Optimización del pronóstico de ventas en Dislicores : evaluación y selección de modelos de series temporales, aprendizaje automático y técnicas avanzadas

dc.contributor.advisorTorres Madroñero, María Constanza
dc.contributor.authorEspitia Humanez, Wilson Fernando
dc.date.accessioned2025-07-21T14:30:22Z
dc.date.available2025-07-21T14:30:22Z
dc.date.issued2025-07-20
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractDislicores es una empresa colombiana líder en la distribución y comercialización de bebidas alcohólicas y no alcohólicas, siendo su portafolio principal los vinos (tintos, blancos, rosados y espumosos), licores (whisky, ginebra, rones y tequilas), cervezas y bebidas sin alcohol. Además, complementa su oferta con alimentos como pasabocas, dulces y alimentos madurados, fortaleciendo y complementando su propuesta de consumo masivo. El objetivo de este estudio es mejorar la precisión de los pronósticos de demanda, mediante la evaluación y comparación de modelos avanzados de predicción. Para ello, se implementan seis modelos: Promedio Móvil Simple, Regresión Lineal, Holt-Winters, MSTL con Regresión Polinómica, XGBoost y LightGBM, utilizando datos históricos del periodo 2020-2024. Siguiente la metodología CRISP-DM, se realizaron procesos de limpieza de datos, análisis exploratorio y evaluación de desempeño empleando métricas como MAE%, SESGO%, SCORE% y RMSE% sobre las 232 referencias clave (Pareto). El modelo seleccionado se integrará en un pipeline automatizado y escalable dentro del servicio en nube de Amazon Web Services (AWS). Finalmente, los resultados se implementaron en Qlik Sense, facilitando el análisis y toma de decisiones estratégicas basadas en datos confiables y de fácil acceso. Esta solución pretende contribuir a una gestión y seguimiento más eficiente de la demanda, optimizando la planificación operativa y fortalecer la competitividad de Dislicores en el mercado nacional. (Tomado de la fuente)spa
dc.description.abstractSales forecast optimization in Dislicores: evaluation and selection of time series models, automated learning and advanced techniques. Dislicores is a leading Colombian company in distribution and marketing of alcoholic and non-alcoholic beverages, its main portfolio being wines (red, white, rosé and sparkling), liquor (whiskey, gin, rum, tequila), beers and non-alcoholic drinks. Also, complement its offer with foods as snacks, candies and aged foods strengthening and complementing their massive consumption offer. This study’s focus is to improve demand forecast accuracy through evaluation and comparison of advanced forecasting models. To do this, six models are implemented: Simple Moving Average (SMA), Linear Regression, Holt-Winters, MSTL with Polynomial Regression, XGBoost and LightGBM, using historical data from 2020 to 2024. Then CRISP-DM methodology. Data cleaning, exploratory data analysis and performance evaluation processes were carried out using metrics like MAE, SESGO, SCORE, RMSE on the 232 key references (Pareto). The selected model will be integrated in an automated and scalable pipeline on the Amazon Web Services (AWS) cloud. Finally, results were implemented in Qlik Sense, easing analysis and strategic decision making based on reliable and easily accessible data. This solution aims to contribute to more efficient demand management and monitoring, optimizing operational planning and strengthening Dislicores' competitiveness in the national market.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extent106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88365
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesChen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.spa
dc.relation.referencesKe, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146-3154.spa
dc.relation.referencesHyndman, R. J., Wang, E., & Laptev, N. (2021). Large-scale unusual time series detection. Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 1616-1619.spa
dc.relation.referencesHolt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10.spa
dc.relation.referencesWinters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.spa
dc.relation.referencesBrown, R. G. (1959). Statistical forecasting for inventory control. McGraw-Hill.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (5th ed.). Wiley.spa
dc.relation.referencesChopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson.spa
dc.relation.referencesMentzer, J. T., & Moon, M. A. (2005). Sales Forecasting Management: A Demand Management Approach (2nd ed.). SAGE Publications.spa
dc.relation.referencesSilver, E. A., Pyke, D. F., & Thomas, D. J. (2017). Inventory and Production Management in Supply Chains (4th ed.). CRC Press.spa
dc.relation.referencesJain, C. L. (2012). Fundamentals of Demand Planning and Forecasting (2nd ed.). McGraw-Hill Education.spa
dc.relation.referencesArmstrong, J. S. (2012). Principles of Forecasting: A Handbook for Researchers and Practitioners. Springer Science & Business Mediaspa
dc.relation.referencesAdams, M. (2004). Product management toolkit. American Management Association.spa
dc.relation.referencesChristopher, M. (2004). Logistics and Supply Chain Management: Creating Value-Adding Networks (3rd ed.). Pearson Education.spa
dc.relation.referencesEdenfield, D. (2014). The Essentials of Supply Chain Management. CRC Press.spa
dc.relation.referencesGoodwin, P., Meeran, S., & Dyussekeneva, K. (2014). New product forecasting: A demand management perspective. International Journal of Forecasting, 30(2), 354-366.spa
dc.relation.referencesGS1, Logyca y Proexport. (2009). Estudio sobre la planificación de la demanda y la cadena de suministro en Colombia. Bogotá: GS1 Colombia.spa
dc.relation.referencesHübner, A., Kuhn, H., & Sternbeck, M. G. (2013). Demand and supply chain planning in grocery retail: An operations planning framework. International Journal of Retail & Distribution Management, 41(7), 512-530.spa
dc.relation.referencesMaaß, W., Spruit, M., & de Waal, P. (2014). Forecasting demand with time series models: A comparative analysis. Journal of Business Research, 67(8), 1736-1742.spa
dc.relation.referencesRamanathan, R. (2012). Supply Chain Management: Business, Marketing, and Decision-Making. Oxford University Press.spa
dc.relation.referencesChristopher, M. (2004). Logistics and Supply Chain Management: Creating Value-Adding Networks (3rd ed.). Pearson Education.spa
dc.relation.referencesHyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts.spa
dc.relation.referencesMakridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. European Journal of Operational Research, 272(1), 1-21.spa
dc.relation.referencesMoreno-García, E., Jiménez-Linares, L., & Rodríguez-Benítez, F. (2017). Modelización de series temporales para la predicción de la demanda. Universidad de Sevillaspa
dc.relation.referencesQuintana, D., & Jiménez, J. (2016). Series temporales: conceptos básicos y aplicaciones. Universidad de La Rioja.spa
dc.relation.referencesWinters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.spa
dc.relation.referencesCoshall, J. (2006). Time Series Forecasting: Advances in Methodology. Tourism Economics, 12(3), 379-388.spa
dc.relation.referencesMakridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting: Methods and Applications (3rd ed.). Wiley.spa
dc.relation.referencesLim, G. C., & McAleer, M. (2001). Handbook of Empirical Economics and Finance. CRC Press.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis. Wiley.spa
dc.relation.referencesWooldridge, J. M. (2016). Introductory Econometrics: A Modern Approach. Cengage Learning.spa
dc.relation.referencesBandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896.spa
dc.relation.referencesWeisstein, E. W. (2020). Polynomial Regression. MathWorld.spa
dc.relation.referencesKe, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146-3154.spa
dc.relation.referencesZhang, Z., & Yang, L. (2020). Gradient boosting decision trees: A survey. Frontiers of Computer Science, 14, 1-14.spa
dc.relation.referencesChen, H., Wang, L., Li, M., & Wang, Q. (2020). Time-series forecasting with LightGBM. Journal of Big Data, 7(1), 1-15.spa
dc.relation.referencesMakridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting Methods and Applications (3rd ed.). Wileyspa
dc.relation.referencesMentzer, J. T., & Moon, M. A. (2005). Sales Forecasting Management: A Demand Management Approach (2nd ed.). SAGE Publications.spa
dc.relation.referencesSilver, E. A., Pyke, D. F., & Thomas, D. J. (2017). Inventory and Production Management in Supply Chains (4th ed.). CRC Press.spa
dc.relation.referencesJain, C. L. (2012). Fundamentals of Demand Planning and Forecasting (2nd ed.). McGraw-Hill Education.spa
dc.relation.referencesArmstrong, J. S. (2001 / 2012). Principles of Forecasting: A Handbook for Researchers and Practitioners. Springer.spa
dc.relation.referencesAdams, M. (2004). Product Management Toolkit. American Management Association.spa
dc.relation.referencesChristopher, M. (2004). Logistics and Supply Chain Management: Creating Value-Adding Networks (3rd ed.). Pearson Education.spa
dc.relation.referencesEdenfield, D. (2014). The Essentials of Supply Chain Management. CRC Press.spa
dc.relation.referencesGoodwin, P., Meeran, S., & Dyussekeneva, K. (2014). New product forecasting: A demand management perspective. International Journal of Forecasting, 30(2), 354–366.spa
dc.relation.referencesGS1, Logyca y Proexport. (2009). Estudio sobre la planificación de la demanda y la cadena de suministro en Colombia. Bogotá: GS1 Colombia.spa
dc.relation.referencesHübner, A., Kuhn, H., & Sternbeck, M. G. (2013). Demand and supply chain planning in grocery retail. International Journal of Retail & Distribution Management, 41(7), 512–530.spa
dc.relation.referencesLim, G. C., & McAleer, M. (2001). Handbook of Empirical Economics and Finance. CRC Press.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis. Wiley.spa
dc.relation.referencesWooldridge, J. M. (2016). Introductory Econometrics: A Modern Approach. Cengage Learning.spa
dc.relation.referencesBandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series using RNNs. Expert Systems with Applications, 140, 112896.spa
dc.relation.referencesWeisstein, E. W. (2020). Polynomial Regression. MathWorld.spa
dc.relation.referencesKe, G., Meng, Q., Finley, T., et al. (2017). LightGBM. Advances in Neural Information Processing Systems, 30, 3146–3154.spa
dc.relation.referencesZhang, Z., & Yang, L. (2020). Gradient boosting decision trees: A survey. Frontiers of Computer Science, 14, 1–14.spa
dc.relation.referencesChen, H., Wang, L., et al. (2020). Time-series forecasting with LightGBM. Journal of Big Data, 7(1), 1–15.spa
dc.relation.referencesMentzer, J. T., & Moon, M. A. (2005). Sales Forecasting Management: A Demand Management Approach (2nd ed.). SAGE Publications.spa
dc.relation.referencesChen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD Conference.spa
dc.relation.referencesGupta, S., & George, J. F. (2016). Big data analytics capability. Information & Management, 53(8), 1049–1064.spa
dc.relation.referencesHolt, C. C., & Winters, P. R. (1957). Forecasting seasonal trends. International Journal of Forecasting.spa
dc.relation.referencesCreswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE Publications.spa
dc.relation.referencesMontgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting. Wiley.spa
dc.relation.referencesWirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model. Proceedings of the 4th Int. Conf. on Practical Applications of Knowledge Discovery.spa
dc.relation.referencesInstituto de Ingeniería del Conocimiento (IIC). (2023). Metodología CRISP-DM para ciencia de datos.spa
dc.relation.referencesChapman, P., Clinton, J., et al. (2000). CRISP-DM 1.0: Step-by-step data mining guide. The CRISP-DM Consortium.spa
dc.relation.referencesHofmann, M., & Klinkenberg, R. (2013). RapidMiner: Data mining use cases and business analytics applications. CRC Press.spa
dc.relation.referencesZhang, G. (2003). Time series forecasting using ARIMA + NN. Neurocomputing.spa
dc.relation.referencesBergmeir, C., & Benitez, J. M. (2012). On cross-validation for time series. Information Sciences, 191.spa
dc.relation.referencesJamsa, K. (2013). Cloud Computing: SaaS, PaaS, IaaS.... Jones & Bartlett Learning.spa
dc.relation.referencesMerkel, D. (2014). Docker: Lightweight Linux Containers. Linux Journal, 2014(239).spa
dc.relation.referencesMiller, T. (2017). AWS for Non-Engineers. O’Reilly Media.spa
dc.relation.referencesQlik (2021). Qlik Sense Enterprise: User Guide. QlikTech International.spa
dc.relation.referencesFloridi, L., Cowls, J., et al. (2018). AI4People: An ethical framework. Minds and Machines, 28(4), 689–707.spa
dc.relation.referencesVoigt, P., & Von dem Bussche, A. (2017). The EU GDPR: A Practical Guide. Springer.spa
dc.relation.referencesRibeiro, M. T., Singh, S., & Guestrin, C. (2016). Explaining classifier predictions. ACM SIGKDD Conference.spa
dc.relation.referencesTukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.spa
dc.relation.referencesKuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.spa
dc.relation.referencesHan, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques. Elsevier.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc330 - Economía::338 - Producciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembDislicores - Pronóstico de ventas
dc.subject.lembAnálisis de la demanda
dc.subject.lembAnálisis de mercadeo
dc.subject.proposalPronóstico de demandaspa
dc.subject.proposalSeries temporalesspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalModelosspa
dc.subject.proposalXGBoostspa
dc.subject.proposalLightGBMspa
dc.subject.proposalGestión de inventariosspa
dc.subject.proposalAnálisis predictivospa
dc.subject.proposalInteligencia de negociosspa
dc.subject.proposalDemand forecastingeng
dc.subject.proposalTime serieseng
dc.subject.proposalAutomated learningeng
dc.subject.proposalHolt-Winters modelseng
dc.subject.proposalinventory managementeng
dc.subject.proposalPredictive analyticseng
dc.subject.proposalBusiness Intelligenceeng
dc.titleOptimización del pronóstico de ventas en Dislicores : evaluación y selección de modelos de series temporales, aprendizaje automático y técnicas avanzadasspa
dc.title.translatedSales forecast optimization in Dislicores : evaluation and selection of time series models, automated learning and advanced techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1038118579.2025.pdf
Tamaño:
961.4 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: