Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete
dc.contributor.advisor | Parra Suescún, Jaime | |
dc.contributor.advisor | Pardo Carrasco, Sandra Clemencia | |
dc.contributor.author | Herrera Franco, Victor Hugo | |
dc.contributor.researchgroup | Biodiversidad y Génetica Molecular "Biogem" | spa |
dc.date.accessioned | 2022-03-25T01:17:00Z | |
dc.date.available | 2022-03-25T01:17:00Z | |
dc.date.issued | 2021-11 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | El destete es el período más estresante de la vida del cerdo, debido principalmente a que se encuentra en desafío con diferentes cambios (ambientales/sociales/nutricionales) a los que debe adaptarse rápidamente. Durante el destete precoz (≤ 21 días), el lechón se encuentra en medio de su desarrollo fisiológico y establecimiento de la microbiota intestinal, a su vez, la inmunidad alcanzada con la leche materna puede disminuir, lo que representa un reto para las múltiples funciones del intestino animal. El epitelio intestinal facilita la separación del medio exterior con el medio interno, la descomposición y absorción de los nutrientes de los alimentos, la defensa contra agentes no propios, y representa el ambiente de los microorganismos responsables de una relación simbiótica con el animal. Para contrarrestar los efectos perjudiciales del destete han sido utilizados los antibióticos, al tiempo que cumplen la función de promotores de crecimiento, aumentando el rendimiento productivo y la eficiencia alimenticia en cerdos en crecimiento. Debido a que se han considerado como factores de transmisión de resistencias a los microorganismos contra antibióticos utilizados en medicina humana, se ha creado controversia acerca del uso de cantidades subterapéuticas de dichos antibióticos en la producción porcina intensiva. Por lo anterior, los objetivo de este estudio fueron evaluar el desarrollo productivo de los lechones; cuantificar la abundancia de ARNm de los genes de enzimas (maltasa-glucoamilasa (MgA) y sacarasa-isomaltasa (SI)), transportadores (SGLT-1, GLUT-1 y GLUT-2) y citoquinas intestinales; y caracterizar la microbiota en el intestino (yeyuno) en cerdos destetados a dos edades y alimentados con la adición de antibióticos promotores de crecimiento (APC) y diferentes alternativas a estos, como probióticos (Bacillus subtilis), aceites esenciales (de orégano [Lippia origanoides]) y ácidos orgánicos. La adición de alternativas a los APC, especialmente probióticos, en fase de crecimiento, junto con el destete a los 28 días de edad (tardío), evidenció un impacto favorable, no solo en la función digestiva y de protección intestinal de cerdos, sino también en el establecimiento rápido y beneficioso de la microbiota intestinal, influyendo sobre los parámetros productivos, y sirviendo de base para el análisis de resultados moleculares relacionados con la salud intestinal. Además, esta investigación proporciona una base para el uso de alternativas naturales a los antibióticos que pueden promover el desarrollo de los cerdos en crecimiento, y favorecer la adaptación del lechón a la fase posdestete. (Texto tomado de la fuente) | spa |
dc.description.abstract | Weaning is the most stressful period in the life of the pig, mainly because of environmental / social / nutritional it is in challenge with different changes, (environmental / social / nutritional) to which it must adapt quickly. In early weaning (≤ 21 days), the piglet is in the middle of its physiological development and establishment of the intestinal microbiota, and the immunity achieved with breast milk decreases, which represents a challenge for the multiple functions of the animal intestine. The intestinal epithelium facilitates the separation of the external environment from the internal environment, the decomposition and absorption of nutrients from food, the defense against non-self agents, and represents the environment of the microorganisms responsible for a symbiotic relationship with the animal. Antibiotics have been used to counteract the harmful effects of weaning, while they play the role of acting as growth promoters, increase increasing productive performance and feed efficiency in growing pigs. Since they have been considered as transmission factors of resistance to microorganisms against antibiotics used in human medicine, controversy has been created raised about the use of subtherapeutic amounts of these antibiotics in intensive swine production. Therefore, the objectives of this study were to evaluate the productive development of the piglets; quantify the abundance of mRNA of the genes of coding for digestive enzymes (maltase-glucoamylase (MgA) and sucrase-isomaltase (SI)), transporters (SGLT-1, GLUT-1 and GLUT-2) and intestinal cytokines via mRNA; and characterize the microbiota via 16SrRNA MiSeq sequencing in the intestine (jejunum) in pigs weaned at two ages and fed with the addition of growth-promoting antibiotics (APC) and different alternatives to these, such as probiotics (Bacillus subtilis), essential oils (from oregano [Lippia origanoides)]) and organic acids. The addition of alternatives to APC, especially probiotics, in the growth phase, together with weaning at 28 days of age (late), showed a favorable impact, not only on the digestive function and intestinal protection of pigs, but also in the rapid and beneficial establishment of the intestinal microbiota, influencing the productive parameters, and serving as the basis for the analysis of molecular results related to intestinal health. In addition, this research provides a basis for the use of natural alternatives to antibiotics that can promote the development of growing pigs and favor the adaptation of the piglet to the post-weaning phase. | eng |
dc.description.curriculararea | Área Curricular Biotecnología | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Biotecnología | spa |
dc.description.researcharea | Biotecnología aplicada a la producción animal: microbioma intestinal | spa |
dc.description.sponsorship | Ministerio de Ciencia, Tecnología e Innovación (anteriormente conocido como "COLCIENCIAS") | spa |
dc.format.extent | xvi, 126 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81382 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Escuela de biociencias | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.references | Alfonso, K. (18 de enero de 2018). Porcicultores miran Ecuador para exportar carne durante el primer semestre del año. Crecimiento de la producción de carne de cerdo fue de 4% en 2017. Diario La República. https://www.larepublica.co/economia/porcicultores-miran-ecuador-para-exportar-carne-durante-el-primer-semestre-del-ano-2589670. Revisado: 25-febrero-2018 | spa |
dc.relation.references | Alhenaky, A., Abdelqader, A., Abuajamieh, M. & Al-Fataftah, A. R. (2017). The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 70(parte B), 9–14. https://doi.org/10.1016/j.jtherbio.2017.10.015 | spa |
dc.relation.references | Aliakbarpour, H. R., Chamani, M., Rahimi, G., Sadeghi, A. A. & Qujeq, D. (2012). The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australasian Journal of Animal Sciences, 25(9), 1285 – 1293. https://doi.org/10.5713/ajas.2012.12110 | spa |
dc.relation.references | Allen, H. K., Levine, U. Y., Looft, T., Bandrick, M. & Casey, T. A. (2013). Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in Microbiology, 21(3), 114-119. https://doi.org/10.1016/j.tim.2012.11.001 | spa |
dc.relation.references | Al-Sadi, R., Boivin, M. & Ma, T. (2009). Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience, 14, 2765–2778. PMID: 19273235; PMCID: PMC3724223. https://doi.org/10.2741/3413 | spa |
dc.relation.references | Angelakis, E., Merhej, V. & Raoult, D. (2013). Related actions of probiotics and antibiotics on gut microbiota and weight modification. The Lancet Infectious Diseases, 13(10), 889-899. https://doi.org/10.1016/S1473-3099(13)70179-8 | spa |
dc.relation.references | Angelakis, E. (2017). Weight gain by gut microbiota manipulation in productive Animals. Microbial Pathogenesis, 106, 162-170. https://doi.org/10.1016/j.micpath.2016.11.002 | spa |
dc.relation.references | Ashbolt, N. J., Amezquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G. J., McEwen, S. A., Ryan, J. J., Schonfeld, J., Silley, P., Snape, J. R., van den, Eede. C. & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121(9), 993–1001. https://doi.org/10.1289/ehp.1206316 | spa |
dc.relation.references | Ayala, L., Bocourt, R., Castro, M., Dihigo, L. E., Milián, G., Herrera, M. & Ly, J. (2014). Development of the digestive organs in piglets born from sows consuming probiotic before farrowing and during lactation. Cuban Journal of Agricultural Science, 48(2), 133-136. https://doi.org/10.1289/ehp.1206316 | spa |
dc.relation.references | Bednorz, C., Oelgeschläger, K., Kinnemann, B., Hartmann, S., Neumann, K., Pieper, R., Bethe, A., Semmler, T., Tedin, K., Schierack, P., Wieler, L. H. & Guenther, S. (2013). The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International Journal of Medical Microbiology, 303(6–7), 396–403. https://doi.org/10.1016/j.ijmm.2013.06.004 | spa |
dc.relation.references | Belkaid, Y. & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1),121-141. https://doi.org/ 10.1016/j.cell.2014.03.011 | spa |
dc.relation.references | Campbell, J. M., Crenshaw, J. D. & Polo, J. (2013). The biological stress of early weaned piglets. Journal of animal science and biotechnology, 4(1), 19. https://doi.org/10.1186/2049-1891-4-19 | spa |
dc.relation.references | Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A. M. & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012 | spa |
dc.relation.references | Censo Pecuario Nacional. (2020). Instituto Agropecuario Colombiano. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018. Revisado: 06/05/2020. | spa |
dc.relation.references | Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013. Available at: https://www.cdc.gov/drugresistance/threatreport- 2013/pdf/ar-threats-2013-508.pdf. Revisado: January 10, 2018. | spa |
dc.relation.references | Cho, J. & Kim, H. (2015). Effects of microencapsulated organic acids and essential oils on growth performance and intestinal flora in weanling pigs. Revista Colombiana de Ciencias Pecuarias, 28(3), 129-137. https://doi.org/10.17533/udea.rccp.v28n3a3 | spa |
dc.relation.references | Ciro, J., López, H. A. & Parra, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 150-159. | spa |
dc.relation.references | Ciro, J., López, H. A. & Parra, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomía, 69(1), 7803-7811. https://doi.org/10.15446/rfna.v69n1.54748. | spa |
dc.relation.references | Claesson, M. J., Cusacka, S., O’Sullivan, O., Greene-Diniza, R., deWeerd, H., Flannery, E., Marchesib, J. R., Falushg, D., Dinanb, T., Fitzgeralda, G., Stantonb, C., van Sinderena, D., O'Connori, M., Harnedyi, N., O'Connorj, K., Henry, C., O'Mahony, D., Fitzgeralde, A. P., Shanahan, F... & O'Toolea, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl.1), 4586–4591. https://doi.org/10.1073/pnas.1000097107 | spa |
dc.relation.references | Costa, L. B., Almeida, V. V., Berenchtein, B., Tse, M. L. P., Andrade, C. & Miyada, V. S. (2011). Phytogenic additives and sodium butyrate as alternatives to antibiotics for weaned piglets. Archivos de Zootecnia, 60(231), 733-744. https://doi.org/10.21071/az.v60i231.4530 | spa |
dc.relation.references | Costa, L. B., Luciano, F. B., Miyada, V. S. & Gois, F. D. (2013). Herbal extracts and organic acids as natural feed additives in pig diets. South African Journal of Animal Science, 43(2), 181-193. https://doi.org/10.4314/sajas.v43i2.9 | spa |
dc.relation.references | Costelloe, C., Metcalfe, C., Lovering, A., Mant, D. & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. British Medical Journal, 340, c2096. https://doi.org/10.1136/bmj.c2096 | spa |
dc.relation.references | Cubillos, R. (31 de julio de 2017). Mercado del cerdo en Latinoamérica. Evolución y expectativas. Procicultura integral. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercados-latam-en-2017-evolucion-y-expectativas_38382/. Revisado; 25 febrero 2018. | spa |
dc.relation.references | Cubillo, R. (31 de diciembre de 2019). Situación del mercado porcino en Latinoamérica durante el 2019 y perspectivas para 2020. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercado-porcino-en-latinoamerica-en-2019-y-perspectivas-para-2020_42029/. Revisado: 7 mayo 2020 | spa |
dc.relation.references | Curry, S. M., Schwartzb, K. J., Yoonb, K. J., Gablera, N. K. & Burroughb, E. R. (2017). Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity. Veterinary Microbiology, 211, 58–66. https://doi.org/10.1016/j.vetmic.2017.09.021 | spa |
dc.relation.references | De Busser E. V., Dewulf J., Zutter L. D., Haesebrouck F., Callens J., Meyns T., Maes W. & Maes D. (2011). Effect of administration of organic acids in drinking water on faecal shedding of E. coli, performance parameters and health in nursery pigs. Veterinary journal, 188(2), 184-188. https://doi.org/10.1016/j.tvjl.2010.04.006 | spa |
dc.relation.references | de Melo, Pereira, G. V., de Oliveira, Coelho, B., Magalhães, Júnior. A. I., Thomaz-Soccol, V. & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-2076. https://doi.org/10.1016/j.biotechadv.2018.09.003. | spa |
dc.relation.references | Douglas, S. L., Edwards, S. A. & Kyriazakis, I. (2014). Management strategies to improve the performance of low birth weight pigs to weaning and their long-term consequences. Journal of Animal Science, 92(5), 2280–2288. https://doi.org/10.2527/jas.2013-7388 | spa |
dc.relation.references | Ermund, A., Schutte, A., Johansson, M. E., Gustafsson, J. K. & Hansson, G. C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. American Journal of Physiology Gastrointestinal and Liver Physiology, 305, G341-G347. https://doi.org/10.1152/ajpgi.00046.2013 | spa |
dc.relation.references | Fair, R. J. & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459 | spa |
dc.relation.references | FAO. (2021). Resumen de la evolución del mercado mundial de carne de cerdo en 2020. http://www.fao.org/. Marzo de 2021/ FAO. | spa |
dc.relation.references | FAO. (2016). Informe de situación sobre resistencia a los antimicrobianos, Roma: Food and Agriculture Organization of the United Nations. | spa |
dc.relation.references | Ferreira, C. L., Salminen, S., Grzeskowiak, L., Brizuela, M. A., Sanchez, L., Carneiro, H. & Bonnet, M. (2011). Terminology concepts of probiotic and prebiotic and their role in human and animal health. Revista salud animal, 33(3), 137-146. | spa |
dc.relation.references | FIRA. (2017). Panorama Agroalimentario: Carne de cerdo 2017. Retrieved from http://www.ugrpg.org.mx/pdfs/Panorama Agroalimentario Carne de cerdo 2017.pdf . Revisado el 5 enero 2018 | spa |
dc.relation.references | Flis, M., Sobotka, W. & Antoszkiewicz, Z. (2017). Fiber substrates in the nutrition of weaned piglets – a review. Annals of Animal Science, 17(3), 627–643. https://doi.org/10.1515/aoas-2016-0077 | spa |
dc.relation.references | Fraile, L. (2017). Sanidad animal y los antibióticos. Seguridad alimentaria, profilaxis, bioseguridad y comercio internacional. LOS EXPERTOS OPINAN. Disponible en: https://www.carne.3tres3.com/los-expertos-opinan/sanidad-animal-y-los-antibioticos-seguridad-alimentaria-profilaxis_1074. Revisado el 4 de mayo del 2017. | spa |
dc.relation.references | Fouhse, J. M., Zijlstra, R. T. & Willing, B. P. (2016). The role of gut microbiota in the health and disease of pigs. Animals Font, 6(3), 30-36. https://doi.org/10.2527/af.2016-0031 | spa |
dc.relation.references | Gaggia, F., Mattarelli, P. and Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(Suppl), S15eS28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031 | spa |
dc.relation.references | García, G. R., Dogia, C. A., Ashworth, G. E., Berardob, D., Godoy, G., Cavaglieria, L. R., de Moreno, de LeBlanc, A. &Grecoa, C. R. (2016). Effect of breast feeding time on physiological, immunological andmicrobial parameters of weaned piglets in an intensive breeding. Veterinary Immunology and Immunopathology, 176: 44–49. https://doi.org/0.1016/j.vetimm.2016.02.009 | spa |
dc.relation.references | Giannenas, I., Doukas, D., Karamoutsios, A., Tzora, A., Bonos, E., Skoufos, I., Tsinas, A., Christaki, E., Tontis, D. & Florou-Paneri, P. (2016). Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Animal Feed Science and Technology, 220, 159-167. https://doi.org/10.1016/j.anifeedsci.2016.08.003 | spa |
dc.relation.references | GIA. (2008). Probiotics: A Global Strategic Business Report. Global Industry Analysts, Inc. California, USA. | spa |
dc.relation.references | Gónzalez X. (2021). La carne de cerdo colombiana ganó terreno y la producción local ya representa 87%. AGRONEGOCIOS. https://www.agronegocios.co/ganaderia/la-carne-de-cerdo-colombiana-gano-terreno-y-la-produccion-local-ya-representa-87-3133078 | spa |
dc.relation.references | Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., van de Wiele, T., Forano, E. & Blanquet-Diot, S. (2017). Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends in Microbiology, 25(10), 851-73. https://doi.org/10.1016/j.tim.2017.05.004 | spa |
dc.relation.references | Gross M. (2013). Antibiotics in crisis. Current Biology, 23(24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057 | spa |
dc.relation.references | Guerra, N. P. (2009). Probiotics: production, evaluation and uses in animal feed. Trivandrum. Research Signpost. | spa |
dc.relation.references | Gutiérrez, C., López, A. y Parra, J. (2013). Lesiones en órganos de cerdos posdestete, inducidas por el lipopolisacárido de E. coli. Revista MVZ Córdoba, 18(2), 3534–3542. https://doi.org/10.21897/rmvz.178 | spa |
dc.relation.references | Gutiérrez, L. A., Montoya, O. I. y Vélez, J. M. (2013). Probióticos: una alternativa de producción limpia y de reemplazo a los antibióticos promotores de crecimiento en la alimentación animal. Producción + limpia, 8(1), 135-146. | spa |
dc.relation.references | Gutiérrez-Ramírez, L. A., Bedoya, O. y Ríos, M. (2015). Evaluación de parámetros productivos en cerdos (Sus scrofa domesticus) suplementados con microorganismos probióticos nativos. Journal of agriculture and animal sciences, 3(2), 48-55. | spa |
dc.relation.references | Haack, S. K., Duris, J. W., Kolpin, D. W., Focazio, M. J., Meyer, M. T., Johnson, H. E., Oster, R. J. & Foreman, W. T. (2016). Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Science of the Total Environment, 563 – 564: 340–350.https://doi.org/10.1016/j.scitotenv.2016.04.087 | spa |
dc.relation.references | Hayakawa, T., Masuda, T., Kurosawa, D. &Tsukahara, T. (2016). Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Animal Science Journal, 87(12), 1501-1510. https://doi.org/10.1111/asj.12565 | spa |
dc.relation.references | Herrera, F. V. (2015). Efecto de la adición de diferentes cepas probióticas (L. acidophilus, L. casei, E. faecium) sobre la población bacteriana intestinal, y su relación con variables inmunológicas en lechones recién destetados. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín. | spa |
dc.relation.references | He, L. Y., Ying, G. G., Liu, Y. S., Su, H. C., Chen, J., Liu, S. S. & Zhao, J. L. (2016). Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92–93, 210–219. https://doi.org/10.1016/j.envint.2016.03.023 | spa |
dc.relation.references | Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C. & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews gastroenterology y hepatology, 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66 | spa |
dc.relation.references | Holman, D. & Chénier, M. (2014). Temporal changes and the effect of subtherape concentrations of antibiotics in the gut microbiota of swine. Federation of European Microbiological Societies, 90(3), 599-608. https://doi.org/10.1111/1574-6941.12419 | spa |
dc.relation.references | Hu, Y., Dun, Y., Li, S., Zhao, S., Peng, N. & Liang, Y. (2014). Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets. Asian-Australasian Journal of Animal Sciences, 27(8), 1131-1140. https://doi.org/10.5713/ajas.2013.13737 | spa |
dc.relation.references | Hughes, P. & Heritage, J. (2004). Antibiotic growth-promoters in food animals. FAO. Animal Production & Health Paper: 129 – 152. | spa |
dc.relation.references | Huguet, A., Sève, B., Le Dividich, J. &Le, Huërou-luron, I. (2006). Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reproduction Nutrition Development, 46(2), 167–178. https://doi.org/10.1051/rnd:2006006 | spa |
dc.relation.references | Hwang, A. Y. & Gums, J. G. (2016). The emergence and evolution of antimicrobial resistance: Impact on a global scale. Bioorganic & Medicinal Chemistry, 24(24), 6440–6445. https://doi.org/10.1016/j.bmc.2016.04.027 | spa |
dc.relation.references | Inoue, R., Tsukahara, T., Nakatani, M., Okutani, M., Nishibayashi, R., Ogawa, S., Harayama, T., Nagino, T., Hatanaka, H., Fukuta, K., Romero-Pérez, G. A., Ushida, K. & Kelly, D. (2015). Weaning markedly affects transcriptome profiles and peyer’s patch development in piglet ileum. Frontiers in Immunology, 6, 630. https://doi.org/10.3389/fimmu.2015.00630 | spa |
dc.relation.references | Jacobi, K. S., Moeser, J. A., Blikslager, T. A., Rhoads, M. J., Corl, A. B., Harrell, J. R. & Odle, J. (2013). Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World Journal of Gastroenterology, 19(31), 5094–5102. https://doi.org/10.3748/wjg.v19.i31.5094 | spa |
dc.relation.references | Jayaraman, B. & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205-211. https://doi.org/10.1016/j.aninu.2017.06.002 | spa |
dc.relation.references | Jeffery, I. B. & O’Toole, P. W. (2013). Diet-microbiota interactions and their implications for healthy living. Nutrients, 5(1), 234-252. https://doi.org/10.3390/nu5010234 | spa |
dc.relation.references | Jurado, G. H., Ramírez, C. y Martínez, J. (2013). Evaluación in vivo de Lactobacillus plantarum como alternativa al uso de antibióticos en lechones. Revista MVZ Córdoba, 18(Suppl), 3648-3657. | spa |
dc.relation.references | Khan, I. U. H., Gannon, V., Jokinen, C. C., Kent, R., Koning, W., Lapen, D. R., Medeiros, D., Miller, J., Neumann, N. F., Phillips, R., Schreier, H., Topp, E., van Bochove, E., Wilkes, G. & Edge, T. A. (2014). A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. Water Research, 61(15), 243–252. https://doi.org/10.1016/j.watres.2014.05.027 | spa |
dc.relation.references | Kim, H. B. & Isaacson, R. E. (2015). The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, 177(3-4), 242–251. https://doi.org/10.1016/j.vetmic.2015.03.01 | spa |
dc.relation.references | Kim, J. C., Hansen, C. F., Mullan, B. P. & Pluske, J. R. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1-2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022 | spa |
dc.relation.references | Kim, Y. I., Lee, Y. H., Kim, K. H., Oh, Y. K., Moon, Y. H. & Kwak, W. S. (2012). Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian-Australasian Journal of Animal Sciences, 25(11),1575-1581. https://doi.org/10.5713/ajas.2012.12251 | spa |
dc.relation.references | Kogut, M. H. & Arsenault, R. J. (2016). Gut health: the new paradigm in food animal production. Frontiers in Veterinary Science, 3, 71. https://doi.org/10.3389/fvets.2016.00071. | spa |
dc.relation.references | Kollath, W. (1953). Ernährung und Zahnsystem. Zahnaerzt Z, 8, 7-16. | spa |
dc.relation.references | Liao, S. F. & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331-343. https://doi.org/10.1016/j.aninu.2017.06.007 | spa |
dc.relation.references | Littmann, J., Buyx, A. & Cars, O. (2015). Antibiotic resistance: an ethical challenge. International Journal of Antimicrobial Agents, 46(4), 359–61. https://doi.org/10.1016/j.ijantimicag.2015.06.01 | spa |
dc.relation.references | Londoño, S., Lallès, J. P. & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomía, 69(2), 7911-7918. https://doi.org/10.15446/rfna.v69n2.59136 | spa |
dc.relation.references | MacGowan, A. & Macnaughton, E. (2017). Antibiotic resistance. Medicine. Elsevier Ltd., 45(10): 622–628. https://doi.org/10.1016/j.mpmed.2017.07.006 | spa |
dc.relation.references | Madrid, G. T. (2015). Evaluación del aceite esencial del orégano Lippia origanoides como promotor nutricional de crecimiento en pollos de engorde. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín. | spa |
dc.relation.references | Moeser, A. J., Pohl, C. S. & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313-321. https://doi.org/10.1016/j.aninu.2017.06.003. | spa |
dc.relation.references | OCDE/FAO. (2017). OECD-FAO Agricultural Outlook 2017-2026. Paris: OECD Publishing. TOMADO DE: https://doi.org/10.1787/agr_outlook-2017-en | spa |
dc.relation.references | Pluske, J. R. (2016). Invited review: aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(Suppl 3) 399–411. https://doi.org/10.2527/jas.2015-9767 | spa |
dc.relation.references | PorkColombia. 2020. Revista PorkColombia, Bogotá. | spa |
dc.relation.references | Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (Text with EEA relevance). | spa |
dc.relation.references | Stensland, I., Kim, J. C., Bowring, B., Collins, A. M., Mansfield, J. P. & Pluske, J. R. (2015). A comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde anda permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimen. Animals, 5(4), 1147-1168. https://doi.org/doi.org/10.3390/ani5040403 | spa |
dc.relation.references | Torres-Pitarch, A., Hermans, D., Manzanilla, E. G., Bindelle, J., Everaert, N., Beckers, Y., Torrallardona, D., Bruggeman, G., Gardiner, G. E. & Lawlor, P. G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Animal Feed Science and Technology, 233, 145–159. https://doi.org/10.1016/j.anifeedsci.2017.04.024 | spa |
dc.relation.references | USDA. (2017). Livestock, Dairy, and Poultry Outlook: December 2017. Retrieved from https://www.ers.usda.gov/webdocs/publications/86243/ldp-m-282.pdf?v=43087 | spa |
dc.relation.references | USDA. (2020). Foreign Agricultural Service/USDA: Global Market Analysis. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf | spa |
dc.relation.references | Zhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z. & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 590 - Animales::599 - Mamíferos | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.lemb | Swine - feeding and feeds | |
dc.subject.lemb | Alimentos para cerdos | |
dc.subject.proposal | Producción porcina | spa |
dc.subject.proposal | Destete | spa |
dc.subject.proposal | Probiótico | spa |
dc.subject.proposal | Aceite esencial | spa |
dc.subject.proposal | Ácido orgánico | spa |
dc.subject.proposal | Microbiota intestinal | spa |
dc.subject.proposal | Expresión molecular | spa |
dc.subject.proposal | Pig production | eng |
dc.subject.proposal | Weaning | eng |
dc.subject.proposal | Probiotic | eng |
dc.subject.proposal | Essential oil | eng |
dc.subject.proposal | Organic acid | eng |
dc.subject.proposal | Gut microbiota | eng |
dc.subject.proposal | Molecular expression | eng |
dc.title | Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete | spa |
dc.title.translated | Microbiota and expression of intestinal proteins in pigs added with different antimicrobials during the weaning period | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020418193.2021.pdf
- Tamaño:
- 1.52 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: