Optimización del pronóstico de ventas en Dislicores : evaluación y selección de modelos de series temporales, aprendizaje automático y técnicas avanzadas
dc.contributor.advisor | Torres Madroñero, María Constanza | |
dc.contributor.author | Espitia Humanez, Wilson Fernando | |
dc.date.accessioned | 2025-07-21T14:30:22Z | |
dc.date.available | 2025-07-21T14:30:22Z | |
dc.date.issued | 2025-07-20 | |
dc.description | Ilustraciones, gráficas | spa |
dc.description.abstract | Dislicores es una empresa colombiana líder en la distribución y comercialización de bebidas alcohólicas y no alcohólicas, siendo su portafolio principal los vinos (tintos, blancos, rosados y espumosos), licores (whisky, ginebra, rones y tequilas), cervezas y bebidas sin alcohol. Además, complementa su oferta con alimentos como pasabocas, dulces y alimentos madurados, fortaleciendo y complementando su propuesta de consumo masivo. El objetivo de este estudio es mejorar la precisión de los pronósticos de demanda, mediante la evaluación y comparación de modelos avanzados de predicción. Para ello, se implementan seis modelos: Promedio Móvil Simple, Regresión Lineal, Holt-Winters, MSTL con Regresión Polinómica, XGBoost y LightGBM, utilizando datos históricos del periodo 2020-2024. Siguiente la metodología CRISP-DM, se realizaron procesos de limpieza de datos, análisis exploratorio y evaluación de desempeño empleando métricas como MAE%, SESGO%, SCORE% y RMSE% sobre las 232 referencias clave (Pareto). El modelo seleccionado se integrará en un pipeline automatizado y escalable dentro del servicio en nube de Amazon Web Services (AWS). Finalmente, los resultados se implementaron en Qlik Sense, facilitando el análisis y toma de decisiones estratégicas basadas en datos confiables y de fácil acceso. Esta solución pretende contribuir a una gestión y seguimiento más eficiente de la demanda, optimizando la planificación operativa y fortalecer la competitividad de Dislicores en el mercado nacional. (Tomado de la fuente) | spa |
dc.description.abstract | Sales forecast optimization in Dislicores: evaluation and selection of time series models, automated learning and advanced techniques. Dislicores is a leading Colombian company in distribution and marketing of alcoholic and non-alcoholic beverages, its main portfolio being wines (red, white, rosé and sparkling), liquor (whiskey, gin, rum, tequila), beers and non-alcoholic drinks. Also, complement its offer with foods as snacks, candies and aged foods strengthening and complementing their massive consumption offer. This study’s focus is to improve demand forecast accuracy through evaluation and comparison of advanced forecasting models. To do this, six models are implemented: Simple Moving Average (SMA), Linear Regression, Holt-Winters, MSTL with Polynomial Regression, XGBoost and LightGBM, using historical data from 2020 to 2024. Then CRISP-DM methodology. Data cleaning, exploratory data analysis and performance evaluation processes were carried out using metrics like MAE, SESGO, SCORE, RMSE on the 232 key references (Pareto). The selected model will be integrated in an automated and scalable pipeline on the Amazon Web Services (AWS) cloud. Finally, results were implemented in Qlik Sense, easing analysis and strategic decision making based on reliable and easily accessible data. This solution aims to contribute to more efficient demand management and monitoring, optimizing operational planning and strengthening Dislicores' competitiveness in the national market. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
dc.format.extent | 106 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88365 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. | spa |
dc.relation.references | Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146-3154. | spa |
dc.relation.references | Hyndman, R. J., Wang, E., & Laptev, N. (2021). Large-scale unusual time series detection. Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 1616-1619. | spa |
dc.relation.references | Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10. | spa |
dc.relation.references | Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342. | spa |
dc.relation.references | Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw-Hill. | spa |
dc.relation.references | Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (5th ed.). Wiley. | spa |
dc.relation.references | Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson. | spa |
dc.relation.references | Mentzer, J. T., & Moon, M. A. (2005). Sales Forecasting Management: A Demand Management Approach (2nd ed.). SAGE Publications. | spa |
dc.relation.references | Silver, E. A., Pyke, D. F., & Thomas, D. J. (2017). Inventory and Production Management in Supply Chains (4th ed.). CRC Press. | spa |
dc.relation.references | Jain, C. L. (2012). Fundamentals of Demand Planning and Forecasting (2nd ed.). McGraw-Hill Education. | spa |
dc.relation.references | Armstrong, J. S. (2012). Principles of Forecasting: A Handbook for Researchers and Practitioners. Springer Science & Business Media | spa |
dc.relation.references | Adams, M. (2004). Product management toolkit. American Management Association. | spa |
dc.relation.references | Christopher, M. (2004). Logistics and Supply Chain Management: Creating Value-Adding Networks (3rd ed.). Pearson Education. | spa |
dc.relation.references | Edenfield, D. (2014). The Essentials of Supply Chain Management. CRC Press. | spa |
dc.relation.references | Goodwin, P., Meeran, S., & Dyussekeneva, K. (2014). New product forecasting: A demand management perspective. International Journal of Forecasting, 30(2), 354-366. | spa |
dc.relation.references | GS1, Logyca y Proexport. (2009). Estudio sobre la planificación de la demanda y la cadena de suministro en Colombia. Bogotá: GS1 Colombia. | spa |
dc.relation.references | Hübner, A., Kuhn, H., & Sternbeck, M. G. (2013). Demand and supply chain planning in grocery retail: An operations planning framework. International Journal of Retail & Distribution Management, 41(7), 512-530. | spa |
dc.relation.references | Maaß, W., Spruit, M., & de Waal, P. (2014). Forecasting demand with time series models: A comparative analysis. Journal of Business Research, 67(8), 1736-1742. | spa |
dc.relation.references | Ramanathan, R. (2012). Supply Chain Management: Business, Marketing, and Decision-Making. Oxford University Press. | spa |
dc.relation.references | Christopher, M. (2004). Logistics and Supply Chain Management: Creating Value-Adding Networks (3rd ed.). Pearson Education. | spa |
dc.relation.references | Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts. | spa |
dc.relation.references | Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. European Journal of Operational Research, 272(1), 1-21. | spa |
dc.relation.references | Moreno-García, E., Jiménez-Linares, L., & Rodríguez-Benítez, F. (2017). Modelización de series temporales para la predicción de la demanda. Universidad de Sevilla | spa |
dc.relation.references | Quintana, D., & Jiménez, J. (2016). Series temporales: conceptos básicos y aplicaciones. Universidad de La Rioja. | spa |
dc.relation.references | Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342. | spa |
dc.relation.references | Coshall, J. (2006). Time Series Forecasting: Advances in Methodology. Tourism Economics, 12(3), 379-388. | spa |
dc.relation.references | Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting: Methods and Applications (3rd ed.). Wiley. | spa |
dc.relation.references | Lim, G. C., & McAleer, M. (2001). Handbook of Empirical Economics and Finance. CRC Press. | spa |
dc.relation.references | Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis. Wiley. | spa |
dc.relation.references | Wooldridge, J. M. (2016). Introductory Econometrics: A Modern Approach. Cengage Learning. | spa |
dc.relation.references | Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896. | spa |
dc.relation.references | Weisstein, E. W. (2020). Polynomial Regression. MathWorld. | spa |
dc.relation.references | Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146-3154. | spa |
dc.relation.references | Zhang, Z., & Yang, L. (2020). Gradient boosting decision trees: A survey. Frontiers of Computer Science, 14, 1-14. | spa |
dc.relation.references | Chen, H., Wang, L., Li, M., & Wang, Q. (2020). Time-series forecasting with LightGBM. Journal of Big Data, 7(1), 1-15. | spa |
dc.relation.references | Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting Methods and Applications (3rd ed.). Wiley | spa |
dc.relation.references | Mentzer, J. T., & Moon, M. A. (2005). Sales Forecasting Management: A Demand Management Approach (2nd ed.). SAGE Publications. | spa |
dc.relation.references | Silver, E. A., Pyke, D. F., & Thomas, D. J. (2017). Inventory and Production Management in Supply Chains (4th ed.). CRC Press. | spa |
dc.relation.references | Jain, C. L. (2012). Fundamentals of Demand Planning and Forecasting (2nd ed.). McGraw-Hill Education. | spa |
dc.relation.references | Armstrong, J. S. (2001 / 2012). Principles of Forecasting: A Handbook for Researchers and Practitioners. Springer. | spa |
dc.relation.references | Adams, M. (2004). Product Management Toolkit. American Management Association. | spa |
dc.relation.references | Christopher, M. (2004). Logistics and Supply Chain Management: Creating Value-Adding Networks (3rd ed.). Pearson Education. | spa |
dc.relation.references | Edenfield, D. (2014). The Essentials of Supply Chain Management. CRC Press. | spa |
dc.relation.references | Goodwin, P., Meeran, S., & Dyussekeneva, K. (2014). New product forecasting: A demand management perspective. International Journal of Forecasting, 30(2), 354–366. | spa |
dc.relation.references | GS1, Logyca y Proexport. (2009). Estudio sobre la planificación de la demanda y la cadena de suministro en Colombia. Bogotá: GS1 Colombia. | spa |
dc.relation.references | Hübner, A., Kuhn, H., & Sternbeck, M. G. (2013). Demand and supply chain planning in grocery retail. International Journal of Retail & Distribution Management, 41(7), 512–530. | spa |
dc.relation.references | Lim, G. C., & McAleer, M. (2001). Handbook of Empirical Economics and Finance. CRC Press. | spa |
dc.relation.references | Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis. Wiley. | spa |
dc.relation.references | Wooldridge, J. M. (2016). Introductory Econometrics: A Modern Approach. Cengage Learning. | spa |
dc.relation.references | Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series using RNNs. Expert Systems with Applications, 140, 112896. | spa |
dc.relation.references | Weisstein, E. W. (2020). Polynomial Regression. MathWorld. | spa |
dc.relation.references | Ke, G., Meng, Q., Finley, T., et al. (2017). LightGBM. Advances in Neural Information Processing Systems, 30, 3146–3154. | spa |
dc.relation.references | Zhang, Z., & Yang, L. (2020). Gradient boosting decision trees: A survey. Frontiers of Computer Science, 14, 1–14. | spa |
dc.relation.references | Chen, H., Wang, L., et al. (2020). Time-series forecasting with LightGBM. Journal of Big Data, 7(1), 1–15. | spa |
dc.relation.references | Mentzer, J. T., & Moon, M. A. (2005). Sales Forecasting Management: A Demand Management Approach (2nd ed.). SAGE Publications. | spa |
dc.relation.references | Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD Conference. | spa |
dc.relation.references | Gupta, S., & George, J. F. (2016). Big data analytics capability. Information & Management, 53(8), 1049–1064. | spa |
dc.relation.references | Holt, C. C., & Winters, P. R. (1957). Forecasting seasonal trends. International Journal of Forecasting. | spa |
dc.relation.references | Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE Publications. | spa |
dc.relation.references | Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting. Wiley. | spa |
dc.relation.references | Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model. Proceedings of the 4th Int. Conf. on Practical Applications of Knowledge Discovery. | spa |
dc.relation.references | Instituto de Ingeniería del Conocimiento (IIC). (2023). Metodología CRISP-DM para ciencia de datos. | spa |
dc.relation.references | Chapman, P., Clinton, J., et al. (2000). CRISP-DM 1.0: Step-by-step data mining guide. The CRISP-DM Consortium. | spa |
dc.relation.references | Hofmann, M., & Klinkenberg, R. (2013). RapidMiner: Data mining use cases and business analytics applications. CRC Press. | spa |
dc.relation.references | Zhang, G. (2003). Time series forecasting using ARIMA + NN. Neurocomputing. | spa |
dc.relation.references | Bergmeir, C., & Benitez, J. M. (2012). On cross-validation for time series. Information Sciences, 191. | spa |
dc.relation.references | Jamsa, K. (2013). Cloud Computing: SaaS, PaaS, IaaS.... Jones & Bartlett Learning. | spa |
dc.relation.references | Merkel, D. (2014). Docker: Lightweight Linux Containers. Linux Journal, 2014(239). | spa |
dc.relation.references | Miller, T. (2017). AWS for Non-Engineers. O’Reilly Media. | spa |
dc.relation.references | Qlik (2021). Qlik Sense Enterprise: User Guide. QlikTech International. | spa |
dc.relation.references | Floridi, L., Cowls, J., et al. (2018). AI4People: An ethical framework. Minds and Machines, 28(4), 689–707. | spa |
dc.relation.references | Voigt, P., & Von dem Bussche, A. (2017). The EU GDPR: A Practical Guide. Springer. | spa |
dc.relation.references | Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Explaining classifier predictions. ACM SIGKDD Conference. | spa |
dc.relation.references | Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley. | spa |
dc.relation.references | Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer. | spa |
dc.relation.references | Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques. Elsevier. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 330 - Economía::338 - Producción | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.lemb | Dislicores - Pronóstico de ventas | |
dc.subject.lemb | Análisis de la demanda | |
dc.subject.lemb | Análisis de mercadeo | |
dc.subject.proposal | Pronóstico de demanda | spa |
dc.subject.proposal | Series temporales | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Modelos | spa |
dc.subject.proposal | XGBoost | spa |
dc.subject.proposal | LightGBM | spa |
dc.subject.proposal | Gestión de inventarios | spa |
dc.subject.proposal | Análisis predictivo | spa |
dc.subject.proposal | Inteligencia de negocios | spa |
dc.subject.proposal | Demand forecasting | eng |
dc.subject.proposal | Time series | eng |
dc.subject.proposal | Automated learning | eng |
dc.subject.proposal | Holt-Winters models | eng |
dc.subject.proposal | inventory management | eng |
dc.subject.proposal | Predictive analytics | eng |
dc.subject.proposal | Business Intelligence | eng |
dc.title | Optimización del pronóstico de ventas en Dislicores : evaluación y selección de modelos de series temporales, aprendizaje automático y técnicas avanzadas | spa |
dc.title.translated | Sales forecast optimization in Dislicores : evaluation and selection of time series models, automated learning and advanced techniques | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1038118579.2025.pdf
- Tamaño:
- 961.4 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: