Geometría y evolución de la Falla Casabe en el Valle Medio del Magdalena, Colombia

dc.contributor.advisorGalindo Amaya, Pedro Alejandro
dc.contributor.advisorCamargo Cortés, Guillermo Arturo
dc.contributor.authorVargas Vargas, Mayra Liseth
dc.coverage.regionMagdalena
dc.coverage.regionValle Medio del Magdalena
dc.date.accessioned2022-02-01T21:45:59Z
dc.date.available2022-02-01T21:45:59Z
dc.date.issued2021
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractLa Falla Casabe se encuentra en el flanco occidental de la cuenca del Valle Medio del Magdalena (Colombia). Estudios anteriores presentan información estructural de la falla a nivel de reservorio, por lo que su evolución y estilos de deformación no habían sido estudiados en detalle hasta el momento. Este estudio integra la interpretación sísmica 3D de los volúmenes sísmicos CASABE PEÑAS BLANCAS 3D y LLANITO 3D cubriendo un área total de 212 Km2, brindando una oportunidad única de visualizar tridimensionalmente la terminación norte de una falla regional de rumbo en el subsuelo. Como resultado de la interpretación, se generan mapas estructurales en tiempo, mapas de espesor de unidades y gráficas de desplazamiento vertical y de intervalo, los cuales en conjunto permiten el análisis de los estilos estructurales y patrones de depositación en el área. Entre los estilos observados se encuentran evidencias de procesos de reactivación de fallas, así como de deformación de rumbo. Se identifican 9 segmentos de falla profundos (en la sección Cretácica) los cuales son reactivados y amalgamados por la deformación de rumbo durante el Cenozoico. Evidencias de la deformación de rumbo incluyen la ocurrencia de fallas normales con arreglo en-échelon, estructuras de pop-up y pull-apart, y terminaciones en cola de caballo. Con las geometrías identificadas, se genera un modelo esquemático de la Falla Casabe en el área de estudio, representando la variación tridimensional de estructuras asociadas a la falla. Así mismo, el análisis de los resultados permite identificar deformación previa a la Discordancia del Eoceno (Cretácico tardío–Paleoceno) y proponer que la deformación de rumbo ha sido activa desde el Eoceno tardío hasta el Reciente. (texto tomado en la fuente)spa
dc.description.abstractThe Casabe Fault is located in the western flank of the Middle Magdalena Basin (Colombia). Previous studies of the fault have shown structural information focused at reservoir level, and then its evolution and deformation styles had not been analyzed as yet. This study integrates the 3D seismic interpretation of the seismic volumes CASABE PEÑAS BLANCAS 3D and LLANITO 3D covering an area of 212 Km2, providing a unique opportunity to visualize three-dimensionally the northern tip of a regional strike-slip fault in the subsurface. As a result of the interpretation, time structural maps, time-thickness maps, together with vertical and interval displacement diagrams are generated. These allow the analysis of structural styles and depositional patterns in the area. The structural styles observed include fault reactivation processes and strike-slip deformation. Nine fault segments within the Cretaceous section are identified. These were reactivated and amalgamated by the strike-slip deformation during the Cenozoic. Evidence for strike-slip deformation includes the occurrence of en-échelon normal faults, pop-up and pull-apart structures, and horsetail terminations. A schematic model of the Casabe Fault is generated for the study area, representing the three-dimensional variation of structures associated to the fault plane. Likewise, the analysis of the results, allows identify deformation prior to the Eocene Unconformity (Late Cretaceous – Paleocene), and propose that the strike-slip deformation has been active since the late Eocene to the Recenteng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.researchareaGeología Estructuralspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80847
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAcosta, J., Velandia, F., Osorio, J., Lonergan, L., & Mora, H. (2007). Strike-slip deformation within the Colombian Andes. Geological Society Special Publication, 272, 303–319.spa
dc.relation.referencesBayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A. M., Nova, G., … Cárdenas-Rozo, A. L. (2020). Unravelling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra-basinal deformation in the northern Eastern Cordillera of Colombia. Basin Research, 33(1), 809–845. https://doi.org/10.1111/bre.12496spa
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., … IbañezMejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau-continent convergence. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2012.03.015spa
dc.relation.referencesBonini, M., Sani, F., & Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522–523, 55–88. https://doi.org/10.1016/j.tecto.2011.11.014spa
dc.relation.referencesCaballero, V. (2010). Evolución tectono - sedimentaria del sinclinal de nuevo mundo, cuenca sedimentaria Valle Medio del Magdalena Colombia, durante el OligocenoMioceno. MSc Thesis Universidad Industrial de Santander. Universidad Industrial de Santander. https://doi.org/10.1128/AAC.03728-14spa
dc.relation.referencesCaballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L. E., … Duddy, I. (2013). Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society Special Publication, 377(1), 315–342. https://doi.org/10.1144/SP377.12spa
dc.relation.referencesCaballero, V., Parra, M., Mora, A., Lopez, C., Rojas, L. E., & Quintero, I. (2013). Factors controlling selective abandonment and reactivation in thick-skin orogens: A case study in the Magdalena Valley, Colombia. Geological Society Special Publication, 377(1), 343–367. https://doi.org/10.1144/SP377.4spa
dc.relation.referencesCabello, P., Lopez, C., Gamba, N., Dussán, M. I., Torres, E., Ballesteros-Torres, C. I., … Ramos, E. (2018). An integrated approach to define new plays in mature oil basins: The example from the Middle Magdalena Valley basin (Colombia). AAPG Bulletin, 102(11), 2201–2238. https://doi.org/10.1306/03291816528spa
dc.relation.referencesCardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., … Ruiz, J. (2011). Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova. https://doi.org/10.1111/j.1365-3121.2010.00979.xspa
dc.relation.referencesCetina, L. M., Velandia, F., & Patiño-Sanabria, H. A. (2019). Análisis de deformación al occidente del Anticlinorio de Los Yariguíes - Cordillera Oriental de Colombia. Revista Boletín de Geología, 41(3), 31–56. https://doi.org/10.18273/revbol.v41n3-2019002spa
dc.relation.referencesChristie-Blick, N., & Biddle, K. T. (1985). Deformation and basin formation along strike-slip faults. In K. T. Biddle & N. Christie-Blick (Eds.), Strike-slip Deformation, Basin Formation, and Sedimentation (pp. 1–34). Tulsa, OK, USA.: Society of Economic Paleontologists and Mineralogists, Special Publication, 37.spa
dc.relation.referencesCooper, M. A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10), 1421–1443.spa
dc.relation.referencesCooper, M., & Warren, M. J. (2010). The geometric characteristics, genesis and petroleum significance of inversion structures. Geological Society Special Publication, 335, 827– 846. https://doi.org/10.1144/SP335.33spa
dc.relation.referencesDooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574–575, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030spa
dc.relation.referencesEgbue, O., & Kellogg, J. (2010). Pleistocene to Present North Andean “escape.” Tectonophysics, 489(1–4), 248–257. https://doi.org/10.1016/j.tecto.2010.04.021spa
dc.relation.referencesGalindo, P. A., & Lonergan, L. (2020). Basin Evolution and Shale Tectonics on an Obliquely Convergent Margin: The Bahia Basin, Offshore Colombian Caribbean. Tectonics, 39(3), 1–32. https://doi.org/10.1029/2019TC005787spa
dc.relation.referencesGaravito-Cubillos, F. (2008). Structural Analysis of an Area in the Northern Central Part. MSc Thesis Colorado School of Mines.spa
dc.relation.referencesGarcía-Delgado, H., & Velandia, F. (2020). Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology, 349, 106914. https://doi.org/10.1016/j.geomorph.2019.106914spa
dc.relation.referencesGómez, E., Jordan, T. E., Allmendinger, R. W., & Cardozo, N. (2005). Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes. Bulletin of the Geological Society of America, 117(9–10), 1272– 1292. https://doi.org/10.1130/B25456.1spa
dc.relation.referencesGómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., & Kelley, S. (2005). Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Bulletin of the Geological Society of America, 117(5–6), 547–569. https://doi.org/10.1130/B25454.1spa
dc.relation.referencesGómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., Kelley, S., & Heizler, M. (2003). Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Bulletin of the Geological Society of America, 115(2), 131–147. https://doi.org/10.1130/0016- 7606(2003)115<0131:COAOTL>2.0.CO;2spa
dc.relation.referencesGrimaldi, G. O., & Dorobek, S. L. (2011). Fault framework and kinematic evolution of inversion structures: Natural examples from the Neuquén Basin, Argentina. AAPG Bulletin, 95(1), 27–60. https://doi.org/10.1306/06301009165spa
dc.relation.referencesHorton, B. K., Anderson, V. J., Caballero, V., Saylor, J. E., Nie, J., Parra, M., & Mora, A. (2015). Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere, 11(6), 1790–1811. https://doi.org/10.1130/GES01251.1spa
dc.relation.referencesHorton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 122(9–10), 1423–1442. https://doi.org/10.1130/B30118.1spa
dc.relation.referencesInstituto Colombiano de Geología y Minería INGEMINAS. (2008). Cartografía Geológica y Muestreo Geoquímico escala 1:100.000 de las Planchas 119 Barrancabermeja, 134 Puerto Parra, 149 Puerto Serviez y 150 Cimitarra del Valle Medio del Río Magdalena 11. Retrieved from http://aplicaciones1.sgc.gov.co/sicat/html/ConsultaBasica.aspxspa
dc.relation.referencesKim, Y.-S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi.org/10.1016/j.jsg.2003.08.002spa
dc.relation.referencesKim, Y. S., Andrews, J. R., & Sanderson, D. J. (2001). Reactivated strike-slip faults: Examples from North Cornwall, UK. Tectonophysics, 340(3–4), 173–194. https://doi.org/10.1016/S0040-1951(01)00146-9spa
dc.relation.referencesKim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793–812. https://doi.org/10.1016/S0191-8141(02)00200-6spa
dc.relation.referencesMOJICA, J., & FRANCO, R. (1990). Estructura y evolucion tectonica del valle Medio y Superior de Magdalena, Colombia. Geologia Colombiana, 17(17), 41–64spa
dc.relation.referencesMontes, C., Hatcher, R. D., & Restrepo-Pace, P. A. (2005). Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics, 399(1-4 SPEC. ISS.), 221–250. https://doi.org/10.1016/j.tecto.2004.12.024spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews. Elsevier. https://doi.org/10.1016/j.earscirev.2019.102903spa
dc.relation.referencesMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., … Bohórquez-orozco, O. (2018). Journal of South American Earth Sciences Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89(November 2018), 76–91. https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., … Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society Special Publication, 377(1), 411–442. https://doi.org/10.1144/SP377.6spa
dc.relation.referencesMoreno, S., Silva, A., Mora, S., Teso, E., Quintero, I., Rojas, L. E., … Casallas, W. (2013). Interaction between thin- and thick-skinned tectonics in the foothill areas of an inverted graben . The Middle Magdalena Foothill belt, 221–255spa
dc.relation.referencesMorley, C. K., Gabdi, S., & Seusutthiya, K. (2007). Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand. Journal of Structural Geology, 29(4), 646–663. https://doi.org/10.1016/j.jsg.2006.11.005spa
dc.relation.referencesNaylor, M. A., Mandl, G., & Supesteijn, C. H. K. (1986). Fault geometries in basementinduced wrench faulting under different initial stress states. Journal of Structural Geology, 8(7), 737–752. https://doi.org/10.1016/0191-8141(86)90022-2spa
dc.relation.referencesNie, J., Horton, B. K., Mora, A., Saylor, J. E., Housh, T. B., Rubiano, J., & Naranjo, J. (2010). Tracking exhumation of Andean ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 38(5), 451–454. https://doi.org/10.1130/G30775.1spa
dc.relation.referencesNie, J., Horton, B. K., Saylor, J. E., Mora, A., Mange, M., Garzione, C. N., … Parra, M. (2012). Integrated provenance analysis of a convergent retroarc foreland system: UPb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2011.11.002spa
dc.relation.referencesPeacock, D. C. P., & Sanderson, D. J. (1995). Strike-slip relay ramps. Journal of Structural Geology, 17(10), 1351–1360. https://doi.org/10.1016/0191-8141(95)97303-Wspa
dc.relation.referencesPindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico , Caribbean and northern South America in the mantle reference frame: an update. Geological Society, London, Special Publications, 328, 1–55. https://doi.org/10.1144/SP328.1spa
dc.relation.referencesReyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., … Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. AAPG Bulletin (Vol. 99). https://doi.org/10.1306/06181411110spa
dc.relation.referencesRolon, L. F. (2004). Structural Geometry of the Jura-Cretaceous Rift of the Middle Magdalena Valley Basin – Colombia. MSc Thesis West Virginia Universityspa
dc.relation.referencesRoyero Gutierrez, J. M., & Clavijo, J. (2001). Mapa Geológico Generalizado Departamento de Santander.spa
dc.relation.referencesSanchez, J., Horton, B. K., Tesón, E., Mora, A., Ketcham, R. A., & Stockli, D. F. (2012). Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics, 31(3), 1–24. https://doi.org/10.1029/2011TC003089spa
dc.relation.referencesSarmiento, G., Puentes, J., & Sierra, C. (2015). Evolución Geológica y Estratigrafía del Sector Norte del Valle Medio del Magdalena, 51–82spa
dc.relation.referencesSchamel, S. (1991). Middle and Upper Magdalena Basins, Colombia.pdf. AAPG Bulletin.spa
dc.relation.referencesServicio Geológico Colombiano. (2015). Memoria Expliactiva Plancha 118 - San Francisco.spa
dc.relation.referencesSrisuriyon, K., & Morley, C. K. (2014). Pull-apart development at overlapping fault tips: Oblique rifting of a cenozoic continental margin, northern mergui basin, andaman sea. Geosphere, 10(1), 80–106. https://doi.org/10.1130/GES00926.1spa
dc.relation.referencesTchalenko, J. S. (1970). Similarities between Shear Zones of Different Magnitudes. Geological Society of America Bulletin, 81(June), 1625–1640.spa
dc.relation.referencesVelandia, F., Acosta, J., Terraza, R., & Villegas, H. (2005). The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics, 399(1-4 SPEC. ISS.), 313–329. https://doi.org/10.1016/j.tecto.2004.12.028spa
dc.relation.referencesVelandia, F., & Bermúdez, M. A. (2018). The transpressive southern termination of the Bucaramanga fault (Colombia): Insights from geological mapping, stress tensors, and fractal analysis. Journal of Structural Geology, 115(February), 190–207. https://doi.org/10.1016/j.jsg.2018.07.020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.otherHundimiento del suelo
dc.subject.proposalFalla Casabespa
dc.subject.proposalDeformación de rumbospa
dc.subject.proposalReactivación de fallasspa
dc.subject.proposalValle Medio del Magdalenaspa
dc.subject.proposalColombiaspa
dc.subject.proposalInterpretación sísmica 3Dspa
dc.subject.proposalCasabe Faulteng
dc.subject.proposalStrike-slip faultseng
dc.subject.proposalFault reactivationeng
dc.subject.proposalMiddle Magdalena Valleyeng
dc.subject.proposal3D seismic interpretationeng
dc.subject.unescoDeslizamiento de tierra
dc.subject.unescoSismo
dc.titleGeometría y evolución de la Falla Casabe en el Valle Medio del Magdalena, Colombiaspa
dc.title.translatedGeometry and evolution of the Casabe Fault in the Middle Magdalena Valley, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098626642.2022 - Mayra Liseth Vargas Vargas.pdf
Tamaño:
8.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: