Asociación genómica de la resistencia a la enfermedad del virus de la raya marrón de la yuca (Manihot esculenta), en accesiones de germoplasma conservadas en América del Sur
dc.contributor.advisor | Carvajal Yepes, Mónica | |
dc.contributor.advisor | López Álvarez, Diana Carolina | |
dc.contributor.author | Ospina Colorado, Jessica Alejandra | |
dc.contributor.cvlac | Jessica Alejandra Ospina | spa |
dc.contributor.googlescholar | Jessica Alejandra Ospina Colorado | spa |
dc.contributor.orcid | Jessica Alejandra Ospina 0009-0009-9662-630X | spa |
dc.contributor.researchgate | Jessica Alejandra Ospina | spa |
dc.contributor.researchgroup | Agrobiodiversidad y Biotecnología | spa |
dc.contributor.researchgroup | Biotecnologia Vegetal | spa |
dc.contributor.scopus | Jessica Alejandra Ospina | spa |
dc.date.accessioned | 2024-07-25T20:31:41Z | |
dc.date.available | 2024-07-25T20:31:41Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, mapas, tablas | spa |
dc.description.abstract | La yuca (Manihot esculenta), constituye una fuente primaria de ingresos y calorías dietéticas para millones de personas. Sin embargo, la producción de este cultivo en el África del Este es considerablemente afectada por la enfermedad del virus de la raya marrón de la yuca (CBSD, por sus siglas en inglés, Cassava brown streak disease), causada por dos especies de virus, el virus de la raya marrón de la yuca (CBSV, por sus siglas en inglés, Cassava brown streak virus) y el virus de la raya marrón de la yuca de Uganda (UCBSV, por sus siglas en inglés, Ugandan cassava brown streak virus). El objetivo de esta investigación fue realizar un análisis de asociación genómica, para identificar regiones genómicas asociadas a la resistencia al virus y la enfermedad en un panel de 234 accesiones de germoplasma fenotipadas previamente, por un grupo de investigación independiente. Las muestras fueron genotipadas mediante secuenciación, lo que resultó en un total de 121.405 SNPs. Tras aplicar filtros para la selección de muestras y marcadores de calidad e informativos, evaluamos con la herramienta Gapit v3.0 cuatro modelos estadísticos el Modelo Lineal General (GLM), el Modelo Lineal Mixto (MLM), el Modelo lineal mixto Multilocus (MLMM), y BLINK, comparamos los resultados y realizamos la anotación de los marcadores estadísticamente significativos. Durante el estudio, identificamos 27 nuevos marcadores SNPs distribuidos en varios cromosomas, asociados a la severidad de los síntomas causados por el virus o relacionados con la presencia o ausencia del mismo. De estos marcadores, uno había sido reportado anteriormente; los demás se ubicaron dentro o cerca de genes previamente identificados con funciones relacionadas al reconocimiento de patógenos y la activación de la respuesta inmune. Además, identificamos 30 accesiones de yuca que contenían un alto número de los alelos encontrados, lo que sugiere su potencial resistencia al virus. Los resultados de este estudio representan una valiosa contribución al pool genético para el mejoramiento de la yuca contra esta enfermedad. Así mismo, respaldan y fomentan el uso informado de los materiales conservados en la Alianza Bioversity Int. & CIAT. (Texto tomado de la fuente) | spa |
dc.description.abstract | Cassava (Manihot esculenta) serves as a primary source of income and dietary calories for millions of people. However, its production in East Africa is significantly impacted by Cassava Brown Streak Disease (CBSD), caused by two virus species: Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV). The aim of this research was to conduct a genome-wide association analysis to identify genomic regions associated with resistance to the virus and disease in a panel of 234 previously phenotyped germplasm accessions by an independent research group. The samples were genotyped through sequencing, resulting in a total of 121,405 SNPs. After applying filters for sample and marker selection, we evaluated four statistical models General Linear Model (GLM), Linear Mixed Model (MLM), Multiple Loci Mixed Model (MLMM), and BLINK using the Gapit v3.0 tool, compared the results, and annotated statistically significant markers. During the study, we identified 27 new SNPs markers distributed across various chromosomes, associated with the severity of symptoms caused by the virus, or related to its presence or absence. Of these markers, one had been reported previously; the rest were located within or near genes previously identified with functions related to pathogen recognition and immune response activation. Additionally, we identified 30 cassava accessions containing a high number of alleles found, suggesting their potential resistance to the virus. The results of this study represent a valuable contribution to the genetic pool for cassava improvement against this disease. They also support and encourage the informed use of materials conserved in the Seeds of the Future collection of the Bioversity International Int. & CIAT Alliance. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Biológicas | spa |
dc.description.methods | El objetivo de esta investigación fue realizar un análisis de asociación genómica, para identificar regiones genómicas asociadas a la resistencia al virus y la enfermedad en un panel de 234 accesiones de germoplasma fenotipadas previamente, por un grupo de investigación independiente. Las muestras fueron genotipadas mediante secuenciación, lo que resultó en un total de 121.405 SNPs. Tras aplicar filtros para la selección de muestras y marcadores de calidad e informativos, evaluamos con la herramienta Gapit v3.0 cuatro modelos estadísticos el Modelo Lineal General (GLM), el Modelo Lineal Mixto (MLM), el Modelo lineal mixto Multilocus (MLMM), y BLINK, comparamos los resultados y realizamos la anotación de los marcadores estadísticamente significativos. | spa |
dc.description.researcharea | Biotecnología vegetal | spa |
dc.format.extent | xvi, 78 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86627 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Nivel Nacional | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas | spa |
dc.relation.references | Acquaah G. (2012). Breeding Clonally Propagated Species. In Principles of Plant Genetics and Breeding (pp. 374–381). Wiley. https://doi.org/10.1002/9781118313718.ch19 | spa |
dc.relation.references | Akano, A., Dixon, A., Mba, C., Barrera, E., & Fregene, M. (2002). Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics, 105(4), 521–525. https://doi.org/10.1007/s00122-002-0891-7 | spa |
dc.relation.references | Alicai, T., Ndunguru, J., Sseruwagi, P., Tairo, F., Okao-Okuja, G., Nanvubya, R., Kiiza, L., Kubatko, L., Kehoe, M. A., & Boykin, L. M. (2016). Cassava brown streak virus has a rapidly evolving genome: Implications for virus speciation, variability, diagnosis and host resistance. Scientific Reports, 6. https://doi.org/10.1038/srep36164 | spa |
dc.relation.references | Alvarez, E., Mejía, J. F., Llano, G. A., Loke, J. B., Calari, A., Duduk, B., & Bertaccini, A. (2009). Characterization of a Phytoplasma Associated with Frogskin Disease in Cassava. Plant Disease, 93(11), 1139–1145. https://doi.org/10.1094/PDIS-93-11-1139 | spa |
dc.relation.references | Amuge, T., Berger, D. K., Katari, M. S., Myburg, A. A., Goldman, S. L., & Ferguson, M. E. (2017). A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus. Scientific Reports, 7(1), 9747. https://doi.org/10.1038/s41598-017-09617-z | spa |
dc.relation.references | Bart, R. S., & Taylor, N. J. (2017). New opportunities and challenges to engineer disease resistance in cassava, a staple food of African small-holder farmers. PLOS Pathogens, 13(5), e1006287. https://doi.org/10.1371/journal.ppat.1006287 | spa |
dc.relation.references | Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351–368. https://doi.org/10.1105/tpc.106.048033 | spa |
dc.relation.references | Bernardo Ospina, & Hernan Ceballos. (2002). La Yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización. | spa |
dc.relation.references | BioTek® Instruments, Inc. (2009). Take3TM Multi-Volume Plate User Guide . In Manual Part Number 4691000 Revision B (pp. 1–30). | spa |
dc.relation.references | Carvajal-Yepes, M., Olaya, C., Lozano, I., Cuervo, M., Castaño, M., & Cuellar, W. J. (2014). Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 186, 76–86. https://doi.org/10.1016/j.virusres.2013.12.011 | spa |
dc.relation.references | Ceballos, H., Iglesias, C. A., Pérez, J. C., & Dixon, A. G. O. (2004). Cassava breeding: opportunities and challenges. Plant Molecular Biology, 56(4), 503–516. https://doi.org/10.1007/s11103-004-5010-5 | spa |
dc.relation.references | Chang, H.-X., Brown, P. J., Lipka, A. E., Domier, L. L., & Hartman, G. L. (2016). Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics, 17(1), 153. https://doi.org/10.1186/s12864-016-2487-7 | spa |
dc.relation.references | Chen, X., Zhu, M., Jiang, L., Zhao, W., Li, J., Wu, J., Li, C., Bai, B., Lu, G., Chen, H., Moffett, P., & Tao, X. (2016). A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytologist, 212(1), 161–175. https://doi.org/10.1111/nph.14013 | spa |
dc.relation.references | Collier, S. M., & Moffett, P. (2009). NB-LRRs work a “bait and switch” on pathogens. Trends in Plant Science, 14(10), 521–529. https://doi.org/10.1016/j.tplants.2009.08.001 | spa |
dc.relation.references | Cook, J. P., Mahajan, A., & Morris, A. P. (2017). Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. European Journal of Human Genetics, 25(2), 240–245. https://doi.org/10.1038/ejhg.2016.150 | spa |
dc.relation.references | Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. https://doi.org/10.1371/journal.pone.0019379 | spa |
dc.relation.references | Ephraim, N., Patrick, R. R., Joseph, F. H., Robert, K., & Yona, B. (2015). Analysis of phenotypic responses influencing leaf growth rate and harvest parameters in cassava (Manihot esculenta Crantz) under hydrothermal stress. Journal of Plant Breeding and Crop Science, 7(6), 185–202. https://doi.org/10.5897/JPBCS2015.0504 | spa |
dc.relation.references | F. Murtagh. (n.d.). Hierarchical Clustering. The hclust function is based on Fortran code contributed to STATLIB by F. Murtagh. | spa |
dc.relation.references | Facundo Xavier Palacio; María José Apodaca ; Jorge Víctor Crisci. (2020). Análisis multivariado para datos biológicos: teoría y su aplicación utilizando el lenguaje R: Vol. CDD 570.285 (VAZQUEZ MAZZINI EDITORES, Ed.; 1a ed). Fundación de Historia Natural Félix de Azara. | spa |
dc.relation.references | FAO. (2012). RESUMEN DEL SEGUNDO PLAN DE ACCIÓN MUNDIAL PARA LOS RECURSOS FITOGENÉTICOS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. | spa |
dc.relation.references | FAO. (2021). Comisión de Recursos Genéticos para la Alimentación y la Agricultura (Vols. 978-92-5-135825–2). | spa |
dc.relation.references | Ferris, A. C., Stutt, R. O. J. H., Godding, D., & Gilligan, C. A. (2020). Computational models to improve surveillance for cassava brown streak disease and minimize yield loss. PLOS Computational Biology, 16(7), e1007823. https://doi.org/10.1371/journal.pcbi.1007823 | spa |
dc.relation.references | Fregene, M., & Puonti-Kaerlas, J. (2001). Cassava biotechnology. In Cassava: biology, production and utilization (pp. 179–207). CABI Publishing. https://doi.org/10.1079/9780851995243.0179 | spa |
dc.relation.references | Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925–929. https://doi.org/10.1111/2041-210X.12382 | spa |
dc.relation.references | Fu, W., da Silva Linge, C., & Gasic, K. (2021). Genome-Wide Association Study of Brown Rot (Monilinia spp.) Tolerance in Peach. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.635914 | spa |
dc.relation.references | Genesys. (2014, February 28). Https://Www.Genesys-Pgr.Org/a/Overview/V2YdWb7E8jV. | spa |
dc.relation.references | Gogarten, S. M., Bhangale, T., Conomos, M. P., Laurie, C. A., McHugh, C. P., Painter, I., Zheng, X., Crosslin, D. R., Levine, D., Lumley, T., Nelson, S. C., Rice, K., Shen, J., Swarnkar, R., Weir, B. S., & Laurie, C. C. (2012). GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics, 28(24), 3329–3331. https://doi.org/10.1093/bioinformatics/bts610 | spa |
dc.relation.references | Gruber, B., Unmack, P. J., Berry, O. F., & Georges, A. (2018). dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources, 18(3), 691–699. https://doi.org/10.1111/1755-0998.12745 | spa |
dc.relation.references | Hillocks, R. J., & Maruthi, M. N. (2015). Post-harvest impact of cassava brown streak disease in four countries in eastern Africa. Food Chain, 5(1–2), 116–122. https://doi.org/10.3362/2046-1887.2015.008 | spa |
dc.relation.references | Howeler R, L. N. T. G. (2013). Save and Grow: Cassava—A guide to sustainable production intensification. | spa |
dc.relation.references | Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2019). BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2). https://doi.org/10.1093/gigascience/giy154 | spa |
dc.relation.references | Jaemthaworn, T., Kalapanulak, S., & Saithong, T. (2021). Topological clustering of regulatory genes confers pathogenic tolerance to cassava brown streak virus (CBSV) in cassava. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86806-x | spa |
dc.relation.references | Kaler, A. S., & Purcell, L. C. (2019). Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 20(1), 618. https://doi.org/10.1186/s12864-019-5992-7 | spa |
dc.relation.references | Kanju, E., Legg, J. P., Patil, B. L., & Fauquet, C. M. (2015). Cassava brown streak disease: a threat to food security in Africa. Journal of General Virology, 96(5), 956–968. https://doi.org/10.1099/vir.0.000014 | spa |
dc.relation.references | Kawuki, R. S., Kaweesi, T., Esuma, W., Pariyo, A., Kayondo, I. S., Ozimati, A., Kyaligonza, V., Abaca, A., Orone, J., Tumuhimbise, R., Nuwamanya, E., Abidrabo, P., Amuge, T., Ogwok, E., Okao, G., Wagaba, H., Adiga, G., Alicai, T., Omongo, C., … Baguma, Y. (2016). Eleven years of breeding efforts to combat cassava brown streak disease. Breeding Science, 66(4), 560–571. https://doi.org/10.1270/jsbbs.16005 | spa |
dc.relation.references | Kayondo, S. I., Del Carpio, D. P., Lozano, R., Ozimati, A., Wolfe, M., Baguma, Y., Gracen, V., Offei, S., Ferguson, M., Kawuki, R., & Jannink, J. L. (2018). Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19696-1 | spa |
dc.relation.references | Kayondo, S. I., Pino Del Carpio, D., Lozano, R., Ozimati, A., Wolfe, M., Baguma, Y., Gracen, V., Offei, S., Ferguson, M., Kawuki, R., & Jannink, J.-L. (2018). Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports, 8(1), 1549. https://doi.org/10.1038/s41598-018-19696-1 | spa |
dc.relation.references | Laity, J. H., Lee, B. M., & Wright, P. E. (2001). Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 11(1), 39–46. https://doi.org/10.1016/S0959-440X(00)00167-6 | spa |
dc.relation.references | Legendre, P., & L. L. (2012). Numerical ecology (Elsevier). | spa |
dc.relation.references | Lin, Z. J. D., Taylor, N. J., & Bart, R. (2019). Engineering Disease-Resistant Cassava. Cold Spring Harbor Perspectives in Biology, 11(11), a034595. https://doi.org/10.1101/cshperspect.a034595 | spa |
dc.relation.references | Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444 | spa |
dc.relation.references | Liu, H.-J., & Yan, J. (2019). Crop genome-wide association study: a harvest of biological relevance. The Plant Journal, 97(1), 8–18. https://doi.org/10.1111/tpj.14139 | spa |
dc.relation.references | Liu, Q., Hobbs, H. A., & Domier, L. L. (2019). Genome-wide association study of the seed transmission rate of soybean mosaic virus and associated traits using two diverse population panels. Theoretical and Applied Genetics, 132(12), 3413–3424. https://doi.org/10.1007/s00122-019-03434-w | spa |
dc.relation.references | Liu, X., Huang, M., Fan, B., Buckler, E. S., & Zhang, Z. (2016). Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genetics, 12(2), e1005767. https://doi.org/10.1371/journal.pgen.1005767 | spa |
dc.relation.references | Ly, D., Hamblin, M., Rabbi, I., Melaku, G., Bakare, M., Gauch, H. G., Okechukwu, R., Dixon, A. G. O., Kulakow, P., & Jannink, J.-L. (2013). Relatedness and Genotype × Environment Interaction Affect Prediction Accuracies in Genomic Selection: A Study in Cassava. Crop Science, 53(4), 1312–1325. https://doi.org/10.2135/cropsci2012.11.0653 | spa |
dc.relation.references | Maruthi, M. N., Hillocks, R. J., Mtunda, K., Raya, M. D., Muhanna, M., Kiozia, H., Rekha, A. R., Colvin, J., & Thresh, J. M. (2005). Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). Journal of Phytopathology, 153(5), 307–312. https://doi.org/10.1111/j.1439-0434.2005.00974.x | spa |
dc.relation.references | Masumba, E. A., Kapinga, F., Mkamilo, G., Salum, K., Kulembeka, H., Rounsley, S., Bredeson, J. V., Lyons, J. B., Rokhsar, D. S., Kanju, E., Katari, M. S., Myburg, A. A., van der Merwe, N. A., & Ferguson, M. E. (2017). QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert. Theoretical and Applied Genetics, 130(10), 2069–2090. https://doi.org/10.1007/s00122-017-2943-z | spa |
dc.relation.references | Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis[W]. The Plant Cell, 15(4), 809–834. https://doi.org/10.1105/tpc.009308 | spa |
dc.relation.references | Mijangos, J. L., Gruber, B., Berry, O., Pacioni, C., & Georges, A. (2022). dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods in Ecology and Evolution, 13(10), 2150–2158. https://doi.org/10.1111/2041-210X.13918 | spa |
dc.relation.references | Monnot, S., Desaint, H., Mary-Huard, T., Moreau, L., Schurdi-Levraud, V., & Boissot, N. (2021). Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 10(11), 3080. https://doi.org/10.3390/cells10113080 | spa |
dc.relation.references | Munganyinka, E., Ateka, E. M., Kihurani, A. W., Kanyange, M. C., Tairo, F., Sseruwagi, P., & Ndunguru, J. (2018). Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes. Plant Pathology, 67(2), 377–387. https://doi.org/10.1111/ppa.12789 | spa |
dc.relation.references | Nandudu, L., Kawuki, R., Ogbonna, A., Kanaabi, M., & Jannink, J.-L. (2023). Genetic dissection of cassava brown streak disease in a genomic selection population. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1099409 | spa |
dc.relation.references | Ndunguru, J., Sseruwagi, P., Tairo, F., Stomeo, F., Maina, S., Djinkeng, A., Kehoe, M., & Boykin, L. M. (2015). Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation. PLOS ONE, 10(10), e0139321. https://doi.org/10.1371/journal.pone.0139321 | spa |
dc.relation.references | Ndyetabula, I. L., Merumba, S. M., Jeremiah, S. C., Kasele, S., Mkamilo, G. S., Kagimbo, F. M., & Legg, J. P. (2016). Analysis of Interactions Between Cassava Brown Streak Disease Symptom Types Facilitates the Determination of Varietal Responses and Yield Losses. Plant Disease, 100(7), 1388–1396. https://doi.org/10.1094/PDIS-11-15-1274-RE | spa |
dc.relation.references | Newton, A. C., Johnson, S. N., & Gregory, P. J. (2011). Implications of climate change for diseases, crop yields and food security. Euphytica, 179(1), 3–18. https://doi.org/10.1007/s10681-011-0359-4 | spa |
dc.relation.references | Nichols, R. F. W. (1947). Breeding Cassava for Virus Resistance. The East African Agricultural Journal, 12(3), 184–194. https://doi.org/10.1080/03670074.1947.11664554 | spa |
dc.relation.references | Nzuki, I., Katari, M. S., Bredeson, J. V., Masumba, E., Kapinga, F., Salum, K., Mkamilo, G. S., Shah, T., Lyons, J. B., Rokhsar, D. S., Rounsley, S., Myburg, A. A., & Ferguson, M. E. (2017). QTL Mapping for Pest and Disease Resistance in Cassava and Coincidence of Some QTL with Introgression Regions Derived from Manihot glaziovii. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01168 | spa |
dc.relation.references | Organización de las Naciones Unidas para la Alimentación y la Agricultura FAO. (2021). FAOSTAT. Https://Www.Fao.Org/Faostat/Es/#data/QI. | spa |
dc.relation.references | Park, J., Lee, S., Choi, Y., Park, G., Park, S., Je, B., & Park, Y. (2022). Germplasm Screening Using DNA Markers and Genome-Wide Association Study for the Identification of Powdery Mildew Resistance Loci in Tomato. International Journal of Molecular Sciences, 23(21), 13610. https://doi.org/10.3390/ijms232113610 | spa |
dc.relation.references | Pierre, N., Wamalwa, L. N., Muiru, W. M., Simon, B., Kanju, E., Ferguson, M. E., Ndavi, M. M., & Tumwegamire, S. (2022). Genetic diversity of local and introduced cassava germplasm in Burundi using DArTseq molecular analyses. PLOS ONE, 17(1), e0256002. https://doi.org/10.1371/journal.pone.0256002 | spa |
dc.relation.references | Qi, D., & Innes, R. W. (2013). Recent Advances in Plant NLR Structure, Function, Localization, and Signaling. Frontiers in Immunology, 4. https://doi.org/10.3389/fimmu.2013.00348 | spa |
dc.relation.references | Rabbi, I. Y., Hamblin, M. T., Kumar, P. L., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/j.virusres.2013.12.028 | spa |
dc.relation.references | Rabbi, I. Y., Kayondo, S. I., Bauchet, G., Yusuf, M., Aghogho, C. I., Ogunpaimo, K., Uwugiaren, R., Smith, I. A., Peteti, P., Agbona, A., Parkes, E., Lydia, E., Wolfe, M., Jannink, J.-L., Egesi, C., & Kulakow, P. (2022). Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 109(3), 195–213. https://doi.org/10.1007/s11103-020-01038-3 | spa |
dc.relation.references | Reinhardt Howeler, & NeBambi Lutaladio. (2013). Save and grow: Cassava. A guide to sustainable production intensification (Food and Agriculture Organization of the United Nations (FAO), Ed.). https://www.fao.org/family-farming/detail/es/c/273828/ | spa |
dc.relation.references | Rey, C., & Vanderschuren, H. (2017). Cassava Mosaic and Brown Streak Diseases: Current Perspectives and Beyond. Annual Review of Virology, 4(1), 429–452. https://doi.org/10.1146/annurev-virology-101416-041913 | spa |
dc.relation.references | Rui, P., Yang, X., Xu, S., Wang, Z., Zhou, X., Jiang, L., & Jiang, T. (2022). FvZFP1 confers transgenic Nicotiana benthamiana resistance against plant pathogens and improves tolerance to abiotic stresses. Plant Science, 316, 111176. https://doi.org/10.1016/j.plantsci.2021.111176 | spa |
dc.relation.references | Sesay, J. V., Lebbie, A., Wadsworth, R., Nuwamanya, E., Bado, S., & Norman, P. E. (2023). Genetic Structure and Diversity Study of Cassava (<i>Manihot esculenta</i>) Germplasm for African Cassava Mosaic Disease and Fresh Storage Root Yield. Open Journal of Genetics, 13(01), 23–47. https://doi.org/10.4236/ojgen.2023.131002 | spa |
dc.relation.references | Sheat, S., Fuerholzner, B., Stein, B., & Winter, S. (2019). Resistance against cassava brown streak viruses from africa in cassava germplasm from South America. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00567 | spa |
dc.relation.references | Sheat, S., Zhang, X., & Winter, S. (2022). High-Throughput Virus Screening in Crosses of South American and African Cassava Germplasm Reveals Broad-Spectrum Resistance against Viruses Causing Cassava Brown Streak Disease and Cassava Mosaic Virus Disease. Agronomy, 12(5), 1055. https://doi.org/10.3390/agronomy12051055 | spa |
dc.relation.references | Shirima, R. R., Legg, J. P., Maeda, D. G., Tumwegamire, S., Mkamilo, G., Mtunda, K., Kulembeka, H., Ndyetabula, I., Kimata, B. P., Matondo, D. G., Ceasar, G., Mushi, E., Sichalwe, K., & Kanju, E. (2020). Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania. Virus Research, 286, 198017. https://doi.org/10.1016/j.virusres.2020.198017 | spa |
dc.relation.references | Tameling, W. I. L., & Takken, F. L. W. (2008). Resistance proteins: scouts of the plant innate immune system. European Journal of Plant Pathology, 121(3), 243–255. https://doi.org/10.1007/s10658-007-9187-8 | spa |
dc.relation.references | Thomas, E., & Van der Hoorn, R. (2018). Ten Prominent Host Proteases in Plant-Pathogen Interactions. International Journal of Molecular Sciences, 19(2), 639. https://doi.org/10.3390/ijms19020639 | spa |
dc.relation.references | Thresh, J. M., & Cooter, R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587–614. https://doi.org/10.1111/j.1365-3059.2005.01282.x | spa |
dc.relation.references | Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome‐wide association studies in plants. The Plant Genome, 14(1). https://doi.org/10.1002/tpg2.20077 | spa |
dc.relation.references | Tomlinson, K. R., Bailey, A. M., Alicai, T., Seal, S., & Foster, G. D. (2018). Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology, 19(5), 1282–1294. https://doi.org/10.1111/mpp.12613 | spa |
dc.relation.references | Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1(1), 59. https://doi.org/10.1038/s43586-021-00056-9 | spa |
dc.relation.references | van der Biezen, E. A., & Jones, J. D. G. (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8(7), R226–R228. https://doi.org/10.1016/S0960-9822(98)70145-9 | spa |
dc.relation.references | van Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397. https://doi.org/10.1093/jxb/ern045 | spa |
dc.relation.references | Wang, J., & Zhang, Z. (2021). GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genomics, Proteomics & Bioinformatics, 19(4), 629–640. https://doi.org/10.1016/j.gpb.2021.08.005 | spa |
dc.relation.references | Weigel, D., & Glazebrook, J. (2009). Dellaporta Miniprep for Plant DNA Isolation. Cold Spring Harbor Protocols, 2009(3), pdb.prot5178. https://doi.org/10.1101/pdb.prot5178 | spa |
dc.relation.references | Wickham H. (2016). Ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. | spa |
dc.relation.references | Wolfe, M. D., Rabbi, I. Y., Egesi, C., Hamblin, M., Kawuki, R., Kulakow, P., Lozano, R., Carpio, D. P. Del, Ramu, P., & Jannink, J. (2016a). Genome‐Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. The Plant Genome, 9(2). https://doi.org/10.3835/plantgenome2015.11.0118 | spa |
dc.relation.references | Wolfe, M. D., Rabbi, I. Y., Egesi, C., Hamblin, M., Kawuki, R., Kulakow, P., Lozano, R., Carpio, D. P. Del, Ramu, P., & Jannink, J. (2016b). Genome‐Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. The Plant Genome, 9(2). https://doi.org/10.3835/plantgenome2015.11.0118 | spa |
dc.relation.references | Zhiwu Zhang Laboratory. (2023). User manual for GAPIT Genomic Association and Prediction Integrated Tool (Version 3). In Washington State University. | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Resistencia a agentes dañinos | |
dc.subject.agrovoc | Resistance to injurious factors | |
dc.subject.agrovoc | Resistencia genética | |
dc.subject.agrovoc | Genetic resistance | |
dc.subject.agrovoc | Control genético | |
dc.subject.agrovoc | Genetic control | |
dc.subject.agrovoc | Conservación de recursos genéticos | |
dc.subject.agrovoc | Genetic resources conservation | |
dc.subject.agrovoc | Recurso genético | |
dc.subject.agrovoc | Renetic resources | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.proposal | Yuca | spa |
dc.subject.proposal | Cassava brown streak disease (CBSD) | eng |
dc.subject.proposal | Cassava brown streak virus (CBSV) | eng |
dc.subject.proposal | Genotipificación | spa |
dc.subject.proposal | Estudio de asociación del genoma completo (GWAS) | spa |
dc.subject.proposal | Germoplasma | spa |
dc.subject.proposal | Cassava (Manihot esculenta) | eng |
dc.subject.proposal | Genotyping | eng |
dc.subject.proposal | Germplasm | eng |
dc.title | Asociación genómica de la resistencia a la enfermedad del virus de la raya marrón de la yuca (Manihot esculenta), en accesiones de germoplasma conservadas en América del Sur | spa |
dc.title.translated | Genomic Association of Resistance to Brown Streak Virus Disease in Cassava (Manihot esculenta) in Germplasm Accessions Conserved in South America | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Centro Internacional de Agricultura Tropical CIAT | spa |