Pronóstico del cumplimiento de pago de los clientes usando aprendizaje automático
| dc.contributor.advisor | Velásquez Henao, Juan David | spa |
| dc.contributor.author | Campos Cortesía, Zuleyca Carolina | spa |
| dc.contributor.corporatename | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.date.accessioned | 2020-08-27T21:32:06Z | spa |
| dc.date.available | 2020-08-27T21:32:06Z | spa |
| dc.date.issued | 2020-07-11 | spa |
| dc.description.abstract | The collection score is presented as a support for the work carried out by the collection area of Créditos Orbe company. The collection score seeks to direct collection resources and strategies to groups of clients determined by their probability of payment, which positively impacts the effectiveness of collection and the efficiency of the process. The literature review shows that only 1.5% of the score models in the last 10 years are focused on collection; These models are generally used for credit placement. In this work, a collection score model is carried out, which is trained based on the historical information of the payment behavior of clients with active credits in the company. The company currently has a logistic regression model, which they use to direct collection strategies. Alternative models are proposed that can improve the precision of the current model, in light of the findings of the literature review. Finally, after training K-nearest neighbor models, logistic regression; and assembly models such as random forests, majority vote, adaboost and bagged with decision trees; the prototype based on random forests performs best, exceeding the metrics of the current model. The prototype is delivered to the company for weekly use, as well as the necessary tools to monitor it and generate performance alerts | spa |
| dc.description.abstract | El score de cartera se presenta como un apoyo para la labor realizada por el área de cartera de la empresa Créditos Orbe. Con el score de cartera, se busca dirigir los recursos y las estrategias de cobro a grupos de clientes determinados por su probabilidad de pago, lo cual impacta positivamente en la eficacia del recaudo y la eficiencia del proceso. La revisión de literatura expone que solo el 1,5% de los modelos de score en los últimos 10 años están enfocados en la cobranza; estos modelos son usados generalmente para la colocación del crédito. En este trabajo se realiza un modelo para score de cartera el cual es entrenado a partir de la información histórica de comportamiento de pago de los clientes con créditos activos en la empresa. La empresa actualmente cuenta con un modelo de regresión logística, el cual usan para dirigir estrategias de cobranza. Se plantean modelos alternativos que pueden mejorar la precisión del modelo actual, a la luz de los hallazgos de la revisión de literatura. Finalmente, después de entrenar modelos de vecino más cercano, regresión logística; y modelos de ensamble como bosques aleatorios, voto mayoritario, adaboost y bagged con árboles de decisión; el prototipo basado en bosques aleatorios es el que mejor se desempeña, superando las métricas del modelo actual. Se le hace entrega a la empresa del prototipo para su uso semanal, así como también, de las herramientas necesarias para monitorearlo y generar alertas de rendimiento | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 81 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78297 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
| dc.relation.references | Abe, N., Kowalczyk, M., Domick, M., Gardinier, T., Melville, P., Pendus, C., … Cooley, B. R. (2010). Optimizing debt collections using constrained reinforcement learning. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’10, 75. https://doi.org/10.1145/1835804.1835817 | spa |
| dc.relation.references | Anagnostopoulos, T. T., & Skourlas, C. (2014). Ensemble Majority Voting Classifier for Speech Emotion Recognition and Prediction. (August). https://doi.org/10.1108/JSIT-01-2014-0009 | spa |
| dc.relation.references | Attigeri, G., M, M. P. M., & Pai, R. M. (2019). Framework to predict NPA/Willful defaults in corporate loans: a big data approach. International Journal of Electrical and Computer Engineering (IJECE), 9(5), 3786–3797. https://doi.org/10.11591/IJECE.V9I5.PP%P | spa |
| dc.relation.references | Bastos, J. A. (2014). Ensemble Predictions of Recovery Rates. Journal of Financial Services Research, 46(2), 177–193. https://doi.org/10.1007/s10693-013-0165-3 | spa |
| dc.relation.references | Bellotti, T., & Crook, J. (2009). Credit scoring with macroeconomic variables using survival analysis. Journal of the Operational Research Society, 60(12), 1699–1707. https://doi.org/10.1057/jors.2008.130 | spa |
| dc.relation.references | Boz, Z., Gunnec, D., Birbil, S. I., & Öztürk, M. K. (2018). Reassessment and Monitoring of Loan Applications with Machine Learning. Applied Artificial Intelligence, 32(9–10), 939–955. https://doi.org/10.1080/08839514.2018.1525517 | spa |
| dc.relation.references | Cao, G., Downes, A., Khan, S., Wong, W., & Xu, G. (2018). Taxpayer Behavior Prediction in SMS Campaigns. 2018 5th International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC), 19–23. https://doi.org/10.1109/BESC.2018.8697317 | spa |
| dc.relation.references | Chavarín Rodríguez, R. (2015). Revista mexicana de economía y finanzas. In Revista mexicana de economía y finanzas (Vol. 10). Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-53462015000100073 | spa |
| dc.relation.references | Cheng, D., & Cirillo, P. (2018). A reinforced urn process modeling of recovery rates and recovery times. Journal of Banking & Finance, 96, 1–17. https://doi.org/10.1016/j.jbankfin.2018.08.014 | spa |
| dc.relation.references | Cunningham, P., & Delany, S. J. (2014). k-Nearest neighbour classifiers k -Nearest Neighbour Classifiers. (April 2007). | spa |
| dc.relation.references | Dirick, L., Bellotti, T., Claeskens, G., & Baesens, B. (2019). Macro-Economic Factors in Credit Risk Calculations: Including Time-Varying Covariates in Mixture Cure Models. Journal of Business & Economic Statistics, 37(1), 40–53. https://doi.org/10.1080/07350015.2016.1260471 | spa |
| dc.relation.references | Dirick, L., Claeskens, G., & Baesens, B. (2017). Time to default in credit scoring using survival analysis: a benchmark study. Journal of the Operational Research Society, 68(6), 652–665. https://doi.org/10.1057/s41274-016-0128-9 | spa |
| dc.relation.references | Dressler, J. B., & Stokes, J. R. (2010). Survival analysis and mortgage termination at AgChoice ACA. Agricultural Finance Review, 70(1), 21–36. https://doi.org/10.1108/00021461011042611 | spa |
| dc.relation.references | Górajski, M., Serwa, D., & Wośko, Z. (2019). Measuring expected time to default under stress conditions for corporate loans. Empirical Economics, 57(1), 31–52. https://doi.org/10.1007/s00181-018-1435-6 | spa |
| dc.relation.references | Hector, C. (2011). Debt Collection in the Information Age : New Technologies and the Fair Debt Collection Practices Act Debt Collection in the Information Age : New Technologies and the Fair Debt Collection Practices Act. 99(6). | spa |
| dc.relation.references | James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). Springer Texts in Statistics An Introduction to Statistical Learning. | spa |
| dc.relation.references | Jiang, C., Wang, Z., & Zhao, H. (2019). A prediction-driven mixture cure model and its application in credit scoring. European Journal of Operational Research, 277(1), 20–31. https://doi.org/10.1016/j.ejor.2019.01.072 | spa |
| dc.relation.references | Kajdanowicz, T., Plamowski, S., Kazienko, P., & Indyk, W. (2012). Transfer Learning Approach to Debt Portfolio Appraisal. https://doi.org/10.1007/978-3-642-28931-6_5 | spa |
| dc.relation.references | Kim, J., & Kang, P. (2016). Late payment prediction models for fair allocation of customer contact lists to call center agents. Decision Support Systems, 85, 84–101. https://doi.org/10.1016/j.dss.2016.03.002 | spa |
| dc.relation.references | Li, Y., Li, Y., & Li, Y. (2019). What factors are influencing credit card customer’s default behavior in China? A study based on survival analysis. Physica A: Statistical Mechanics and Its Applications, 526, 120861. https://doi.org/10.1016/j.physa.2019.04.097 | spa |
| dc.relation.references | Marimo, M., Clive Malwandla, M., & Gerbrand Breed, D. (2017). A CROSS-SECTIONAL SURVIVAL ANALYSIS REGRESSION MODEL WITH APPLICATIONS TO CONSUMER CREDIT RISK. In South African Statist. J (Vol. 51). Retrieved from https://pdfs.semanticscholar.org/4166/bd323a19ad0256e62e34d64c929610fefa12.pdf | spa |
| dc.relation.references | Olivella, V. (2018). Panorama de las tendencias de crédito en Colombia Segundo trimestre de 2018 | spa |
| dc.relation.references | Onar, S. C., Oztaysi, B., & Kahraman, C. (2018). a Fuzzy Rule Based Inference System for Early Debt Collection. Technological and Economic Development of Economy, 24(5), 1845–1865. https://doi.org/10.3846/20294913.2016.1266409 | spa |
| dc.relation.references | Peng, C. J., & Ingersoll, G. M. (2014). An Introduction to Logistic Regression Analysis and Reporting. (September 2002). https://doi.org/10.1080/00220670209598786 | spa |
| dc.relation.references | Pontificia Universidad Javeriana. Departamento de Administración de Empresas., M. L., & Saavedra García, M. J. (2010). Cuadernos de administración. In Cuadernos de Administración (Vol. 23). Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-35922010000100013 | spa |
| dc.relation.references | Sarlija, N., Bensic, M., & Zekic-Susac, M. (2009). Comparison procedure of predicting the time to default in behavioural scoring. Expert Systems with Applications, 36(5), 8778–8788. https://doi.org/10.1016/j.eswa.2008.11.042 | spa |
| dc.relation.references | Shetty, A. S., & Manoj,R. (n.d.). Prediction Of Default Credit Card Users Using Data Mining Techniques. Retrieved from https://www.ijitee.org/wp-content/uploads/papers/v8i7/G5754058719.pdf | spa |
| dc.relation.references | So, M. C., Mues, C., de Almeida Filho, A. T., & Thomas, L. C. (2019). Debtor level collection operations using Bayesian dynamic programming. Journal of the Operational Research Society, 70(8), 1332–1348. https://doi.org/10.1080/01605682.2018.1506557 | spa |
| dc.relation.references | Stachniss, C. (2005). Supervised Learning of Places from Range Data using AdaBoost. (November 2016). https://doi.org/10.1109/ROBOT.2005.1570363 | spa |
| dc.relation.references | Sun, Z., Wiering, M. A., & Petkov, N. (2014a). Classification system for mortgage arrear management. IEEE/IAFE Conference on Computational Intelligence for Financial Engineering, Proceedings (CIFEr), (February), 489–496. https://doi.org/10.1109/CIFEr.2014.6924113 | spa |
| dc.relation.references | Sun, Z., Wiering, M. A., & Petkov, N. (2014b). Classification system for mortgage arrear management. 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), 489–496. https://doi.org/10.1109/CIFEr.2014.6924113 | spa |
| dc.relation.references | Wijewardhana, U. (2018). A Mathematical Model for Predicting Debt Repayment: A Technical Note. Australasian Accounting, Business and Finance Journal, 12(3), 107–115. https://doi.org/10.14453/aabfj.v12i3.8 | spa |
| dc.relation.references | Wittlinger, B., Carranza, L., & Mori, T. (2008). Mejores Prácticas en Estrategias de Cobranza. InSight, 26(November), 1–23. https://doi.org/10.1177/2158244017731494 | spa |
| dc.relation.references | Yurynets, R., Yurynets, Z., Dosyn, D., & Kis, Y. (n.d.). Risk Assessment Technology of Crediting with the Use of Logistic Regression Model. Retrieved from http://ceur-ws.org/Vol-2362/paper14.pdf | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
| dc.subject.ddc | 310 - Colecciones de estadística general | spa |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::003 - Sistemas | spa |
| dc.subject.proposal | score de cartera | spa |
| dc.subject.proposal | collection score | eng |
| dc.subject.proposal | machine learning | eng |
| dc.subject.proposal | aprendizaje automático | spa |
| dc.subject.proposal | random forest | eng |
| dc.subject.proposal | bosques aleatorios | spa |
| dc.subject.proposal | gestión de cobranza | spa |
| dc.subject.proposal | collection management | eng |
| dc.title | Pronóstico del cumplimiento de pago de los clientes usando aprendizaje automático | spa |
| dc.title.alternative | Forecasting customer payment compliance using machine learning | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 642171.2020.pdf
- Tamaño:
- 1.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

