Asociación genómica de la resistencia a la enfermedad del virus de la raya marrón de la yuca (Manihot esculenta), en accesiones de germoplasma conservadas en América del Sur

dc.contributor.advisorCarvajal Yepes, Mónica
dc.contributor.advisorLópez Álvarez, Diana Carolina
dc.contributor.authorOspina Colorado, Jessica Alejandra
dc.contributor.cvlacJessica Alejandra Ospinaspa
dc.contributor.googlescholarJessica Alejandra Ospina Coloradospa
dc.contributor.orcidJessica Alejandra Ospina 0009-0009-9662-630Xspa
dc.contributor.researchgateJessica Alejandra Ospinaspa
dc.contributor.researchgroupAgrobiodiversidad y Biotecnologíaspa
dc.contributor.researchgroupBiotecnologia Vegetalspa
dc.contributor.scopusJessica Alejandra Ospinaspa
dc.date.accessioned2024-07-25T20:31:41Z
dc.date.available2024-07-25T20:31:41Z
dc.date.issued2024
dc.descriptionIlustraciones, mapas, tablasspa
dc.description.abstractLa yuca (Manihot esculenta), constituye una fuente primaria de ingresos y calorías dietéticas para millones de personas. Sin embargo, la producción de este cultivo en el África del Este es considerablemente afectada por la enfermedad del virus de la raya marrón de la yuca (CBSD, por sus siglas en inglés, Cassava brown streak disease), causada por dos especies de virus, el virus de la raya marrón de la yuca (CBSV, por sus siglas en inglés, Cassava brown streak virus) y el virus de la raya marrón de la yuca de Uganda (UCBSV, por sus siglas en inglés, Ugandan cassava brown streak virus). El objetivo de esta investigación fue realizar un análisis de asociación genómica, para identificar regiones genómicas asociadas a la resistencia al virus y la enfermedad en un panel de 234 accesiones de germoplasma fenotipadas previamente, por un grupo de investigación independiente. Las muestras fueron genotipadas mediante secuenciación, lo que resultó en un total de 121.405 SNPs. Tras aplicar filtros para la selección de muestras y marcadores de calidad e informativos, evaluamos con la herramienta Gapit v3.0 cuatro modelos estadísticos el Modelo Lineal General (GLM), el Modelo Lineal Mixto (MLM), el Modelo lineal mixto Multilocus (MLMM), y BLINK, comparamos los resultados y realizamos la anotación de los marcadores estadísticamente significativos. Durante el estudio, identificamos 27 nuevos marcadores SNPs distribuidos en varios cromosomas, asociados a la severidad de los síntomas causados por el virus o relacionados con la presencia o ausencia del mismo. De estos marcadores, uno había sido reportado anteriormente; los demás se ubicaron dentro o cerca de genes previamente identificados con funciones relacionadas al reconocimiento de patógenos y la activación de la respuesta inmune. Además, identificamos 30 accesiones de yuca que contenían un alto número de los alelos encontrados, lo que sugiere su potencial resistencia al virus. Los resultados de este estudio representan una valiosa contribución al pool genético para el mejoramiento de la yuca contra esta enfermedad. Así mismo, respaldan y fomentan el uso informado de los materiales conservados en la Alianza Bioversity Int. & CIAT. (Texto tomado de la fuente)spa
dc.description.abstractCassava (Manihot esculenta) serves as a primary source of income and dietary calories for millions of people. However, its production in East Africa is significantly impacted by Cassava Brown Streak Disease (CBSD), caused by two virus species: Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV). The aim of this research was to conduct a genome-wide association analysis to identify genomic regions associated with resistance to the virus and disease in a panel of 234 previously phenotyped germplasm accessions by an independent research group. The samples were genotyped through sequencing, resulting in a total of 121,405 SNPs. After applying filters for sample and marker selection, we evaluated four statistical models General Linear Model (GLM), Linear Mixed Model (MLM), Multiple Loci Mixed Model (MLMM), and BLINK using the Gapit v3.0 tool, compared the results, and annotated statistically significant markers. During the study, we identified 27 new SNPs markers distributed across various chromosomes, associated with the severity of symptoms caused by the virus, or related to its presence or absence. Of these markers, one had been reported previously; the rest were located within or near genes previously identified with functions related to pathogen recognition and immune response activation. Additionally, we identified 30 cassava accessions containing a high number of alleles found, suggesting their potential resistance to the virus. The results of this study represent a valuable contribution to the genetic pool for cassava improvement against this disease. They also support and encourage the informed use of materials conserved in the Seeds of the Future collection of the Bioversity International Int. & CIAT Alliance.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsEl objetivo de esta investigación fue realizar un análisis de asociación genómica, para identificar regiones genómicas asociadas a la resistencia al virus y la enfermedad en un panel de 234 accesiones de germoplasma fenotipadas previamente, por un grupo de investigación independiente. Las muestras fueron genotipadas mediante secuenciación, lo que resultó en un total de 121.405 SNPs. Tras aplicar filtros para la selección de muestras y marcadores de calidad e informativos, evaluamos con la herramienta Gapit v3.0 cuatro modelos estadísticos el Modelo Lineal General (GLM), el Modelo Lineal Mixto (MLM), el Modelo lineal mixto Multilocus (MLMM), y BLINK, comparamos los resultados y realizamos la anotación de los marcadores estadísticamente significativos.spa
dc.description.researchareaBiotecnología vegetalspa
dc.format.extentxvi, 78 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86627
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacionalspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAcquaah G. (2012). Breeding Clonally Propagated Species. In Principles of Plant Genetics and Breeding (pp. 374–381). Wiley. https://doi.org/10.1002/9781118313718.ch19spa
dc.relation.referencesAkano, A., Dixon, A., Mba, C., Barrera, E., & Fregene, M. (2002). Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics, 105(4), 521–525. https://doi.org/10.1007/s00122-002-0891-7spa
dc.relation.referencesAlicai, T., Ndunguru, J., Sseruwagi, P., Tairo, F., Okao-Okuja, G., Nanvubya, R., Kiiza, L., Kubatko, L., Kehoe, M. A., & Boykin, L. M. (2016). Cassava brown streak virus has a rapidly evolving genome: Implications for virus speciation, variability, diagnosis and host resistance. Scientific Reports, 6. https://doi.org/10.1038/srep36164spa
dc.relation.referencesAlvarez, E., Mejía, J. F., Llano, G. A., Loke, J. B., Calari, A., Duduk, B., & Bertaccini, A. (2009). Characterization of a Phytoplasma Associated with Frogskin Disease in Cassava. Plant Disease, 93(11), 1139–1145. https://doi.org/10.1094/PDIS-93-11-1139spa
dc.relation.referencesAmuge, T., Berger, D. K., Katari, M. S., Myburg, A. A., Goldman, S. L., & Ferguson, M. E. (2017). A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus. Scientific Reports, 7(1), 9747. https://doi.org/10.1038/s41598-017-09617-zspa
dc.relation.referencesBart, R. S., & Taylor, N. J. (2017). New opportunities and challenges to engineer disease resistance in cassava, a staple food of African small-holder farmers. PLOS Pathogens, 13(5), e1006287. https://doi.org/10.1371/journal.ppat.1006287spa
dc.relation.referencesBeisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351–368. https://doi.org/10.1105/tpc.106.048033spa
dc.relation.referencesBernardo Ospina, & Hernan Ceballos. (2002). La Yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización.spa
dc.relation.referencesBioTek® Instruments, Inc. (2009). Take3TM Multi-Volume Plate User Guide . In Manual Part Number 4691000 Revision B (pp. 1–30).spa
dc.relation.referencesCarvajal-Yepes, M., Olaya, C., Lozano, I., Cuervo, M., Castaño, M., & Cuellar, W. J. (2014). Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 186, 76–86. https://doi.org/10.1016/j.virusres.2013.12.011spa
dc.relation.referencesCeballos, H., Iglesias, C. A., Pérez, J. C., & Dixon, A. G. O. (2004). Cassava breeding: opportunities and challenges. Plant Molecular Biology, 56(4), 503–516. https://doi.org/10.1007/s11103-004-5010-5spa
dc.relation.referencesChang, H.-X., Brown, P. J., Lipka, A. E., Domier, L. L., & Hartman, G. L. (2016). Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics, 17(1), 153. https://doi.org/10.1186/s12864-016-2487-7spa
dc.relation.referencesChen, X., Zhu, M., Jiang, L., Zhao, W., Li, J., Wu, J., Li, C., Bai, B., Lu, G., Chen, H., Moffett, P., & Tao, X. (2016). A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytologist, 212(1), 161–175. https://doi.org/10.1111/nph.14013spa
dc.relation.referencesCollier, S. M., & Moffett, P. (2009). NB-LRRs work a “bait and switch” on pathogens. Trends in Plant Science, 14(10), 521–529. https://doi.org/10.1016/j.tplants.2009.08.001spa
dc.relation.referencesCook, J. P., Mahajan, A., & Morris, A. P. (2017). Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. European Journal of Human Genetics, 25(2), 240–245. https://doi.org/10.1038/ejhg.2016.150spa
dc.relation.referencesElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. https://doi.org/10.1371/journal.pone.0019379spa
dc.relation.referencesEphraim, N., Patrick, R. R., Joseph, F. H., Robert, K., & Yona, B. (2015). Analysis of phenotypic responses influencing leaf growth rate and harvest parameters in cassava (Manihot esculenta Crantz) under hydrothermal stress. Journal of Plant Breeding and Crop Science, 7(6), 185–202. https://doi.org/10.5897/JPBCS2015.0504spa
dc.relation.referencesF. Murtagh. (n.d.). Hierarchical Clustering. The hclust function is based on Fortran code contributed to STATLIB by F. Murtagh.spa
dc.relation.referencesFacundo Xavier Palacio; María José Apodaca ; Jorge Víctor Crisci. (2020). Análisis multivariado para datos biológicos: teoría y su aplicación utilizando el lenguaje R: Vol. CDD 570.285 (VAZQUEZ MAZZINI EDITORES, Ed.; 1a ed). Fundación de Historia Natural Félix de Azara.spa
dc.relation.referencesFAO. (2012). RESUMEN DEL SEGUNDO PLAN DE ACCIÓN MUNDIAL PARA LOS RECURSOS FITOGENÉTICOS PARA LA ALIMENTACIÓN Y LA AGRICULTURA.spa
dc.relation.referencesFAO. (2021). Comisión de Recursos Genéticos para la Alimentación y la Agricultura (Vols. 978-92-5-135825–2).spa
dc.relation.referencesFerris, A. C., Stutt, R. O. J. H., Godding, D., & Gilligan, C. A. (2020). Computational models to improve surveillance for cassava brown streak disease and minimize yield loss. PLOS Computational Biology, 16(7), e1007823. https://doi.org/10.1371/journal.pcbi.1007823spa
dc.relation.referencesFregene, M., & Puonti-Kaerlas, J. (2001). Cassava biotechnology. In Cassava: biology, production and utilization (pp. 179–207). CABI Publishing. https://doi.org/10.1079/9780851995243.0179spa
dc.relation.referencesFrichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925–929. https://doi.org/10.1111/2041-210X.12382spa
dc.relation.referencesFu, W., da Silva Linge, C., & Gasic, K. (2021). Genome-Wide Association Study of Brown Rot (Monilinia spp.) Tolerance in Peach. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.635914spa
dc.relation.referencesGenesys. (2014, February 28). Https://Www.Genesys-Pgr.Org/a/Overview/V2YdWb7E8jV.spa
dc.relation.referencesGogarten, S. M., Bhangale, T., Conomos, M. P., Laurie, C. A., McHugh, C. P., Painter, I., Zheng, X., Crosslin, D. R., Levine, D., Lumley, T., Nelson, S. C., Rice, K., Shen, J., Swarnkar, R., Weir, B. S., & Laurie, C. C. (2012). GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics, 28(24), 3329–3331. https://doi.org/10.1093/bioinformatics/bts610spa
dc.relation.referencesGruber, B., Unmack, P. J., Berry, O. F., & Georges, A. (2018). dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources, 18(3), 691–699. https://doi.org/10.1111/1755-0998.12745spa
dc.relation.referencesHillocks, R. J., & Maruthi, M. N. (2015). Post-harvest impact of cassava brown streak disease in four countries in eastern Africa. Food Chain, 5(1–2), 116–122. https://doi.org/10.3362/2046-1887.2015.008spa
dc.relation.referencesHoweler R, L. N. T. G. (2013). Save and Grow: Cassava—A guide to sustainable production intensification.spa
dc.relation.referencesHuang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2019). BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2). https://doi.org/10.1093/gigascience/giy154spa
dc.relation.referencesJaemthaworn, T., Kalapanulak, S., & Saithong, T. (2021). Topological clustering of regulatory genes confers pathogenic tolerance to cassava brown streak virus (CBSV) in cassava. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86806-xspa
dc.relation.referencesKaler, A. S., & Purcell, L. C. (2019). Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 20(1), 618. https://doi.org/10.1186/s12864-019-5992-7spa
dc.relation.referencesKanju, E., Legg, J. P., Patil, B. L., & Fauquet, C. M. (2015). Cassava brown streak disease: a threat to food security in Africa. Journal of General Virology, 96(5), 956–968. https://doi.org/10.1099/vir.0.000014spa
dc.relation.referencesKawuki, R. S., Kaweesi, T., Esuma, W., Pariyo, A., Kayondo, I. S., Ozimati, A., Kyaligonza, V., Abaca, A., Orone, J., Tumuhimbise, R., Nuwamanya, E., Abidrabo, P., Amuge, T., Ogwok, E., Okao, G., Wagaba, H., Adiga, G., Alicai, T., Omongo, C., … Baguma, Y. (2016). Eleven years of breeding efforts to combat cassava brown streak disease. Breeding Science, 66(4), 560–571. https://doi.org/10.1270/jsbbs.16005spa
dc.relation.referencesKayondo, S. I., Del Carpio, D. P., Lozano, R., Ozimati, A., Wolfe, M., Baguma, Y., Gracen, V., Offei, S., Ferguson, M., Kawuki, R., & Jannink, J. L. (2018). Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19696-1spa
dc.relation.referencesKayondo, S. I., Pino Del Carpio, D., Lozano, R., Ozimati, A., Wolfe, M., Baguma, Y., Gracen, V., Offei, S., Ferguson, M., Kawuki, R., & Jannink, J.-L. (2018). Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports, 8(1), 1549. https://doi.org/10.1038/s41598-018-19696-1spa
dc.relation.referencesLaity, J. H., Lee, B. M., & Wright, P. E. (2001). Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 11(1), 39–46. https://doi.org/10.1016/S0959-440X(00)00167-6spa
dc.relation.referencesLegendre, P., & L. L. (2012). Numerical ecology (Elsevier).spa
dc.relation.referencesLin, Z. J. D., Taylor, N. J., & Bart, R. (2019). Engineering Disease-Resistant Cassava. Cold Spring Harbor Perspectives in Biology, 11(11), a034595. https://doi.org/10.1101/cshperspect.a034595spa
dc.relation.referencesLipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444spa
dc.relation.referencesLiu, H.-J., & Yan, J. (2019). Crop genome-wide association study: a harvest of biological relevance. The Plant Journal, 97(1), 8–18. https://doi.org/10.1111/tpj.14139spa
dc.relation.referencesLiu, Q., Hobbs, H. A., & Domier, L. L. (2019). Genome-wide association study of the seed transmission rate of soybean mosaic virus and associated traits using two diverse population panels. Theoretical and Applied Genetics, 132(12), 3413–3424. https://doi.org/10.1007/s00122-019-03434-wspa
dc.relation.referencesLiu, X., Huang, M., Fan, B., Buckler, E. S., & Zhang, Z. (2016). Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genetics, 12(2), e1005767. https://doi.org/10.1371/journal.pgen.1005767spa
dc.relation.referencesLy, D., Hamblin, M., Rabbi, I., Melaku, G., Bakare, M., Gauch, H. G., Okechukwu, R., Dixon, A. G. O., Kulakow, P., & Jannink, J.-L. (2013). Relatedness and Genotype × Environment Interaction Affect Prediction Accuracies in Genomic Selection: A Study in Cassava. Crop Science, 53(4), 1312–1325. https://doi.org/10.2135/cropsci2012.11.0653spa
dc.relation.referencesMaruthi, M. N., Hillocks, R. J., Mtunda, K., Raya, M. D., Muhanna, M., Kiozia, H., Rekha, A. R., Colvin, J., & Thresh, J. M. (2005). Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). Journal of Phytopathology, 153(5), 307–312. https://doi.org/10.1111/j.1439-0434.2005.00974.xspa
dc.relation.referencesMasumba, E. A., Kapinga, F., Mkamilo, G., Salum, K., Kulembeka, H., Rounsley, S., Bredeson, J. V., Lyons, J. B., Rokhsar, D. S., Kanju, E., Katari, M. S., Myburg, A. A., van der Merwe, N. A., & Ferguson, M. E. (2017). QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert. Theoretical and Applied Genetics, 130(10), 2069–2090. https://doi.org/10.1007/s00122-017-2943-zspa
dc.relation.referencesMeyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis[W]. The Plant Cell, 15(4), 809–834. https://doi.org/10.1105/tpc.009308spa
dc.relation.referencesMijangos, J. L., Gruber, B., Berry, O., Pacioni, C., & Georges, A. (2022). dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods in Ecology and Evolution, 13(10), 2150–2158. https://doi.org/10.1111/2041-210X.13918spa
dc.relation.referencesMonnot, S., Desaint, H., Mary-Huard, T., Moreau, L., Schurdi-Levraud, V., & Boissot, N. (2021). Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 10(11), 3080. https://doi.org/10.3390/cells10113080spa
dc.relation.referencesMunganyinka, E., Ateka, E. M., Kihurani, A. W., Kanyange, M. C., Tairo, F., Sseruwagi, P., & Ndunguru, J. (2018). Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes. Plant Pathology, 67(2), 377–387. https://doi.org/10.1111/ppa.12789spa
dc.relation.referencesNandudu, L., Kawuki, R., Ogbonna, A., Kanaabi, M., & Jannink, J.-L. (2023). Genetic dissection of cassava brown streak disease in a genomic selection population. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1099409spa
dc.relation.referencesNdunguru, J., Sseruwagi, P., Tairo, F., Stomeo, F., Maina, S., Djinkeng, A., Kehoe, M., & Boykin, L. M. (2015). Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation. PLOS ONE, 10(10), e0139321. https://doi.org/10.1371/journal.pone.0139321spa
dc.relation.referencesNdyetabula, I. L., Merumba, S. M., Jeremiah, S. C., Kasele, S., Mkamilo, G. S., Kagimbo, F. M., & Legg, J. P. (2016). Analysis of Interactions Between Cassava Brown Streak Disease Symptom Types Facilitates the Determination of Varietal Responses and Yield Losses. Plant Disease, 100(7), 1388–1396. https://doi.org/10.1094/PDIS-11-15-1274-REspa
dc.relation.referencesNewton, A. C., Johnson, S. N., & Gregory, P. J. (2011). Implications of climate change for diseases, crop yields and food security. Euphytica, 179(1), 3–18. https://doi.org/10.1007/s10681-011-0359-4spa
dc.relation.referencesNichols, R. F. W. (1947). Breeding Cassava for Virus Resistance. The East African Agricultural Journal, 12(3), 184–194. https://doi.org/10.1080/03670074.1947.11664554spa
dc.relation.referencesNzuki, I., Katari, M. S., Bredeson, J. V., Masumba, E., Kapinga, F., Salum, K., Mkamilo, G. S., Shah, T., Lyons, J. B., Rokhsar, D. S., Rounsley, S., Myburg, A. A., & Ferguson, M. E. (2017). QTL Mapping for Pest and Disease Resistance in Cassava and Coincidence of Some QTL with Introgression Regions Derived from Manihot glaziovii. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01168spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura FAO. (2021). FAOSTAT. Https://Www.Fao.Org/Faostat/Es/#data/QI.spa
dc.relation.referencesPark, J., Lee, S., Choi, Y., Park, G., Park, S., Je, B., & Park, Y. (2022). Germplasm Screening Using DNA Markers and Genome-Wide Association Study for the Identification of Powdery Mildew Resistance Loci in Tomato. International Journal of Molecular Sciences, 23(21), 13610. https://doi.org/10.3390/ijms232113610spa
dc.relation.referencesPierre, N., Wamalwa, L. N., Muiru, W. M., Simon, B., Kanju, E., Ferguson, M. E., Ndavi, M. M., & Tumwegamire, S. (2022). Genetic diversity of local and introduced cassava germplasm in Burundi using DArTseq molecular analyses. PLOS ONE, 17(1), e0256002. https://doi.org/10.1371/journal.pone.0256002spa
dc.relation.referencesQi, D., & Innes, R. W. (2013). Recent Advances in Plant NLR Structure, Function, Localization, and Signaling. Frontiers in Immunology, 4. https://doi.org/10.3389/fimmu.2013.00348spa
dc.relation.referencesRabbi, I. Y., Hamblin, M. T., Kumar, P. L., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/j.virusres.2013.12.028spa
dc.relation.referencesRabbi, I. Y., Kayondo, S. I., Bauchet, G., Yusuf, M., Aghogho, C. I., Ogunpaimo, K., Uwugiaren, R., Smith, I. A., Peteti, P., Agbona, A., Parkes, E., Lydia, E., Wolfe, M., Jannink, J.-L., Egesi, C., & Kulakow, P. (2022). Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 109(3), 195–213. https://doi.org/10.1007/s11103-020-01038-3spa
dc.relation.referencesReinhardt Howeler, & NeBambi Lutaladio. (2013). Save and grow: Cassava. A guide to sustainable production intensification (Food and Agriculture Organization of the United Nations (FAO), Ed.). https://www.fao.org/family-farming/detail/es/c/273828/spa
dc.relation.referencesRey, C., & Vanderschuren, H. (2017). Cassava Mosaic and Brown Streak Diseases: Current Perspectives and Beyond. Annual Review of Virology, 4(1), 429–452. https://doi.org/10.1146/annurev-virology-101416-041913spa
dc.relation.referencesRui, P., Yang, X., Xu, S., Wang, Z., Zhou, X., Jiang, L., & Jiang, T. (2022). FvZFP1 confers transgenic Nicotiana benthamiana resistance against plant pathogens and improves tolerance to abiotic stresses. Plant Science, 316, 111176. https://doi.org/10.1016/j.plantsci.2021.111176spa
dc.relation.referencesSesay, J. V., Lebbie, A., Wadsworth, R., Nuwamanya, E., Bado, S., & Norman, P. E. (2023). Genetic Structure and Diversity Study of Cassava (<i>Manihot esculenta</i>) Germplasm for African Cassava Mosaic Disease and Fresh Storage Root Yield. Open Journal of Genetics, 13(01), 23–47. https://doi.org/10.4236/ojgen.2023.131002spa
dc.relation.referencesSheat, S., Fuerholzner, B., Stein, B., & Winter, S. (2019). Resistance against cassava brown streak viruses from africa in cassava germplasm from South America. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00567spa
dc.relation.referencesSheat, S., Zhang, X., & Winter, S. (2022). High-Throughput Virus Screening in Crosses of South American and African Cassava Germplasm Reveals Broad-Spectrum Resistance against Viruses Causing Cassava Brown Streak Disease and Cassava Mosaic Virus Disease. Agronomy, 12(5), 1055. https://doi.org/10.3390/agronomy12051055spa
dc.relation.referencesShirima, R. R., Legg, J. P., Maeda, D. G., Tumwegamire, S., Mkamilo, G., Mtunda, K., Kulembeka, H., Ndyetabula, I., Kimata, B. P., Matondo, D. G., Ceasar, G., Mushi, E., Sichalwe, K., & Kanju, E. (2020). Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania. Virus Research, 286, 198017. https://doi.org/10.1016/j.virusres.2020.198017spa
dc.relation.referencesTameling, W. I. L., & Takken, F. L. W. (2008). Resistance proteins: scouts of the plant innate immune system. European Journal of Plant Pathology, 121(3), 243–255. https://doi.org/10.1007/s10658-007-9187-8spa
dc.relation.referencesThomas, E., & Van der Hoorn, R. (2018). Ten Prominent Host Proteases in Plant-Pathogen Interactions. International Journal of Molecular Sciences, 19(2), 639. https://doi.org/10.3390/ijms19020639spa
dc.relation.referencesThresh, J. M., & Cooter, R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587–614. https://doi.org/10.1111/j.1365-3059.2005.01282.xspa
dc.relation.referencesTibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome‐wide association studies in plants. The Plant Genome, 14(1). https://doi.org/10.1002/tpg2.20077spa
dc.relation.referencesTomlinson, K. R., Bailey, A. M., Alicai, T., Seal, S., & Foster, G. D. (2018). Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology, 19(5), 1282–1294. https://doi.org/10.1111/mpp.12613spa
dc.relation.referencesUffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1(1), 59. https://doi.org/10.1038/s43586-021-00056-9spa
dc.relation.referencesvan der Biezen, E. A., & Jones, J. D. G. (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8(7), R226–R228. https://doi.org/10.1016/S0960-9822(98)70145-9spa
dc.relation.referencesvan Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397. https://doi.org/10.1093/jxb/ern045spa
dc.relation.referencesWang, J., & Zhang, Z. (2021). GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genomics, Proteomics & Bioinformatics, 19(4), 629–640. https://doi.org/10.1016/j.gpb.2021.08.005spa
dc.relation.referencesWeigel, D., & Glazebrook, J. (2009). Dellaporta Miniprep for Plant DNA Isolation. Cold Spring Harbor Protocols, 2009(3), pdb.prot5178. https://doi.org/10.1101/pdb.prot5178spa
dc.relation.referencesWickham H. (2016). Ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.spa
dc.relation.referencesWolfe, M. D., Rabbi, I. Y., Egesi, C., Hamblin, M., Kawuki, R., Kulakow, P., Lozano, R., Carpio, D. P. Del, Ramu, P., & Jannink, J. (2016a). Genome‐Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. The Plant Genome, 9(2). https://doi.org/10.3835/plantgenome2015.11.0118spa
dc.relation.referencesWolfe, M. D., Rabbi, I. Y., Egesi, C., Hamblin, M., Kawuki, R., Kulakow, P., Lozano, R., Carpio, D. P. Del, Ramu, P., & Jannink, J. (2016b). Genome‐Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. The Plant Genome, 9(2). https://doi.org/10.3835/plantgenome2015.11.0118spa
dc.relation.referencesZhiwu Zhang Laboratory. (2023). User manual for GAPIT Genomic Association and Prediction Integrated Tool (Version 3). In Washington State University.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocResistencia a agentes dañinos
dc.subject.agrovocResistance to injurious factors
dc.subject.agrovocResistencia genética
dc.subject.agrovocGenetic resistance
dc.subject.agrovocControl genético
dc.subject.agrovocGenetic control
dc.subject.agrovocConservación de recursos genéticos
dc.subject.agrovocGenetic resources conservation
dc.subject.agrovocRecurso genético
dc.subject.agrovocRenetic resources
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalYucaspa
dc.subject.proposalCassava brown streak disease (CBSD)eng
dc.subject.proposalCassava brown streak virus (CBSV)eng
dc.subject.proposalGenotipificaciónspa
dc.subject.proposalEstudio de asociación del genoma completo (GWAS)spa
dc.subject.proposalGermoplasmaspa
dc.subject.proposalCassava (Manihot esculenta)eng
dc.subject.proposalGenotypingeng
dc.subject.proposalGermplasmeng
dc.titleAsociación genómica de la resistencia a la enfermedad del virus de la raya marrón de la yuca (Manihot esculenta), en accesiones de germoplasma conservadas en América del Surspa
dc.title.translatedGenomic Association of Resistance to Brown Streak Virus Disease in Cassava (Manihot esculenta) in Germplasm Accessions Conserved in South Americaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCentro Internacional de Agricultura Tropical CIATspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094911686.2024.pdf
Tamaño:
3.67 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: