Microbiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destete

dc.contributor.advisorParra Suescún, Jaime
dc.contributor.advisorPardo Carrasco, Sandra Clemencia
dc.contributor.authorHerrera Franco, Victor Hugo
dc.contributor.researchgroupBiodiversidad y Génetica Molecular "Biogem"spa
dc.date.accessioned2022-03-25T01:17:00Z
dc.date.available2022-03-25T01:17:00Z
dc.date.issued2021-11
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl destete es el período más estresante de la vida del cerdo, debido principalmente a que se encuentra en desafío con diferentes cambios (ambientales/sociales/nutricionales) a los que debe adaptarse rápidamente. Durante el destete precoz (≤ 21 días), el lechón se encuentra en medio de su desarrollo fisiológico y establecimiento de la microbiota intestinal, a su vez, la inmunidad alcanzada con la leche materna puede disminuir, lo que representa un reto para las múltiples funciones del intestino animal. El epitelio intestinal facilita la separación del medio exterior con el medio interno, la descomposición y absorción de los nutrientes de los alimentos, la defensa contra agentes no propios, y representa el ambiente de los microorganismos responsables de una relación simbiótica con el animal. Para contrarrestar los efectos perjudiciales del destete han sido utilizados los antibióticos, al tiempo que cumplen la función de promotores de crecimiento, aumentando el rendimiento productivo y la eficiencia alimenticia en cerdos en crecimiento. Debido a que se han considerado como factores de transmisión de resistencias a los microorganismos contra antibióticos utilizados en medicina humana, se ha creado controversia acerca del uso de cantidades subterapéuticas de dichos antibióticos en la producción porcina intensiva. Por lo anterior, los objetivo de este estudio fueron evaluar el desarrollo productivo de los lechones; cuantificar la abundancia de ARNm de los genes de enzimas (maltasa-glucoamilasa (MgA) y sacarasa-isomaltasa (SI)), transportadores (SGLT-1, GLUT-1 y GLUT-2) y citoquinas intestinales; y caracterizar la microbiota en el intestino (yeyuno) en cerdos destetados a dos edades y alimentados con la adición de antibióticos promotores de crecimiento (APC) y diferentes alternativas a estos, como probióticos (Bacillus subtilis), aceites esenciales (de orégano [Lippia origanoides]) y ácidos orgánicos. La adición de alternativas a los APC, especialmente probióticos, en fase de crecimiento, junto con el destete a los 28 días de edad (tardío), evidenció un impacto favorable, no solo en la función digestiva y de protección intestinal de cerdos, sino también en el establecimiento rápido y beneficioso de la microbiota intestinal, influyendo sobre los parámetros productivos, y sirviendo de base para el análisis de resultados moleculares relacionados con la salud intestinal. Además, esta investigación proporciona una base para el uso de alternativas naturales a los antibióticos que pueden promover el desarrollo de los cerdos en crecimiento, y favorecer la adaptación del lechón a la fase posdestete. (Texto tomado de la fuente)spa
dc.description.abstractWeaning is the most stressful period in the life of the pig, mainly because of environmental / social / nutritional it is in challenge with different changes, (environmental / social / nutritional) to which it must adapt quickly. In early weaning (≤ 21 days), the piglet is in the middle of its physiological development and establishment of the intestinal microbiota, and the immunity achieved with breast milk decreases, which represents a challenge for the multiple functions of the animal intestine. The intestinal epithelium facilitates the separation of the external environment from the internal environment, the decomposition and absorption of nutrients from food, the defense against non-self agents, and represents the environment of the microorganisms responsible for a symbiotic relationship with the animal. Antibiotics have been used to counteract the harmful effects of weaning, while they play the role of acting as growth promoters, increase increasing productive performance and feed efficiency in growing pigs. Since they have been considered as transmission factors of resistance to microorganisms against antibiotics used in human medicine, controversy has been created raised about the use of subtherapeutic amounts of these antibiotics in intensive swine production. Therefore, the objectives of this study were to evaluate the productive development of the piglets; quantify the abundance of mRNA of the genes of coding for digestive enzymes (maltase-glucoamylase (MgA) and sucrase-isomaltase (SI)), transporters (SGLT-1, GLUT-1 and GLUT-2) and intestinal cytokines via mRNA; and characterize the microbiota via 16SrRNA MiSeq sequencing in the intestine (jejunum) in pigs weaned at two ages and fed with the addition of growth-promoting antibiotics (APC) and different alternatives to these, such as probiotics (Bacillus subtilis), essential oils (from oregano [Lippia origanoides)]) and organic acids. The addition of alternatives to APC, especially probiotics, in the growth phase, together with weaning at 28 days of age (late), showed a favorable impact, not only on the digestive function and intestinal protection of pigs, but also in the rapid and beneficial establishment of the intestinal microbiota, influencing the productive parameters, and serving as the basis for the analysis of molecular results related to intestinal health. In addition, this research provides a basis for the use of natural alternatives to antibiotics that can promote the development of growing pigs and favor the adaptation of the piglet to the post-weaning phase.eng
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaBiotecnología aplicada a la producción animal: microbioma intestinalspa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación (anteriormente conocido como "COLCIENCIAS")spa
dc.format.extentxvi, 126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81382
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAlfonso, K. (18 de enero de 2018). Porcicultores miran Ecuador para exportar carne durante el primer semestre del año. Crecimiento de la producción de carne de cerdo fue de 4% en 2017. Diario La República. https://www.larepublica.co/economia/porcicultores-miran-ecuador-para-exportar-carne-durante-el-primer-semestre-del-ano-2589670. Revisado: 25-febrero-2018spa
dc.relation.referencesAlhenaky, A., Abdelqader, A., Abuajamieh, M. & Al-Fataftah, A. R. (2017). The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 70(parte B), 9–14. https://doi.org/10.1016/j.jtherbio.2017.10.015spa
dc.relation.referencesAliakbarpour, H. R., Chamani, M., Rahimi, G., Sadeghi, A. A. & Qujeq, D. (2012). The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australasian Journal of Animal Sciences, 25(9), 1285 – 1293. https://doi.org/10.5713/ajas.2012.12110spa
dc.relation.referencesAllen, H. K., Levine, U. Y., Looft, T., Bandrick, M. & Casey, T. A. (2013). Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in Microbiology, 21(3), 114-119. https://doi.org/10.1016/j.tim.2012.11.001spa
dc.relation.referencesAl-Sadi, R., Boivin, M. & Ma, T. (2009). Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience, 14, 2765–2778. PMID: 19273235; PMCID: PMC3724223. https://doi.org/10.2741/3413spa
dc.relation.referencesAngelakis, E., Merhej, V. & Raoult, D. (2013). Related actions of probiotics and antibiotics on gut microbiota and weight modification. The Lancet Infectious Diseases, 13(10), 889-899. https://doi.org/10.1016/S1473-3099(13)70179-8spa
dc.relation.referencesAngelakis, E. (2017). Weight gain by gut microbiota manipulation in productive Animals. Microbial Pathogenesis, 106, 162-170. https://doi.org/10.1016/j.micpath.2016.11.002spa
dc.relation.referencesAshbolt, N. J., Amezquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G. J., McEwen, S. A., Ryan, J. J., Schonfeld, J., Silley, P., Snape, J. R., van den, Eede. C. & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121(9), 993–1001. https://doi.org/10.1289/ehp.1206316spa
dc.relation.referencesAyala, L., Bocourt, R., Castro, M., Dihigo, L. E., Milián, G., Herrera, M. & Ly, J. (2014). Development of the digestive organs in piglets born from sows consuming probiotic before farrowing and during lactation. Cuban Journal of Agricultural Science, 48(2), 133-136. https://doi.org/10.1289/ehp.1206316spa
dc.relation.referencesBednorz, C., Oelgeschläger, K., Kinnemann, B., Hartmann, S., Neumann, K., Pieper, R., Bethe, A., Semmler, T., Tedin, K., Schierack, P., Wieler, L. H. & Guenther, S. (2013). The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International Journal of Medical Microbiology, 303(6–7), 396–403. https://doi.org/10.1016/j.ijmm.2013.06.004spa
dc.relation.referencesBelkaid, Y. & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1),121-141. https://doi.org/ 10.1016/j.cell.2014.03.011spa
dc.relation.referencesCampbell, J. M., Crenshaw, J. D. & Polo, J. (2013). The biological stress of early weaned piglets. Journal of animal science and biotechnology, 4(1), 19. https://doi.org/10.1186/2049-1891-4-19spa
dc.relation.referencesCeli, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A. M. & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012spa
dc.relation.referencesCenso Pecuario Nacional. (2020). Instituto Agropecuario Colombiano. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018. Revisado: 06/05/2020.spa
dc.relation.referencesCenters for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013. Available at: https://www.cdc.gov/drugresistance/threatreport- 2013/pdf/ar-threats-2013-508.pdf. Revisado: January 10, 2018.spa
dc.relation.referencesCho, J. & Kim, H. (2015). Effects of microencapsulated organic acids and essential oils on growth performance and intestinal flora in weanling pigs. Revista Colombiana de Ciencias Pecuarias, 28(3), 129-137. https://doi.org/10.17533/udea.rccp.v28n3a3spa
dc.relation.referencesCiro, J., López, H. A. & Parra, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 150-159.spa
dc.relation.referencesCiro, J., López, H. A. & Parra, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomía, 69(1), 7803-7811. https://doi.org/10.15446/rfna.v69n1.54748.spa
dc.relation.referencesClaesson, M. J., Cusacka, S., O’Sullivan, O., Greene-Diniza, R., deWeerd, H., Flannery, E., Marchesib, J. R., Falushg, D., Dinanb, T., Fitzgeralda, G., Stantonb, C., van Sinderena, D., O'Connori, M., Harnedyi, N., O'Connorj, K., Henry, C., O'Mahony, D., Fitzgeralde, A. P., Shanahan, F... & O'Toolea, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl.1), 4586–4591. https://doi.org/10.1073/pnas.1000097107spa
dc.relation.referencesCosta, L. B., Almeida, V. V., Berenchtein, B., Tse, M. L. P., Andrade, C. & Miyada, V. S. (2011). Phytogenic additives and sodium butyrate as alternatives to antibiotics for weaned piglets. Archivos de Zootecnia, 60(231), 733-744. https://doi.org/10.21071/az.v60i231.4530spa
dc.relation.referencesCosta, L. B., Luciano, F. B., Miyada, V. S. & Gois, F. D. (2013). Herbal extracts and organic acids as natural feed additives in pig diets. South African Journal of Animal Science, 43(2), 181-193. https://doi.org/10.4314/sajas.v43i2.9spa
dc.relation.referencesCostelloe, C., Metcalfe, C., Lovering, A., Mant, D. & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. British Medical Journal, 340, c2096. https://doi.org/10.1136/bmj.c2096spa
dc.relation.referencesCubillos, R. (31 de julio de 2017). Mercado del cerdo en Latinoamérica. Evolución y expectativas. Procicultura integral. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercados-latam-en-2017-evolucion-y-expectativas_38382/. Revisado; 25 febrero 2018.spa
dc.relation.referencesCubillo, R. (31 de diciembre de 2019). Situación del mercado porcino en Latinoamérica durante el 2019 y perspectivas para 2020. Artículo técnico. 3tres3. Comunidad Profesional Porcina. https://www.3tres3.com/articulos/mercado-porcino-en-latinoamerica-en-2019-y-perspectivas-para-2020_42029/. Revisado: 7 mayo 2020spa
dc.relation.referencesCurry, S. M., Schwartzb, K. J., Yoonb, K. J., Gablera, N. K. & Burroughb, E. R. (2017). Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity. Veterinary Microbiology, 211, 58–66. https://doi.org/10.1016/j.vetmic.2017.09.021spa
dc.relation.referencesDe Busser E. V., Dewulf J., Zutter L. D., Haesebrouck F., Callens J., Meyns T., Maes W. & Maes D. (2011). Effect of administration of organic acids in drinking water on faecal shedding of E. coli, performance parameters and health in nursery pigs. Veterinary journal, 188(2), 184-188. https://doi.org/10.1016/j.tvjl.2010.04.006spa
dc.relation.referencesde Melo, Pereira, G. V., de Oliveira, Coelho, B., Magalhães, Júnior. A. I., Thomaz-Soccol, V. & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-2076. https://doi.org/10.1016/j.biotechadv.2018.09.003.spa
dc.relation.referencesDouglas, S. L., Edwards, S. A. & Kyriazakis, I. (2014). Management strategies to improve the performance of low birth weight pigs to weaning and their long-term consequences. Journal of Animal Science, 92(5), 2280–2288. https://doi.org/10.2527/jas.2013-7388spa
dc.relation.referencesErmund, A., Schutte, A., Johansson, M. E., Gustafsson, J. K. & Hansson, G. C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. American Journal of Physiology Gastrointestinal and Liver Physiology, 305, G341-G347. https://doi.org/10.1152/ajpgi.00046.2013spa
dc.relation.referencesFair, R. J. & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459spa
dc.relation.referencesFAO. (2021). Resumen de la evolución del mercado mundial de carne de cerdo en 2020. http://www.fao.org/. Marzo de 2021/ FAO.spa
dc.relation.referencesFAO. (2016). Informe de situación sobre resistencia a los antimicrobianos, Roma: Food and Agriculture Organization of the United Nations.spa
dc.relation.referencesFerreira, C. L., Salminen, S., Grzeskowiak, L., Brizuela, M. A., Sanchez, L., Carneiro, H. & Bonnet, M. (2011). Terminology concepts of probiotic and prebiotic and their role in human and animal health. Revista salud animal, 33(3), 137-146.spa
dc.relation.referencesFIRA. (2017). Panorama Agroalimentario: Carne de cerdo 2017. Retrieved from http://www.ugrpg.org.mx/pdfs/Panorama Agroalimentario Carne de cerdo 2017.pdf . Revisado el 5 enero 2018spa
dc.relation.referencesFlis, M., Sobotka, W. & Antoszkiewicz, Z. (2017). Fiber substrates in the nutrition of weaned piglets – a review. Annals of Animal Science, 17(3), 627–643. https://doi.org/10.1515/aoas-2016-0077spa
dc.relation.referencesFraile, L. (2017). Sanidad animal y los antibióticos. Seguridad alimentaria, profilaxis, bioseguridad y comercio internacional. LOS EXPERTOS OPINAN. Disponible en: https://www.carne.3tres3.com/los-expertos-opinan/sanidad-animal-y-los-antibioticos-seguridad-alimentaria-profilaxis_1074. Revisado el 4 de mayo del 2017.spa
dc.relation.referencesFouhse, J. M., Zijlstra, R. T. & Willing, B. P. (2016). The role of gut microbiota in the health and disease of pigs. Animals Font, 6(3), 30-36. https://doi.org/10.2527/af.2016-0031spa
dc.relation.referencesGaggia, F., Mattarelli, P. and Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(Suppl), S15eS28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031spa
dc.relation.referencesGarcía, G. R., Dogia, C. A., Ashworth, G. E., Berardob, D., Godoy, G., Cavaglieria, L. R., de Moreno, de LeBlanc, A. &Grecoa, C. R. (2016). Effect of breast feeding time on physiological, immunological andmicrobial parameters of weaned piglets in an intensive breeding. Veterinary Immunology and Immunopathology, 176: 44–49. https://doi.org/0.1016/j.vetimm.2016.02.009spa
dc.relation.referencesGiannenas, I., Doukas, D., Karamoutsios, A., Tzora, A., Bonos, E., Skoufos, I., Tsinas, A., Christaki, E., Tontis, D. & Florou-Paneri, P. (2016). Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Animal Feed Science and Technology, 220, 159-167. https://doi.org/10.1016/j.anifeedsci.2016.08.003spa
dc.relation.referencesGIA. (2008). Probiotics: A Global Strategic Business Report. Global Industry Analysts, Inc. California, USA.spa
dc.relation.referencesGónzalez X. (2021). La carne de cerdo colombiana ganó terreno y la producción local ya representa 87%. AGRONEGOCIOS. https://www.agronegocios.co/ganaderia/la-carne-de-cerdo-colombiana-gano-terreno-y-la-produccion-local-ya-representa-87-3133078spa
dc.relation.referencesGresse, R., Chaucheyras-Durand, F., Fleury, M. A., van de Wiele, T., Forano, E. & Blanquet-Diot, S. (2017). Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends in Microbiology, 25(10), 851-73. https://doi.org/10.1016/j.tim.2017.05.004spa
dc.relation.referencesGross M. (2013). Antibiotics in crisis. Current Biology, 23(24), R1063–R1065. https://doi.org/10.1016/j.cub.2013.11.057spa
dc.relation.referencesGuerra, N. P. (2009). Probiotics: production, evaluation and uses in animal feed. Trivandrum. Research Signpost.spa
dc.relation.referencesGutiérrez, C., López, A. y Parra, J. (2013). Lesiones en órganos de cerdos posdestete, inducidas por el lipopolisacárido de E. coli. Revista MVZ Córdoba, 18(2), 3534–3542. https://doi.org/10.21897/rmvz.178spa
dc.relation.referencesGutiérrez, L. A., Montoya, O. I. y Vélez, J. M. (2013). Probióticos: una alternativa de producción limpia y de reemplazo a los antibióticos promotores de crecimiento en la alimentación animal. Producción + limpia, 8(1), 135-146.spa
dc.relation.referencesGutiérrez-Ramírez, L. A., Bedoya, O. y Ríos, M. (2015). Evaluación de parámetros productivos en cerdos (Sus scrofa domesticus) suplementados con microorganismos probióticos nativos. Journal of agriculture and animal sciences, 3(2), 48-55.spa
dc.relation.referencesHaack, S. K., Duris, J. W., Kolpin, D. W., Focazio, M. J., Meyer, M. T., Johnson, H. E., Oster, R. J. & Foreman, W. T. (2016). Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Science of the Total Environment, 563 – 564: 340–350.https://doi.org/10.1016/j.scitotenv.2016.04.087spa
dc.relation.referencesHayakawa, T., Masuda, T., Kurosawa, D. &Tsukahara, T. (2016). Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Animal Science Journal, 87(12), 1501-1510. https://doi.org/10.1111/asj.12565spa
dc.relation.referencesHerrera, F. V. (2015). Efecto de la adición de diferentes cepas probióticas (L. acidophilus, L. casei, E. faecium) sobre la población bacteriana intestinal, y su relación con variables inmunológicas en lechones recién destetados. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín.spa
dc.relation.referencesHe, L. Y., Ying, G. G., Liu, Y. S., Su, H. C., Chen, J., Liu, S. S. & Zhao, J. L. (2016). Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92–93, 210–219. https://doi.org/10.1016/j.envint.2016.03.023spa
dc.relation.referencesHill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C. & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews gastroenterology y hepatology, 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66spa
dc.relation.referencesHolman, D. & Chénier, M. (2014). Temporal changes and the effect of subtherape concentrations of antibiotics in the gut microbiota of swine. Federation of European Microbiological Societies, 90(3), 599-608. https://doi.org/10.1111/1574-6941.12419spa
dc.relation.referencesHu, Y., Dun, Y., Li, S., Zhao, S., Peng, N. & Liang, Y. (2014). Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets. Asian-Australasian Journal of Animal Sciences, 27(8), 1131-1140. https://doi.org/10.5713/ajas.2013.13737spa
dc.relation.referencesHughes, P. & Heritage, J. (2004). Antibiotic growth-promoters in food animals. FAO. Animal Production & Health Paper: 129 – 152.spa
dc.relation.referencesHuguet, A., Sève, B., Le Dividich, J. &Le, Huërou-luron, I. (2006). Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reproduction Nutrition Development, 46(2), 167–178. https://doi.org/10.1051/rnd:2006006spa
dc.relation.referencesHwang, A. Y. & Gums, J. G. (2016). The emergence and evolution of antimicrobial resistance: Impact on a global scale. Bioorganic & Medicinal Chemistry, 24(24), 6440–6445. https://doi.org/10.1016/j.bmc.2016.04.027spa
dc.relation.referencesInoue, R., Tsukahara, T., Nakatani, M., Okutani, M., Nishibayashi, R., Ogawa, S., Harayama, T., Nagino, T., Hatanaka, H., Fukuta, K., Romero-Pérez, G. A., Ushida, K. & Kelly, D. (2015). Weaning markedly affects transcriptome profiles and peyer’s patch development in piglet ileum. Frontiers in Immunology, 6, 630. https://doi.org/10.3389/fimmu.2015.00630spa
dc.relation.referencesJacobi, K. S., Moeser, J. A., Blikslager, T. A., Rhoads, M. J., Corl, A. B., Harrell, J. R. & Odle, J. (2013). Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World Journal of Gastroenterology, 19(31), 5094–5102. https://doi.org/10.3748/wjg.v19.i31.5094spa
dc.relation.referencesJayaraman, B. & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205-211. https://doi.org/10.1016/j.aninu.2017.06.002spa
dc.relation.referencesJeffery, I. B. & O’Toole, P. W. (2013). Diet-microbiota interactions and their implications for healthy living. Nutrients, 5(1), 234-252. https://doi.org/10.3390/nu5010234spa
dc.relation.referencesJurado, G. H., Ramírez, C. y Martínez, J. (2013). Evaluación in vivo de Lactobacillus plantarum como alternativa al uso de antibióticos en lechones. Revista MVZ Córdoba, 18(Suppl), 3648-3657.spa
dc.relation.referencesKhan, I. U. H., Gannon, V., Jokinen, C. C., Kent, R., Koning, W., Lapen, D. R., Medeiros, D., Miller, J., Neumann, N. F., Phillips, R., Schreier, H., Topp, E., van Bochove, E., Wilkes, G. & Edge, T. A. (2014). A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. Water Research, 61(15), 243–252. https://doi.org/10.1016/j.watres.2014.05.027spa
dc.relation.referencesKim, H. B. & Isaacson, R. E. (2015). The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, 177(3-4), 242–251. https://doi.org/10.1016/j.vetmic.2015.03.01spa
dc.relation.referencesKim, J. C., Hansen, C. F., Mullan, B. P. & Pluske, J. R. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1-2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022spa
dc.relation.referencesKim, Y. I., Lee, Y. H., Kim, K. H., Oh, Y. K., Moon, Y. H. & Kwak, W. S. (2012). Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian-Australasian Journal of Animal Sciences, 25(11),1575-1581. https://doi.org/10.5713/ajas.2012.12251spa
dc.relation.referencesKogut, M. H. & Arsenault, R. J. (2016). Gut health: the new paradigm in food animal production. Frontiers in Veterinary Science, 3, 71. https://doi.org/10.3389/fvets.2016.00071.spa
dc.relation.referencesKollath, W. (1953). Ernährung und Zahnsystem. Zahnaerzt Z, 8, 7-16.spa
dc.relation.referencesLiao, S. F. & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331-343. https://doi.org/10.1016/j.aninu.2017.06.007spa
dc.relation.referencesLittmann, J., Buyx, A. & Cars, O. (2015). Antibiotic resistance: an ethical challenge. International Journal of Antimicrobial Agents, 46(4), 359–61. https://doi.org/10.1016/j.ijantimicag.2015.06.01spa
dc.relation.referencesLondoño, S., Lallès, J. P. & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomía, 69(2), 7911-7918. https://doi.org/10.15446/rfna.v69n2.59136spa
dc.relation.referencesMacGowan, A. & Macnaughton, E. (2017). Antibiotic resistance. Medicine. Elsevier Ltd., 45(10): 622–628. https://doi.org/10.1016/j.mpmed.2017.07.006spa
dc.relation.referencesMadrid, G. T. (2015). Evaluación del aceite esencial del orégano Lippia origanoides como promotor nutricional de crecimiento en pollos de engorde. [Tesis Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia, sede Medellín.spa
dc.relation.referencesMoeser, A. J., Pohl, C. S. & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313-321. https://doi.org/10.1016/j.aninu.2017.06.003.spa
dc.relation.referencesOCDE/FAO. (2017). OECD-FAO Agricultural Outlook 2017-2026. Paris: OECD Publishing. TOMADO DE: https://doi.org/10.1787/agr_outlook-2017-enspa
dc.relation.referencesPluske, J. R. (2016). Invited review: aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(Suppl 3) 399–411. https://doi.org/10.2527/jas.2015-9767spa
dc.relation.referencesPorkColombia. 2020. Revista PorkColombia, Bogotá.spa
dc.relation.referencesRegulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (Text with EEA relevance).spa
dc.relation.referencesStensland, I., Kim, J. C., Bowring, B., Collins, A. M., Mansfield, J. P. & Pluske, J. R. (2015). A comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde anda permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimen. Animals, 5(4), 1147-1168. https://doi.org/doi.org/10.3390/ani5040403spa
dc.relation.referencesTorres-Pitarch, A., Hermans, D., Manzanilla, E. G., Bindelle, J., Everaert, N., Beckers, Y., Torrallardona, D., Bruggeman, G., Gardiner, G. E. & Lawlor, P. G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Animal Feed Science and Technology, 233, 145–159. https://doi.org/10.1016/j.anifeedsci.2017.04.024spa
dc.relation.referencesUSDA. (2017). Livestock, Dairy, and Poultry Outlook: December 2017. Retrieved from https://www.ers.usda.gov/webdocs/publications/86243/ldp-m-282.pdf?v=43087spa
dc.relation.referencesUSDA. (2020). Foreign Agricultural Service/USDA: Global Market Analysis. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdfspa
dc.relation.referencesZhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z. & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.lembSwine - feeding and feeds
dc.subject.lembAlimentos para cerdos
dc.subject.proposalProducción porcinaspa
dc.subject.proposalDestetespa
dc.subject.proposalProbióticospa
dc.subject.proposalAceite esencialspa
dc.subject.proposalÁcido orgánicospa
dc.subject.proposalMicrobiota intestinalspa
dc.subject.proposalExpresión molecularspa
dc.subject.proposalPig productioneng
dc.subject.proposalWeaningeng
dc.subject.proposalProbioticeng
dc.subject.proposalEssential oileng
dc.subject.proposalOrganic acideng
dc.subject.proposalGut microbiotaeng
dc.subject.proposalMolecular expressioneng
dc.titleMicrobiota y expresión de proteínas intestinales en cerdos adicionados con diferentes antimicrobianos durante el periodo del destetespa
dc.title.translatedMicrobiota and expression of intestinal proteins in pigs added with different antimicrobials during the weaning periodeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020418193.2021.pdf
Tamaño:
1.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: