1898-1907. | |
dc.relation.references | Zeng, J.; Zhang, M.; Qin, X.; He, Y.; Liu, X.; Zhu, Y.; Liu, Z.; Li, W.; Dong, H.; Qiang, Z.; Lian, J. Quenching residual H2O2 from UV/H2O2 with granular activated carbon: A significant impact of bicarbonate. Chemosphere, 2024. 354: p. 141670. | |
dc.relation.references | Zhang, B.; Zhang, S.; Zhu, B.; Shen, W.; She, R. Persulfate activation by nanoscale zero-valent iron supported by modified blast furnace slag for degradation of phenol wastewater. Environmental Research, 2024. 260: p. 119434. | |
dc.relation.references | Zhang, X.; Gu, X.; Lu, S.; Miao, Z.; Xu, M.; Fu, X.; Qiu, Z.; Sui, Q. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation. Chemosphere, 2016. 160: p. 1-6. | |
dc.relation.references | Zhao, S.; Xi, H.; Zuo, Y.; Wang, Q.; Wang, Z.; Yan, Z. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. Journal of Hazardous Materials, 2018. 344: p. 136-145. | |
dc.relation.references | Zhao, S.; Zhu, Y.; Xi, H.; Han, M.; Li, D.; Li, Y.; Zhao, H. Detoxification of mustard gas, nerve agents and simulants by peroxomolybdate in aqueous H2O2 solution: Reactive oxygen species and mechanisms. Journal of Environmental Chemical Engineering, 2020. 8(5): p. 104221. | |
dc.relation.references | Zhou, R.; Zhou, G.; Liu, Y.; Liu, S.; Wang, S.; Fu, Y. Activated peracetic acid by Mn3O4 for sulfamethoxazole degradation: A novel heterogeneous advanced oxidation process. Chemosphere, 2022. 306: p. 135506. | |
dc.relation.references | Guo, X.; Li, H.; Zhao, S. Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. J. Taiwan Inst. Chem. Eng., 2015. 55: p. 90-100. | |
dc.relation.references | Ember, E.; Gazzaz, H.A.; Rothbart, S.; Puchta, R.; van Eldik, R. MnII—A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H2O2. Applied Catalysis B: Environmental, 2010. 95(3): p. 179-191. | |
dc.relation.references | Long, X.; Yang, Z.; Wang, H.; Chen, M.; Peng, K.; Zeng, Q.; Xu, A. Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial & Engineering Chemistry Research, 2012. 51(37): p. 11998-12003. | |
dc.relation.references | Lin, J.-M.; Liu, M. Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. The Journal of Physical Chemistry B, 2008. 112(26): p. 7850-7855. | |
dc.relation.references | Lin, J.M.; Liu, M. Singlet oxygen generated from the decomposition of peroxymonocarbonate and its observation with chemiluminescence method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(1): p. 126-32. | |
dc.relation.references | Liu, M.; Zhao, L.; Lin, J.-M. Chemiluminescence energy transfer reaction for the on-line preparation of peroxymonocarbonate and Eu(II)−dipicolinate complex. The Journal of Physical Chemistry A, 2006. 110(23): p. 7509-7514. | |
dc.relation.references | Mahamallik, P.; Pal, A. Degradation of textile wastewater by modified photo-Fenton process: Application of Co(II) adsorbed surfactant-modified alumina as heterogeneous catalyst. Journal of Environmental Chemical Engineering, 2017. 5(3): p. 2886-2893. | |
dc.relation.references | Zhang, Y.; Shaad, K.; Vollmer, D.; Ma, C. Treatment of Textile Wastewater Using Advanced Oxidation Processes—A Critical Review. Water, 2021. 13(24). | |
dc.relation.references | Badawy, M.I.; Ali, M.E.M. Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 2006. 136(3): p. 961-966. | |
dc.relation.references | Dobrosz-Gómez, I.; Quintero-Arias, J.-D.; Gómez-García, M.-Á. Coagulation-Flocculation - Fenton-Neutralization sequential process for the treatment of industrial effluent polluted with AB194 dye. Case Studies in Chemical and Environmental Engineering, 2024. 9: p. 100720. | |
dc.relation.references | Selcuk, H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005. 64(3): p. 217-222. | |
dc.relation.references | Khan, W.Z.; Najeeb, I.; Ishtiaque, S. Photocatalytic Degradation of a Real Textile Wastewater using Titanium Dioxide, Zinc Oxide and Hydrogen Peroxide. The International Journal Of Engineering And Science (IJES), 2016. 5(7): p. 61-70. | |
dc.relation.references | Afonso, C.; Sousa, C.Y.; Farinon, D.; Lopes, A.; Fernandes, A. Electrochemical Oxidation of Pollutants in Textile Wastewaters Using BDD and Ti-Based Anode Materials. Textiles, 2024. 4: p. 521-529. | |
dc.relation.references | International Organization for Standardization, ISO 5667-10:2020: Water quality — Sampling — Part 10: Guidance on sampling of waste water. 2020, International Organization for Standardization: Geneva, Switzerland. | |
dc.relation.references | American Public Health Association; American Water Works Association; Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 23rd edition ed. 2017, Washington, D.C., USA. | |
dc.relation.references | Quintero Arias, J.D., Proceso avanzado de oxidación Fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textiles, in Tesis de Doctorado en Ingeniería - Ingeniería Química: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura. 2023, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. | |
dc.relation.references | Sadri Moghaddam, S.; Alavi Moghaddam, M.R.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 2010. 175(1): p. 651-657. | |
dc.relation.references | Puchana-Rosero, M.J.; Lima, E.C.; Mella, B.; Costa, D.d.; Poll, E.; Gutterres, M. A coagulation-flocculation process combined with adsorption using activated carbon obtained from sludge for dye removal from tannery wastewater. Journal of the Chilean Chemical Society, 2018. 63: p. 3867-3874. | |
dc.relation.references | Asghar, A.; Abdul Raman, A.A.; Wan Daud, W.M.A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 2015. 87: p. 826-838. | |
dc.relation.references | International Organization for Standardization, (ISO) 8573-1:2010 - Compressed air — Part 1: Contaminants and purity classes. 2010. | |
dc.relation.references | Macías-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Characterization of colombian clay and its potential use as adsorbent. Scientific World Journal, 2018. 2018: p. 5969178. | |
dc.relation.references | Castro-Castro, J.D.; Sanabria-González, N.R.; Giraldo-Gómez, G.I. Experimental data of adsorption of Cr(III) from aqueous solution using a bentonite: Optimization by response surface methodology. Data in Brief, 2020. 28: p. 105022. | |
dc.relation.references | Dehghani, M.H.; Ahmadi, S.; Ghosh, S.; Othmani, A.; Osagie, C.; Meskini, M.; AlKafaas, S.S.; Malloum, A.; Khanday, W.A.; Jacob, A.O.; Gökkuş, Ö.; Oroke, A.; Martins Chineme, O.; Karri, R.R.; Lima, E.C. Recent advances on sustainable adsorbents for the remediation of noxious pollutants from water and wastewater: A critical review. Arabian Journal of Chemistry, 2023. 16(12): p. 105303. | |
dc.relation.references | Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th edition ed. 2016, Hoboken, NJ, USA: John Wiley & Sons. 856. | |
dc.relation.references | Rai, P.K.; Kant, V.; Sharma, R.K.; Gupta, A. Process optimization for textile industry-based wastewater treatment via ultrasonic-assisted electrochemical processing. Engineering Applications of Artificial Intelligence, 2023. 122: p. 106162. | |
dc.relation.references | Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society: Series B (Methodological), 1951. 13(1): p. 1-38. | |
dc.relation.references | Gilhotra, V.; Das, L.; Sharma, A.; Kang, T.S.; Singh, P.; Dhuria, R.S.; Bhatti, M.S. Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study. Journal of Cleaner Production, 2018. 198: p. 693-703. | |
dc.relation.references | Montgomery, D.; St, C., Design and Analysis of Experiments, 9th Edition. 2017, Hoboken, New Jersey: John Wiley & Sons, Inc. | |
dc.relation.references | Sahoo, P.; Barman, T.K., 5 - ANN modelling of fractal dimension in machining, in: Mechatronics and Manufacturing Engineering. Davim, J.P., (Ed.). 2012. Woodhead Publishing: Sawston, Cambridge, UK. p. 159-226. | |
dc.relation.references | Box, G.E.P.; Hunter, J.S.; Hunter, W.G., Statistics for Experimenters: Design, Innovation, and Discovery. 2nd edition ed. 2005, Hoboken, NJ, USA: John Wiley & Sons. 672. | |
dc.relation.references | Asci, Y.; Ayas, N.; Demirtas, E.A. The use of full factorial design for modeling the effects of process parameters on decolorization of Reactive Yellow 15 by using Fe/ZrO2 catalyst. Desalination and Water Treatment, 2017. 69: p. 328-334. | |
dc.relation.references | Rizvi, O.S.; Ikhlaq, A.; Ashar, U.U.; Qazi, U.Y.; Akram, A.; Kalim, I.; Alazmi, A.; Ibn Shamsah, S.M.; Alawi Al-Sodani, K.A.; Javaid, R.; Qi, F. Application of poly aluminum chloride and alum as catalyst in catalytic ozonation process after coagulation for the treatment of textile wastewater. Journal of Environmental Management, 2022. 323: p. 115977. | |
dc.relation.references | Bhatti, M.S.; Reddy, A.S.; Kalia, R.K.; Thukral, A.K. Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium. Desalination, 2011. 269(1): p. 157-162. | |
dc.relation.references | Mahdavi, R.; Ashraf Talesh, S.S. Enhancement of ultrasound-assisted degradation of Eosin B in the presence of nanoparticles of ZnO as sonocatalyst. Ultrasonics Sonochemistry, 2019. 51: p. 230-240. | |
dc.relation.references | Bhattacharya, S., Central Composite Design for Response Surface Methodology and Its Application in Pharmacy, in: Response Surface Methodology in Engineering Science. Kayaroganam, P., (Ed.). 2021. IntechOpen: Rijeka. | |
dc.relation.references | Abou-gamra, Z. Kinetic and thermodynamic study for Fenton-like oxidation of amaranth red dye. Advances in Chemical Engineering and Science, 2014. 4(3): p. 285-291. | |
dc.relation.references | Karthikeyan, S.; Ezhil Priya, M.; Boopathy, R.; Velan, M.; Mandal, A.B.; Sekaran, G. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: Kinetic and thermodynamic studies. Environmental Science and Pollution Research, 2012. 19(5): p. 1828-1840. | |
dc.relation.references | Behnajady, M.A.; Modirshahla, N.; Ghanbary, F. A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 2007. 148(1): p. 98-102. | |
dc.relation.references | Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S., Standard methods for the examination of water and wastewater, 23rd Edition, ed. Baird, R.B.; Eaton, A.D.; Rice, E.W. 2017, Philadelphia, Pa, USA: American Water Works Association. | |
dc.relation.references | OECD. Test No. 203: Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals Access: January 15, 2025; Available from: https://www.oecd.org/en/publications/test-no-203-fish-acute-toxicity-test_9789264069961-en.html. | |
dc.relation.references | Metin, A.e.l.U.; Çiftçi, H.; Alver, E. Efficient removal of acidic dye using low-cost biocomposite beads. Industrial & Engineering Chemistry Research, 2013. 52(31): p. 10569-10581. | |
dc.relation.references | Vidal, J.; Espinoza, C.; Contreras, N.; Salazar, R. Elimination of industrial textile dye by electrocoagulation using iron electrodes. Journal of the Chilean Chemical Society, 2017. 62(2): p. 3519-3524. | |
dc.relation.references | Wang, Z.; Yu, C.; Fang, C.; Mallavarapu, M. Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology & Innovation, 2014. 1-2: p. 29-34. | |
dc.relation.references | Kafle, B.P., Theory and instrumentation of absorption spectroscopy: UV–VIS spectrophotometry and colorimetry, in: Chemical analysis and material characterization by spectrophotometry. 2020. Elsevier. p. 17-38. | |
dc.relation.references | Bonicamp, J.M.; Martin, K.L.; McBride, G.R.; Clark, R.W. Beer’s law is not a straight line: Amplification of errors by transformation. The Chemical Educator, 1999. 4: p. 81-88. | |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible de Colombia, Resolución 631 de 2015: Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. 2015, Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia. | |
dc.relation.references | International Organization for Standardization; International Electrotechnical Commission, ISO/IEC 17025:2017. Requisitos generales para la competencia de los laboratorios de ensayo y calibración. 2017: Geneva, Switzerland. | |
dc.relation.references | Ramírez, J.H.; Costa, C.A.; Madeira, L.M. Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catalysis Today, 2005. 107-108: p. 68-76. | |
dc.relation.references | Sum, O.S.N.; Feng, J.; Hub, X.; Yue, P.L. Photo-assisted fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 2005. 33(1): p. 233-242. | |
dc.relation.references | Yuranova, T.; Enea, O.; Mielczarski, E.; Mielczarski, J.; Albers, P.; Kiwi, J. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 2004. 49(1): p. 39-50. | |
dc.relation.references | Ramírez, J.H.; Silva, A.M.T.; Vicente, M.A.; Costa, C.A.; Madeira, L.M. Degradation of Acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 2011. 101(3): p. 197-205. | |
dc.relation.references | Ramírez, J.H.; Maldonado-Hódar, F.J.; Pérez-Cadenas, A.F.; Moreno-Castilla, C.; Costa, C.A.; Madeira, L.M. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 2007. 75(3): p. 312-323. | |
dc.relation.references | Parvinzadeh, M.; Hajiraissi, R. Macro-and microemulsion silicone softeners on polyester fibers: evaluation of different physical properties. Journal of surfactants and detergents, 2008. 11: p. 269-273. | |
dc.relation.references | Ramugade, S.H.; Nagaiyan, S. Silicone nanomicelle dyeing method on polyester fibre: Comparative evaluation of chemical properties, fastness properties, and DFT. Journal of the Indian Chemical Society, 2023. 100(4): p. 100960. | |
dc.relation.references | Chruściel, J.J. Modifications of textile materials with functional silanes, liquid silicone softeners, and silicone rubbers—A review. Polymers, 2022. 14(20): p. 4382. | |
dc.relation.references | Di Giulio, R.T.; Hinton, D.E., Toxic responses of the fish nervous system, in: The toxicology of fishes. 2008. CRC Press: Boca Raton, Florida, USA. p. 417-455. | |
dc.relation.references | INTRATEC. Hydrogen peroxide prices. Accesed: January 10, 2025; Available from: https://www.intratec.us/chemical-markets/hydrogen-peroxide-price. | |
dc.relation.references | INTRATEC. Sodium Bicarbonate Prices. Accesed: January 10, 2025; Available from: https://www.intratec.us/chemical-markets/sodium-bicarbonate-price. | |
dc.relation.references | CHEC S.A. E.S.P. Tarifas 2022. Accesed: January 10, 2025; Available from: https://www.chec.com.co/clientes-y-usuarios/Tarifas-2022. | |
dc.relation.references | Banco de la República - Colombia. Tasa representativa del mercado (TRM - Peso por dólar). Accesed: January 10, 2025; Available from: https://www.banrep.gov.co/es/estadisticas/trm. | |
dc.relation.references | Cañizares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 2009. 90(1): p. 410-420. | |
dc.relation.references | Macías Quiroga, I.F., Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2, in Tesis de Doctorado en Ingeniería - Ingeniería Química: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura. 2021, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. | |
dc.relation.references | Ikehata, K.; Gamal El-Din, M.; Snyder, S.A. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone: Science & Engineering, 2008. 30(1): p. 21-26. | |
dc.relation.references | GilPavas, E.; Medina, J.; Dobrosz-Gómez, I.; Goméz, M.Á. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 2016. 27(4): p. 73-82. | |
dc.relation.references | Sanz, J.; Lombraña, J.I.; de Luis, A. Estado del arte en la oxidación avanzada a efluentes industriales: nuevos desarrollos y futuras tendencias. Afinidad, 2013. 70(561): p. 25-33. | |
dc.relation.references | GilPavas, E., Procesos avanzados de oxidación para la degradación de índigo y materia orgánica de aguas residuales de una Industria textil, in Tesis de Doctorado en Ingeniería - Ingeniería Química: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura. 2020, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. | |
dc.relation.references | El-Dein, A.M.; Libra, J.; Wiesmann, U. Cost analysis for the degradation of highly concentrated textile dye wastewater with chemical oxidation H2O2/UV and biological treatment. Journal of Chemical Technology & Biotechnology, 2006. 81(7): p. 1239-1245. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.proposal | Tratamiento de agua residual | spa |
dc.subject.proposal | Industria textil | spa |
dc.subject.proposal | Negro ácido 194 | spa |
dc.subject.proposal | Procesos de oxidación avanzados | spa |
dc.subject.proposal | Co2+/HCO3⁻/H2O2 | spa |
dc.subject.proposal | Degradación de materia orgánica | spa |
dc.subject.proposal | Wastewater treatment | eng |
dc.subject.proposal | Textile industry | eng |
dc.subject.proposal | Acid black 194 | eng |
dc.subject.proposal | Advanced oxidation processes | eng |
dc.subject.proposal | Organic matter degradation | eng |
dc.subject.unesco | Contaminación del agua | |
dc.subject.unesco | Water pollution | |
dc.subject.unesco | Tratamiento del agua | |
dc.subject.unesco | Water treatment | |
dc.subject.unesco | Contaminación industrial | |
dc.subject.unesco | Industrial pollution | |
dc.title | Optimización del esquema secuencial coagulación-floculación-oxidación BAP (Co2+/HCO3-/H2O2) para el tratamiento de un agua residual textil | spa |
dc.title.translated | Optimization of the sequential coagulation-flocculation-oxidation BAP scheme (Co2+/HCO3-/H2O2) for the treatment of textile wastewater | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Bibliotecarios | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental.pdf
- Tamaño:
- 3.59 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: