Operator approach to epidemic systems in networks

dc.contributor.advisorHurtado Heredia, Rafael Germán
dc.contributor.authorRojas Venegas, José Alejandro
dc.contributor.educationalvalidatorJesús Gómez-Gardeñes
dc.contributor.educationalvalidatorZulma Cucunubá
dc.contributor.researchgroupEconofisica y Sociofisicaspa
dc.date.accessioned2023-01-17T16:09:13Z
dc.date.available2023-01-17T16:09:13Z
dc.date.issued2022
dc.descriptionilustracionesspa
dc.description.abstractEpidemic models are a precious tool for public health and epidemiology as they can simulate the outcome of outbreaks based on assumptions and data. In particular, Stochastic epidemic models are an exciting tool that is based on the jump process theory; these models can be simulated with a field-like description called the “Doi-Peliti formalism”. This thesis aims to describe epidemic models in this formalism and exploit the structure and properties of the formalism and the models. Here I present a variety of results based on an operator representation of the Markovian Master Equation that is useful to simulate small systems, I also present a result that allows calculating the probability of no-outbreak even if the basic reproductive number is greater than one. At the end of the thesis, I present some results based on a τ -leap sampling algorithm for a metapopulation consisting of two subpopulations where migration plays a fundamental role, adding more stable states and creating interesting differential dynamics, especially in the case of slow migrations. (Texto tomado de la fuente)eng
dc.description.abstractLos modelos epidémicos son una herramienta muy valiosa para la salud pública y la epidemiología dado que son capaces de simular el resultado de un brote basándose en asunciones y datos. En particular, los modelos epidémicos estocásticos son una herramienta interesante que está basada en la teoría de procesos de salto, estos modelos pueden ser simulados con una descripción similar a la teoría de campos llamada “Formalismo de Doi-Peliti”. El objetivo de esta tesis es describir modelos epidémicos en dicho formalismo utilizando propiedades del formalismo y de los modelos. Acá presento una variedad de resultados basado en una representación de operadores de la ecuación maestra Markoviana que son útiles para simular sistemas pequeños, también presento un resultado que permite calcular la probabilidad de que no exista un brote aún cuando el número reproductivo básico es mayor a uno. Al final de esta tesis presento algunos resultados basados en un algoritmo de muestreo llamado τ leap, este procedimiento lo aplico a metapoblaciones que consisten de dos subpoblaciones en las que la migración juega un rol fundamental, añadiendo más estados estables al sistema y creando una dinámica diferencial, especialmente en el caso de migraciones lentas.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentx, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82980
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAadrita, N. (2019). Stochastic Models of Emerging or Re-emerging Infectious Diseases: Probability of Outbreak, Epidemic Duration and Final Size. PhD thesis, Texas Tech University.spa
dc.relation.referencesAl-Mohy, A. H. and Higham, N. J. (2010). A new scaling and squaring algorithm for the matrix exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):970–989.spa
dc.relation.referencesAl-Mohy, A. H. and Higham, N. J. (2010). A new scaling and squaring algorithm for the matrix exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):970–989.spa
dc.relation.referencesAllen, L. J. (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2(2):128–142.spa
dc.relation.referencesArai, T. (2015). Path integral representation for stochastic jump processes with boundaries.spa
dc.relation.referencesBiswas, M. H. A., , Paiva, L. T., and de Pinho, M. (2014). A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences and Engineering, 11(4):761–784.spa
dc.relation.referencesBrauer, F., van den Driessche, P., and Wu, J., editors (2008). Compartmental Models in Epidemiology, pages 19–79. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesByrne, A. W., McEvoy, D., Collins, A. B., Hunt, K., Casey, M., Barber, A., Butler, F., Griffin, J., Lane, E. A., McAloon, C., Brien, K. O., Wall, P., Walsh, K. A., and More, S. J. (2020). Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open, 10(8):e039856.spa
dc.relation.referencesCaicedo-Ochoa, Y., Rebell´on-S´anchez, D. E., Pe˜naloza-Rall´on, M., Cort´es-Motta, H. F., and M´endez-Fandi˜no, Y. R. (2020). Effective reproductive number estimation for initial stage of COVID-19 pandemic in latin american countries. International Journal of Infectious Diseases, 95:316–318.spa
dc.relation.referencesCardy, J. (2006). Reaction-diffusion processes. Oxford, 1 edition.spa
dc.relation.referencesCDC (2021). Sars-cov-2 variant classifications and definitions.spa
dc.relation.referencesColizza, V. and Vespignani, A. (2008). Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. Journal of Theoretical Biology, 251(3):450–467.spa
dc.relation.referencesCooper, I., Mondal, A., and Antonopoulos, C. G. (2020). A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons & Fractals, 139:110057.spa
dc.relation.referencesDadlani, A., Afolabi, R. O., Jung, H., Sohraby, K., and Kim, K. (2020). Deterministic models in epidemiology: From modeling to implementationspa
dc.relation.referencesDe, P., Singh, A. E., Wong, T., and Kaida, A. (2007). Predictors of gonorrhea reinfection in a cohort of sexually transmitted disease patients in alberta, canada, 1991–2003. Sexually Transmitted Diseases, 34(1):30–36.spa
dc.relation.referencesDicker, R. C., Coronado, F., Koo, D., and Parrish, R. G. (2012). Principles of Epidemiology in Public Health Practice: An introduction to applied epidemiology and biostatistics. U.S. Departmentt of Health and Human Services, Centers for Disease Control and Prevention (CDC), Office of Workforce and Career Development, third edition.spa
dc.relation.referencesDodd, P. J. and Ferguson, N. M. (2009). A many-body field theory approach to stochastic models in population biology. PLoS ONE, 4(9):e6855.spa
dc.relation.referencesDoi, M. (1976). Second quantization representation for classical many-particle system. Journal of Physics A: Mathematical and General, 9(9):1465–1477.spa
dc.relation.referencesEl-Hay, T., Friedman, N., Koller, D., and Kupferman, R. (2012). Continuous time markov networks.spa
dc.relation.referencesErten, E., Lizier, J., Piraveenan, M., and Prokopenko, M. (2017). Criticality and information dynamics in epidemiological models. Entropy, 19(5):194.spa
dc.relation.referencesEstrada, E. and Hatano, N. (2008). Communicability in complex networks. Physical Review E, 77(3).spa
dc.relation.referencesFerraz de Arruda, G., Petri, G., Martin Rodriguez, P., and Moreno, Y. (2021). Multistability, intermittency and hybrid transitions in social contagion models on hypergraphs. arXiv e-prints, page arXiv:2112.04273.spa
dc.relation.referencesGardiner, C. W. (2004). Handbook of stochastic methods for physics, chemistry and the natural sciences, volume 13 of Springer Series in Synergetics. Springer- Verlag, Berlin, third edition.spa
dc.relation.referencesGhosh, I., Tiwari, P. K., Samanta, S., Elmojtaba, I. M., Al-Salti, N., and Chattopadhyay, J. (2018). A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Mathematical Biosciences, 306:160–169.spa
dc.relation.referencesGillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340–2361spa
dc.relation.referencesGillespie, D. T. (2007). Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 58(1):35–55.spa
dc.relation.referencesHaag, G. (2017). Modelling with the Master Equation. Springer International Publishing.spa
dc.relation.referencesHammer, W. (1906). The milroy lectures on epidemic disease in england—the evidence of variability and of persistency of type. The Lancet, 167(4305):569– 574. Originally published as Volume 1, Issue 4305.spa
dc.relation.referencesHethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4):599–653.spa
dc.relation.referencesHunter, E., Namee, B. M., and Kelleher, J. D. (2017). A taxonomy for agentbased models in human infectious disease epidemiology. Journal of Artificial Societies and Social Simulation, 20(3).spa
dc.relation.referencesInstitute, N. C. (2022). Nci dictionary of genetics terms.spa
dc.relation.referencesKeeling, M. and Ross, J. (2007). On methods for studying stochastic disease dynamics. Journal of The Royal Society Interface, 5(19):171–181.spa
dc.relation.referencesKeeling, M. J. and Eames, K. T. (2005). Networks and epidemic models. Journal of The Royal Society Interface, 2(4):295–307.spa
dc.relation.referencesKermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772):700– 721.spa
dc.relation.referencesManrique-Abril, F. G., Agudelo-Calderon, C. A., Gonzalez-Chorda, V. M., Gutierrez Lesmes, O., Tellez Pi˜neres, C. F., and Herrera-Amaya, G. (2020). Modelo SIR de la pandemia de COVID-19 en Colombia. Revista de Salud Publica, 22.spa
dc.relation.referencesMasuda, N. and Rocha, L. E. C. (2018). A gillespie algorithm for non-markovian stochastic processes. SIAM Review, 60(1):95–115.spa
dc.relation.referencesMehdaoui, M. (2021). A review of commonly used compartmental models in epidemiology.spa
dc.relation.referencesMoein, S., Nickaeen, N., Roointan, A., Borhani, N., Heidary, Z., Javanmard, S. H., Ghaisari, J., and Gheisari, Y. (2021). Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of isfahan. Scientific Reports, 11(1).spa
dc.relation.referencesMoler, C. and Loan, C. V. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49.spa
dc.relation.referencesMondaini, L. (2015). Second quantization approach to stochastic epidemic models.spa
dc.relation.referencesNoyola-Martinez, J. C. (2008). Investigation of the tau-leap method for stochastic simulation. PhD thesis, Rice University.spa
dc.relation.referencesPastor-Satorras, R., Castellano, C., Mieghem, P. V., and Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3):925–979.spa
dc.relation.referencesPastor-Satorras, R. and Sol´e, R. V. (2001). Field theory for a reaction-diffusion model of quasispecies dynamics. Physical Review E, 64(5).spa
dc.relation.referencesPeliti, L. (1985). Path integral approach to birth-death processes on a lattice. J. Phys. France, 46(9):1469–1483spa
dc.relation.referencesRojas-Venegas, J. A., Hurtado, R., and Gomez-Garde˜nes, J. (2022). The consequences of locality and initial conditions in the operator approach to epidemic models. In process.spa
dc.relation.referencesRoss, R. (1916). An application of the theory of probabilities to the study of a priori pathometry.—part i. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 92(638):204– 230.spa
dc.relation.referencesSchiøler, H., Knudsen, T., Brøndum, R. F., Stoustrup, J., and Bøgsted, M. (2021). Mathematical modelling of SARS-CoV-2 variant outbreaks reveals their probability of extinction. Scientific Reports, 11(1).spa
dc.relation.referencesSoriano-Pa˜nos, D., Lotero, L., Arenas, A., and G´omez-Garde˜nes, J. (2018). Spreading processes in multiplex metapopulations containing different mobility networks. Physical Review X, 8(3).spa
dc.relation.referencesThanh, V. H. and Priami, C. (2015). Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm. The Journal of Chemical Physics, 143(5):054104.spa
dc.relation.referencesTreibert, S., , Brunner, H., Ehrhardt, M., , and and (2019). Compartment models for vaccine effectiveness and non-specific effects for tuberculosis. Mathematical Biosciences and Engineering, 16(6):7250–7298.spa
dc.relation.referencesvan Wijland, F., Oerding, K., and Hilhorst, H. (1998). Wilson renormalization of a reaction–diffusion process. Physica A: Statistical Mechanics and its Applications, 251(1-2):179–201.spa
dc.relation.referencesVargas-De-Le´on, C. (2011). On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos, Solitons & Fractals, 44(12):1106–1110.spa
dc.relation.referencesVastola, J. J. (2019). Solving the chemical master equation for monomolecular reaction systems analytically: a doi-peliti path integral view.spa
dc.relation.referencesWasserman, S. and Faust, K. (1994). Social Network Analysis. Cambridge University Press.spa
dc.relation.referencesWeidlich, W. and Haag, G. (1982). Concepts and models of a quantitative sociology. Springer Series in Synergetics. Springer, Berlin, Germany.spa
dc.relation.referencesWhittle, P. (1955). The outcome of a stochastic epidemic- a note on bailey’s paper. Biometrika, 42(1-2):116–122.spa
dc.relation.referencesWillem, L., Verelst, F., Bilcke, J., Hens, N., and Beutels, P. (2017). Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC Infectious Diseases, 17(1).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembAnálisis de redesspa
dc.subject.lembNetwork analysiseng
dc.subject.lembAnálisis de sistemasspa
dc.subject.lembSystem analysiseng
dc.subject.proposalStochastic epidemic modelseng
dc.subject.proposalDoi-Peliti operator formalismeng
dc.subject.proposalMetapopulation network modellingeng
dc.subject.proposalModelos epidémicos estocásticosspa
dc.subject.proposalFormalismo de operadores de Doi- Pelitispa
dc.subject.proposalModelamiento de redes de metapoblacionesspa
dc.titleOperator approach to epidemic systems in networkseng
dc.title.translatedAproximación de operadores a los sistemas epidémicos en redesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020814002-2022.pdf
Tamaño:
5.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: