Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation

dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.advisorMojica Nava, Eduardo
dc.contributor.authorDorado Rojas, Sergio Andrés
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2021-05-31T20:52:16Z
dc.date.available2021-05-31T20:52:16Z
dc.date.issued2021-05-31
dc.descriptiondiagramas, ilustraciones a color, tablasspa
dc.description.abstractNon-conventional renewable energies represent a significant challenge for electric grids due to the technicalities associated with their implementation. Integration of such energy sources requires revisiting the grid structure and operation paradigm. The most relevant difficulty is that such a transformation must be carried out while keeping the system operational. In a conventional power system, synchronous machines are widely used as traditional electricity generators. These rotating machines store kinetic energy in their rotors. Rotor kinetic energy can be released or captured to compensate for load or generation disturbances, thus keeping the system's frequency constant (inertia characteristic). Large-scale renewable integration reduces the grid's inertia significantly since they interface to the network through inertia-less power converters. Several control strategies have been proposed to enhance the inertia capability of renewable generation units such as solar photovoltaic plants or wind turbines. However, this control loop does not guarantee frequency restoration to the nominal value. For this reason, it is critical to consider a secondary control loop to drive the frequency back to the desired steady-state operating condition. This work considers a system with high penetration of solar photovoltaic and wind energy. The main objective is to evaluate a decentralized linear controller's performance for a secondary control loop with the active contribution of renewable units. The resulting controller is benchmarked against conventional alternatives such as a linear quadratic regulator. The document focuses mostly on designing a secondary load frequency controller under the active disturbance rejection paradigm using a linear technique such as an extended-state observer.eng
dc.description.abstractLas energías renovables no convencionales suponen un gran desafío para los sistemas eléctricos dadas las dificultades técnicas que conlleva su implementación en la red existente. La incorporación de estas fuentes de generación obliga a una transformación total de la red y a un cambio de paradigma en su operación. La dificultad más grande, empero, es que dicho proceso debe llevarse a cabo sin interrumpir el funcionamiento del sistema. En una red eléctrica tradicional, los generadores sincrónicos se utilizan ampliamiente como unidades convencionales de generación de electricidad. Estas máquinas rotativas están en la capacidad de almacenar energía cinética en sus rotores, la cual pueden entregar al sistema para recobrar el balance que conduzca la frecuencia a un valor estable luego de la ocurrencia de una perturbación de carga o generación. Esto se conoce como capacidad de inercia. La integración de renovables a gran escala disminuye la capacidad de inercia de la red, ya que gran parte de las unidades de generación eólica y solar fotovoltaica se conectan al sistema mediante convertidores de electrónica de potencia. En la actualidad se han desarrollado distintas estrategias de control para proveer de capacidad de inercia a los generadores eólicos y solares fotovoltaicos. No obstante, este lazo por sí mismo no garantiza que la frecuencia de operación del sistema vaya a retornar a su valor nominal, ya que solo se encarga de estabilizar el valor de la frecuencia después de una perturbación. Por ello, es importante la consideración de un lazo de control secundario capaz de reestablecer la frecuencia a su valor nominal. Por todo lo anterior, este trabajo se enmarca en un escenario de alta penetración de generación eólica y solar fotovoltaica en un sistema de potencia. El principal propósito de esta investigación es evaluar el desempeño de un controlador descentralizado lineal en un lazo secundario de frecuencia con la participación de generadores eólicos y solar fotovoltaicos en comparación con una arquitectura basada en compensadores tradicionales como el LQR. El documento se centra en el diseño de un controlador secundario de frecuencia bajo el paradigma del rechazo activo de perturbaciones utilizando una técnica lineal como el observador de estado extendido.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaControl de frecuencia en sistemas de potenciaspa
dc.format.extent1 recurso en línea (144 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79578
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAli, R., Qudaih, Y. S., Mitani, Y. & Mohamed, T. H. (2013). A Robust Load Frequency Control of Power System with fluctuation of renewable energy sources, 20-23.spa
dc.relation.referencesAnderson, G. (2012). Dynamics and Control of Electric Power Systems. Swiss Federal Institute of Technology (ETH) Zurich.spa
dc.relation.referencesApostolopoulou, D., Domínguez-garcía, A. D., Sauer, P. W. & Fellow, L. (2015). An Assessment of the Impact of Uncertainty on Automatic Generation Control Systems. 31(4), 1-9.spa
dc.relation.referencesAttya, A. B., Dominguez-garcia, J. L. & Anaya-lara, O. (2018. A review on frequency support provision by wind power plants : Current and future challenges. Renewable and Sustainable Energy Reviews, & (June 2016), 2071-2087. https://doi.org/10.1016/j.rser.2017.06.016spa
dc.relation.referencesAziz, A., Than, A. & Stojcevski, A. (2017). Frequency regulation capabilities in wind power plant. Sustainable Energy Technologies and Assessments, (October). https://doi.org/10.1016/j.seta.2017.10.002spa
dc.relation.referencesAziz, A., Than, A. & Stojcevski, A. (2018). Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system. Electrical Power and Energy Systems, 99 (January), 603-617. https://do1.org/10.1016/j.ijepes.2018.01.045spa
dc.relation.referencesBadihi, H., Zhang, Y. & Hong, H. (2015). Active power control design for supporting grid frequency regulation in wind farms. Annual Reviews in Control, 40, 70-81. https://doi.org/10.1016/j.arcontrol. 2015.09.005spa
dc.relation.referencesBaudette, M., Castro, M., Rabuzin, T., Lavenius, J., Bogodorova, T. & Vanfretti, L. (2018). OpenIPSL: Open- Instance Power System Library - Update 1.5 to ¡Tesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations. SoftwareX, 7, 34-36. https://doi.org/10.1016/j.softx.2018. 01.002spa
dc.relation.references3evrani, H. (2014). Robust Power System. Frequency Control (and ed.). Springer. https://doi.org/10.1007/978-0- 387-84878-5spa
dc.relation.referencesBevrani, H., Daneshfar, F. & Hiyama, T. (2012). A new intelligent agent-based AGC design with real-time application. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(6), 994-1002. https://doi.org/10.1109/TSMCC.2011.2175916spa
dc.relation.references3evrani, H. & Hiyama, T. (2011). Intelligent Automatic Generation Control. CC Press. https://doi.org/9781439849545spa
dc.relation.referencesBevrani, H., Mitani, Y. & Tsuji, K. (2004). Robust LFC Design Using Mixed Hz - Hinf Technique. International Conference on Electrical Engineering.spa
dc.relation.referencesBijami, E. & Farsangi, M. M. (2017). Networked distributed automatic generation control of power system with dynamic participation of wind turbines through uncertain delayed communication network. IT Renewable Power Generation, 11(8), 1254-1269. https://doi.org/10.1049/iet-rpg.2016.0508spa
dc.relation.referencesChang-Chien, L. R. Sun, C. C. & Yeh, Y. J. (2014). Modeling of wind farm participation in AGC. IEEE Transactions on Power Systems, 29(3), 1204-1211. https://doi.org/10.1109/TPWRS.2013.2291397spa
dc.relation.referencesChow, J. H. & Sanchez-Gasca, J. J. (2020). Power System Modeling, Computation and Control. Wiley-IEEE.spa
dc.relation.referencesColeman, C. (1965). Local Trajectory Equivalence of Differential Systems. Proceedings of the Americal Mathematical Society, 16(5), 890-892.spa
dc.relation.referencesConte, C., Jones, C. N., Morari, M. & Zeilinger, M. N. (2016). Distributed synthesis and stability of cooperative distributed model predictive control for linear systems. Automatica, 69, 117-125. https://doi.org/10. 1016/j.automatica.2016.02.009spa
dc.relation.referencesDas, D., Aditya, S. & Kothari, D. (1999). Dynamics of diesel and wind turbine generators on an isolated power system. International Journal of Electrical Power & Energy Systems, 22(3), 183-189. https://doi.org/10. 1016/S0142-0615(98)00033-7spa
dc.relation.referencesDatta, A., Bhattacharjee, K., S. Debbarma, S. & Kar, B. (2015). Load Frequency Control of a Renewable Energy Sources based Hybrid System, 34-38.spa
dc.relation.referencesde Alegría, I. M., Andreu, J., Martín, J. L., Ibañez, P., Villate, J. L. & Camblong, H. (2007). Connection requirements for wind farms: A survey on technical requirements and regulation. Renewable and Sustainable Energy Reviews, 11(8), 1858-1872. hitps://doi.org/10.1016/j.rser.2006.01.008spa
dc.relation.referencesDemetriou, P., Asprou, M., Quiros-Tortos, J. & Kyriakides, E. (2015). Dynamic IEEE Test Systems for Transient Analysis. IEEE Systems Journal, 11(4), 1-10. https://doi.org/10.1109/JSYST.2015.2444893spa
dc.relation.referencesDíaz-González, F., Hau, M., Sumper, A. & Gomis-bellmunt, O. (2014). Participation of wind power plants in system frequency control : Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews, 34, 551-564. https://doi.org/10.1016/j.rser.2014.03.040spa
dc.relation.referencesDorado-Rojas,: A., Cortes-Romero, J., Rivera, S. & Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan Power Tech, 1-6. https://doi. org/10.1109/PTC.2019.8810873spa
dc.relation.referencesENTSO-E, E. N. o. T. S. O. f. E. (2015). Rate of Change of Frequency (ROCOF) withstand capability. https://www. entsoe.eu/Documents/Network%20codes%20documents/Implementation/CNC/IGD-RoCoF% 73%5C_%7Dwithstand%73%5C_%7Dcapability.pdfspa
dc.relation.referencesFliess, M. & Join, C. (2013). Model-free control. https://doi.org/10.1080/00207179.2013.810345spa
dc.relation.referencesFrancis, B. A. & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457-465. https://doi.org/10.1016/0005-1098(76)90006-6spa
dc.relation.referencesFu, C. & Tan, W. (2017). Decentralised load frequency control for power systems with communication delays via active disturbance rejection. LET Generation, Transmission & Distribution. https://doi.org/10.1049/iet- gtd.2017.0852spa
dc.relation.referencesGanger, D., Zhang, J. & Vital, V. (2018). Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Transactions on Power Systems, 33(1), 1004-1012.spa
dc.relation.referencesGanguly, S., Shiva, C. K. & Mukherjee, V. (2018). Frequency stabilization of isolated and grid connected hybrid power system models. Journal of Energy Storage, 19, 145-159. https://doi.org/10.1016/j.est.2018.07.014spa
dc.relation.referencesGómez-Expósito, A., Conejo, A. & Cañizares, C. (2008). Electric Energy Systems: Analysis and Operation. CRC Press.spa
dc.relation.referencesGrainger, J. J. & Stevenson Jr, W. D. (1994). Power System Analysis. McGraw-Hill.spa
dc.relation.referencesGuo, Q. L. ke Tan, W. (2013). Load Frequency Control of Hybrid Power Systems via Active Disturbance Rejection Control (ADRC). Applied Mechanics and Materials, 325-326, 1145-1151. https://doi.org/10.4028/ www.scientific.net/AMM.325-326.1145spa
dc.relation.referencesHan, J. (2009). From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 56(3), 900-906. https://doi.org/10.1109/TIE.2008.2011621spa
dc.relation.referencesHermans, R. M., Joki, A., Lazar, M., Alessio, A., Van Den Bosch, P. P., Hiskens, I. A. & Bemporad, A. (2012). Assessment of non-centralised model predictive control techniques or electrical power networks. International Journal of Control, 85(8), 1162-1177. https://doi.org/10.1080/00207179.2012.679972spa
dc.relation.referencesHydro-Québec. (2005). Technical requirements for the connection of generation facilities to the Hydro-Québec transmission system: Supplementary requirements for wind generation.spa
dc.relation.referencesJayaweera, D. (2016). Smart Power Systems and Renewable Energy System Integration (D. Jayaweera, Ed.; Vol. 57). Springer International Publishing. https://doi.org/10.1007/978-3-319-30427-4spa
dc.relation.referencesKim, H., Zhu, M. & Lian, J. (2017). Distributed Robust Adaptive Frequency Control of Power Systems with Dynamic Loads. IEEE Transactions m Automatic Control, 1-10.spa
dc.relation.referencesKlein, N. (2015). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster.spa
dc.relation.referencesKundur, P., Paserba, J., Ajarapu, V., Anderson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D. R., Stankovic, A., Taylor, C., Van Cutsem, T. & Vittal, V. (2004). Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems, 19(3), 1387-1401. https://doi.org/10.1109/TPWRS.2004.825981spa
dc.relation.referencesKundur, P. (1994). Power system stability and control. McGraw-Hill.spa
dc.relation.referencesLalor, G., Mullane, A. & O'Malley, M. (2005). Frequency control and wind turbine technologies. IEEE Transactions on Power Systems, 20(4), 1905-1913. https://dol.org/10.1109/TPWRS.2005.857393spa
dc.relation.referencesLi, P., Hu, W., Hu, R., Huang, Q., Yao, J. & Chen, Z. (2017). Strategy for wind power plant contribution to frequency control under variable wind speed. Renewable Energy, 1-11. https://doi.org/10.1016/j. renene.2017.12.046spa
dc.relation.referencesLi, Z. & Duan, Z. (2015). Cooperative Control of Multi-Agent Systems: A Consensus Region Approach. CRC Press.spa
dc.relation.referencesLiu, F., Li, Y., Cao, Y., She, J. & Wu, M. (2016). A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System. IEEE Transactions on Power Systems, 31(4), 3320-3321. https://doi.org/10.1109/TPWRS.2015.2480005spa
dc.relation.referencesLiu, X., Nong, H., Xi, K. & Yao, X. (2013). Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System. Mathematical Problems in Engineering.spa
dc.relation.referencesMachowski, J., Bialek, J. W. & Bumby, J. R. (2008). Power System Dynamics, Stability and Control (and ed.). John Wiley & Sons.spa
dc.relation.referencesMaestre, J. M. & Negenborn, R. R. (2014). Distributed Model Predictive Control Made Easy. Springer. https://doi. org/https://doi.org/10.1007/978-94-007-7006-5spa
dc.relation.referencesMejía Reyes, E. O. (2014). Regulación Primaria de Frecuencia de Sistemas Eléctricos con Alta Penetración de Energía Eólica. Instituto de Energía Eléctrica - Universidad Nacional de San Juan.spa
dc.relation.referencesMilano, F. & Ortega Manjavacas, A. (2020). Frequency Variations in Power Systems: Modeling, State Estimation and Control. Wiley.spa
dc.relation.referencesMohamed, T. H., Bevrani, H., Hassan, A. A. & Hiyama, T. (2011). Decentralized model predictive based load frequency control in an interconnected power system. Energy Conversion and Management, 52(2), 1208-1214. https://doi.org/10.1016/j.enconman.2010.09.016spa
dc.relation.referencesMorris, C. & Jungjohann, A. (2016). Energy Democracy - Germany's Energiewende to Renewables. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-31891-2spa
dc.relation.referencesNanou, S. I., Papakonstantinou, A. G. & Papathanassiou, S. A. (2015). A generic model of two-stage grid- connected PV systems with primary frequency response and inertia emulation. Electric Power Systems Research, 127, 186-196. https://doi.org/10.1016/j.epsr.2015.06.011spa
dc.relation.referencesPandey, S. K., Mohanty, S. R. & Kishor, N. (2013). A literature survey on load-frequency control for conven- tional and distribution generation power systems. Renewable and Sustainable Energy Reviews, 25, 318-334. https://doi.org/10.1016/j.rser.2013.04.029spa
dc.relation.referencesPradeepthi Pavani, A. & Abhilash, T. (2017). Multi Area Load Frequency Control of Power System Involving Renewable And Non-Renewable Energy Sources. International Conference on Innovations in Power and Advanced Computing Technologies, 1-5.spa
dc.relation.referencesRawat, S., Bhola, J., Panda, M. K. & Rath, B. (2016). Load Frequency control of a Renewable Hybrid Power System with Simple Fuzzy Logic controller, 918-923.spa
dc.relation.referencesREN. (2019). Renewable Now (REN.net). ren21.net/reports/global-status-report/spa
dc.relation.referencesRinke, T. B. (2011). MPC-based Frequency Regulation and Inertia Mimicking for Improved Grid Integration of Renewable Energy Sources (Doctoral dissertation). Swiss Federal Institute of Technology (ETH) Zurich and Ruhr-Universität Bochum.spa
dc.relation.referencesRodríguez-Amenedo, J. L., Arnalte, S. & Burgos, J. C. (2002). Automatic generation control of a wind farm with variable speed. Energy Conversion, IEEE Transactions on, 17(2), 279-284. https://doi.org/10.1109/ TEC.2002.1009481spa
dc.relation.referencesSaadat, H. (1999). Power Systems Analysis (1st). McGraw-Hill.spa
dc.relation.referencesShankar, R., Pradhan, S., Chatterjee, K. & Mandal, R. (2017). A comprehensive state of the art literature survey on LFC mechanism for power system. Renewable and Sustainable Energy Reviews, 76( April), 1185- 1207. https://doi.org/10.1016/j.rser.2017.02.064spa
dc.relation.referencesShayeghi, H., Shayanfar, H. A. & Jalili, A. (2009). Load frequency control strategies: A state-of-the-art survey for the researcher. Energy Conversion and Management, 50(2), 344-353. https://doi. org / 10.1016/j. enconman.2008.09.014spa
dc.relation.referencesSira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. & Zurita-Bustamante, E. W. (2018). Active Disturbance Rejection Control of Dynamic Systems: A Flatness-based Approach. Butterworth-Heinemann.spa
dc.relation.referencesSumathi, S., Ashok Kumar, L. & Surekha, P. (2015). Solar PV and Wind Energy Conversion Systems. Springer. https://doi.org/10.1007/978-3-319-14941-7spa
dc.relation.referencesTang, Y., Bai, Y., Huang, C. & Du, B. (2015). Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy. Energy Conversion and Management, 95, 259-271. https://doi.org/10.1016/j.enconman.2015.02.005spa
dc.relation.referencesToulabi, M., Bahrami, S. & Ranjbar, A. M. (2017). Application of Edge theorem for robust stability analysis of a power system with participating wind power plants in automatic generation control task. IET Renewable Power Generation, 12(7), 1049-1057. https://doi.org/10.1049/iet-rpg.2016.0931spa
dc.relation.referencesUnidad de Planeación Minero Energética. (2014). Integración de energías renovables no convencionales en Colombia.spa
dc.relation.referencesVenkat, A. N., Hiskens, I. A., Rawlings, J. B. & Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Transactions on Control Systems Technology, 16(6), 1192-1206. https://doi.org/10.1109/TCST.2008.919414spa
dc.relation.referencesWang, C. & McCalley, J. D. (2013). Impact of wind power on control performance standards. International Journal of Electrical Power and Energy Systems, 47(1), 225-234. https://doi.org/10.1016/j.ijepes.2012.11.010spa
dc.relation.referencesWang, Z., Liu, F., Low, S. H., Zhao, C. & Mei, S. (2018). Distributed Frequency Control with Operational Constraints, Part II : Network Power Balance. IEEE Transactions on Smart Grid. https://doi.org/10.1109/ TSG.2017.2731811spa
dc.relation.referencesWeitenberg, E., Jiang, Y., Zhao, C., Mallada, E., De Persis, C. & Dörfler, F. (2017). Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs. http://arxiv.org/abs/1711. 07332spa
dc.relation.referencesYazdani, A., Di Fazio, A. R., Ghoddami, H., Russo, M., Kazerani, M., Jatskevich, J., Strunz, K., Leva, S. & Martinez, J. A. (2011). Modeling Guidelines and a Benchmark for Power System Simulation Studies of Three-Phase Single-Stage Photovoltaic Systems Task Force on Modeling and Analysis of Electronically-Coupled Distributed Resources. IEEE Transactions on Power Delivery, 26(2), 1247-1264.spa
dc.relation.referencesZheng, Y., Zhou, J., Xu, Y., Zhang, Y. & Qian, Z. (2017). A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions. ISA Transactions, 68, 127-140. https://doi.org/10.1016/j.isatra.2017.03.009spa
dc.relation.referencesZheng, Y., Li, S. & Li, N. (2011). Distributed model predictive control over network information exchange for large-scale systems. Control Engineering Practice, 19(7), 757-769. https://doi.org/10.1016/j.conengprac. 2011.04.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalControl de frecuenciaspa
dc.subject.proposalControl de rechazo activo de perturbacionesspa
dc.subject.proposalControl automático de generaciónspa
dc.subject.proposalControl de frecuencia de cargaspa
dc.subject.proposalFrequency controleng
dc.subject.proposalActive disturbance rejection controleng
dc.subject.proposalAutomatic generation controleng
dc.subject.proposalLoad frequency controleng
dc.subject.unescoEnergía eólica
dc.subject.unescoWind power
dc.subject.unescoFuente de energía renovable
dc.subject.unescoRenewable energy sources
dc.titleDecentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generationeng
dc.title.translatedControl de frecuencia descentralizado para un sistema de potencia con alta penetración de generación eólica y solar fotovoltaicaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020775885.2021.pdf
Tamaño:
7.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: