Mapeo genético asociativo de caracteres agronómicos en accesiones de yuca (Manihot esculenta Crantz)
dc.contributor.advisor | López Álvarez, Diana Carolina | |
dc.contributor.advisor | Gimode, Winnie | |
dc.contributor.author | Marín Lenis, Diana Victoria | |
dc.contributor.orcid | 0000-0002-8990-3497 | spa |
dc.contributor.projectleader | Luis Augusto Becerra Lopez-Lavalle | |
dc.date.accessioned | 2025-01-23T19:08:54Z | |
dc.date.available | 2025-01-23T19:08:54Z | |
dc.date.issued | 2025-06-06 | |
dc.description | Ilustraciones, fotografías, tablas | spa |
dc.description.abstract | La biotecnología cumple un papel de gran importancia en el mejoramiento de cultivos, para Manihot esculenta comúnmente conocida como yuca, los avances en mejoramiento genético en plantas han ido incrementando, a la fecha, se han realizado estudios de asociación de genoma completo (GWAS), para caracterizar la diversidad fenotípica del germoplasma con respecto a varios caracteres agronómicos. Por ello y basándose en estudios anteriores el objetivo de esta investigación fue identificar marcadores tipo SNPs (Polimorfismo puntual o variación en la secuencia de DNA) asociados a características de interés agronómico como porcentaje de materia seca gravimétrica (%MSG), tipo de planta (EP) y rendimiento t/ha (Rend) en un panel de 399 accesiones de yuca. Los datos fueron analizados a través de la metodología GWAS, el control de calidad de los datos se llevó a cabo utilizando GAPIT mediante el paquete lme4 en el software R. 4. Se identificaron 9 SNPs en rendimiento, 19 en porcentaje de materia seca, y ningún SNPs para tipo de planta, cada SNPs fue anotado e investigado en cada una de las plataformas bioinformáticas (NCBI, Panther, gramene, Uniprot, Interpro y Phytozome) para correlacionarlos directamente con los genes y proteínas codificantes, para posteriormente relacionarlas con las características de interés agronómico y más adelanté ser tenidas en cuenta en futuras investigaciones y proyectos en los programas de mejoramiento del programa de yuca en CIAT. (Texto tomado de la fuente) | spa |
dc.description.abstract | Biotechnology plays a crucial role in crop improvement, particularly for Manihot esculenta, commonly known as cassava. Advances in genetic improvement in plants have been steadily increasing. To date, genome-wide association studies (GWAS) have been conducted to characterize the phenotypic diversity of germplasm associated with various agronomic traits. Therefore, building on previous studies, the objective of this research was to identify Single Nucleotide Polymorphism (SNP) markers associated with agronomically significant traits such as dry matter content, plant type (EP), and yield in a panel of 399 cassava accessions. Data were analyzed through GWAS methodology, and data quality control was performed using GAPIT through the lme4 package in R software. Nine SNPs were identified for yield, nineteen for dry matter percentage, and no SNPs for plant type. Each SNP was annotated and investigated using various bioinformatics platforms (NCBI, Panther, Gramene, Uniprot, Interpro, and Phytozome) o directly correlate them with the coding genes and proteins. Subsequently, these correlations were linked to the agronomically significant traits and will be considered in future research and projects within the cassava improvement programs at CIAT. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Biológicas | spa |
dc.description.methods | El material vegetal se obtuvo de la colección del banco de germoplasma de CIAT, específicamente de un panel de diversidad genética proveniente de diferentes zonas tropicales (Tabla 1), selección que se fue depurando a través de los años de acuerdo con la disponibilidad y estudios que se fueron efectuando para conocer calidad, procedencia y contribución en los materiales de mejoramiento. Estas accesiones fueron sembradas anualmente y cosechadas a los 10 meses después de la siembra durante dos ciclos de cosecha. Cada unidad experimental se basó en asignar una parcela a una accesión específica de yuca seleccionada para el estudio. Cada parcela estaba compuesta por un total de 16 plantas, distribuidas a una distancia de 40 cm dentro del surco y 60 cm. Se tuvieron en cuenta datos históricos de un panel de diversidad del programa de mejoramiento de yuca del CIAT y datos de los ensayos de diversidad que se encontraban en vigencia. La evaluación se realizó planta por planta, donde se evaluaron 18 variables en un transcurso de siete años consecutivos. Posteriormente, se seleccionaron las variables de interés de acuerdo con la agrupación del análisis estadístico y el interés agronómico en el programa de mejoramiento | spa |
dc.description.researcharea | Biotecnología Vegetal | spa |
dc.format.extent | xv, 94 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87359 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas | spa |
dc.relation.references | Afolabi Agbona, I. N. and N. M. B. T. I. U. (2022). Ontología de la yuca. | spa |
dc.relation.references | Akoh, C. C., Lee, G. C., Liaw, Y. C., Huang, T. H., & Shaw, J. F. (2004). GDSL family of serine esterases/lipases. In Progress in Lipid Research (Vol. 43, Issue 6). https://doi.org/10.1016/j.plipres.2004.09.002 | spa |
dc.relation.references | An, F., Xiao, X., Chen, T., Xue, J., Luo, X., Ou, W., Li, K., Cai, J., & Chen, S. (2022). Systematic Analysis of bHLH Transcription Factors in Cassava Uncovers Their Roles in Postharvest Physiological Deterioration and Cyanogenic Glycosides Biosynthesis. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.901128 | spa |
dc.relation.references | Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. In Nature Reviews Genetics (Vol. 17, Issue 2). https://doi.org/10.1038/nrg.2015.28 | spa |
dc.relation.references | Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003376 | spa |
dc.relation.references | Balyejusa Kizito, E., Rönnberg-Wästljung, A. C., Egwang, T., Gullberg, U., Fregene, M., & Westerbergh, A. (2007). Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas, 144(4). https://doi.org/10.1111/j.2007.0018-0661.01975.x | spa |
dc.relation.references | Barre, A., Bourne, Y., Van Damme, E. J. M., Peumans, W. J., & Rougé, P. (2001). Mannose-binding plant lectins: Different structural scaffolds for a common sugar-recognition process. In Biochimie (Vol. 83, Issue 7). https://doi.org/10.1016/S0300-9084(01)01315-3 | spa |
dc.relation.references | Barre, A., Van Damme, E. J. M., Peumans, W. J., & Rougé, P. (1997). Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Molecular Biology, 33(4). https://doi.org/10.1023/A:1005704616565 | spa |
dc.relation.references | Becerra V., V., & Paredes C., M. (2000). USO DE MARCADORES BIOQUÍMICOS Y MOLECULARES EN ESTUDIOS DE DIVERSIDAD GENÉTICA. Agricultura Técnica, 60(3). https://doi.org/10.4067/s0365-28072000000300007 | spa |
dc.relation.references | Bonnafous, F., Fievet, G., Blanchet, N., Boniface, M. C., Carrère, S., Gouzy, J., Legrand, L., Marage, G., Bret-Mestries, E., Munos, S., Pouilly, N., Vincourt, P., Langlade, N., & Mangin, B. (2018). Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theoretical and Applied Genetics, 131(2). https://doi.org/10.1007/s00122-017-3003-4 | spa |
dc.relation.references | Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. In Genome Biology (Vol. 12, Issue 10). https://doi.org/10.1186/gb-2011-12-10-232 | spa |
dc.relation.references | Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19). https://doi.org/10.1093/bioinformatics/btm308 | spa |
dc.relation.references | Bredeson, J. V., Lyons, J. B., Prochnik, S. E., Wu, G. A., Ha, C. M., Edsinger-Gonzales, E., Grimwood, J., Schmutz, J., Rabbi, I. Y., Egesi, C., Nauluvula, P., Lebot, V., Ndunguru, J., Mkamilo, G., Bart, R. S., Setter, T. L., Gleadow, R. M., Kulakow, P., Ferguson, M. E., … Rokhsar, D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 34(5), 562–570. https://doi.org/10.1038/nbt.3535 | spa |
dc.relation.references | Ceballos, H. (2002). La yuca en el Tercer Milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización. In Ciat. | spa |
dc.relation.references | Ceballos, H., & De la Cruz, G. A. (2002). Capitulo 2 Taxonomía y Morfología de la Yuca. In La Yuca en el Tercer Milenio: Sistemas modernos de produccion, procesamiento, utilizacion y comercializacion. | spa |
dc.relation.references | Ceballos, H., Kulakow, P., & Hershey, C. (2012). Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools. Tropical Plant Biology, 5(1). https://doi.org/10.1007/s12042-012-9094-9 | spa |
dc.relation.references | Chávez, Y. A., & Martínez, B. (2010). Estudios de asociación mediante rastreo genómico y su contribución en la genética del asma. In Salud Uninorte (Vol. 26, Issue 2). Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang | spa |
dc.relation.references | Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. In Euphytica (Vol. 142, Issues 1–2). https://doi.org/10.1007/s10681-005-1681 Chaves-Barrantes, N. F., & Gutiérrez-Soto, M. V. (2016). Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y siológicos. Agronomía Mesoamericana, 28(1). https://doi.org/10.15517/am.v28i1.21903 | spa |
dc.relation.references | De Silva, K., Laska, B., Brown, C., Sederoff, H. W., & Khodakovskaya, M. (2011). Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): A novel repressor of abiotic stress response. In Journal of Experimental Botany (Vol. 62, Issue 8). https://doi.org/10.1093/jxb/erq468 | spa |
dc.relation.references | Ding, L. N., Li, M., Guo, X. J., Tang, M. Q., Cao, J., Wang, Z., Liu, R., Zhu, K. M., Guo, L., Liu, S. Y., & Tan, X. L. (2020). Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnology Journal, 18(5). https://doi.org/10.1111/pbi.13289 | spa |
dc.relation.references | Djami-Tchatchou, A. T., & Dubery, I. A. (2019). miR393 regulation of lectin receptor-like kinases associated with LPS perception in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 513(1). https://doi.org/10.1016/j.bbrc.2019.03.170 | spa |
dc.relation.references | Doyle, JJ; Doyle, J. (1990). Isolation of plant DNA from fresh tissue. In Focus (Vol. 12, Issue 1). | spa |
dc.relation.references | Dubin, M. J., Zhang, P., Meng, D., Remigereau, M. S., Osborne, E. J., Casale, F. P., Drewe, P., Kahles, A., Jean, G., Vilhjálmsson, B., Jagoda, J., Irez, S., Voronin, V., Song, Q., Long, Q., Rätsch, G., Stegle, O., Clark, R. M., & Nordborg, M. (2015). DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. ELife, 4(MAY). https://doi.org/10.7554/eLife.05255 | spa |
dc.relation.references | El-Sharkawy, M. A. (2004). Cassava biology and physiology. In Plant molecular biology (Vol. 56, Issue 4). https://doi.org/10.1007/s11103-005-2270-7 | spa |
dc.relation.references | Esuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., Buckler, E. S., & Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1). https://doi.org/10.1007/s10681-016-1772-5 | spa |
dc.relation.references | FAOSTAT. (2022). Food and Agriculture Organization of the United Nations - Statistics Division, http://www.fao.org/faostat/en/#data/QC (accessed 08.03.2022). In FAOSTAT. | spa |
dc.relation.references | Fernández-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, & Mueller LA. (n.d.). YucaBase. Retrieved April 28, 2024, from https://www.cassavabase.org/help | spa |
dc.relation.references | Food and Agriculture Organization. (2021). FAO, 2021. In The State of Food Security and Nutrition in the World. | spa |
dc.relation.references | Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0090346 | spa |
dc.relation.references | Gómez-Espejo, A. L., Sansaloni, C. P., Burgueño, J., Toledo, F. H., & Reyes-Valdés, M. H. (2021). Asociación de genoma completo para el hábito de crecimiento en trigo harinero (Triticum aestivum L.). Ecosistemas y Recursos Agropecuarios, 8(2). https://doi.org/10.19136/era.a8n2.2912 | spa |
dc.relation.references | Guo, J., Sun, B., He, H., Zhang, Y., Tian, H., & Wang, B. (2021). Current understanding of bhlh transcription factors in plant abiotic stress tolerance. In International Journal of Molecular Sciences (Vol. 22, Issue 9). https://doi.org/10.3390/ijms22094921 | spa |
dc.relation.references | Herder, G. Den, Van Isterdael, G., Beeckman, T., & De Smet, I. (2010). The roots of a new green revolution. In Trends in Plant Science (Vol. 15, Issue 11). https://doi.org/10.1016/j.tplants.2010.08.009 | spa |
dc.relation.references | Hester, G., Kaku, H., Goldstein, I. J., & Wright, C. S. (1995). Structure of mannose-specific snowdrop (Galanthusnivalis) lectin is representative of a new plant lectin family. Nature Structural Biology, 2(6). https://doi.org/10.1038/nsb0695-472 | spa |
dc.relation.references | Hong, J. K., Choi, H. W., Hwang, I. S., Kim, D. S., Kim, N. H., Choi, D. S., Kim, Y. J., & Hwang, B. K. (2008). Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta, 227(3). https://doi.org/10.1007/s00425-007-0637-5 | spa |
dc.relation.references | Jung, H. J., & Kang, H. (2014 Jung, H. J., & Kang, H. (2014 Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2019). BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2). https://doi.o | spa |
dc.relation.references | The Arabidopsis U11/U12-65K is an indispensible component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development. Plant Journal, 78(5). https://doi.org/10.1111/tpj.12498 | spa |
dc.relation.references | Karp, A., Edwards, K., Caetano-Anollés, G., & Peter Gresshoff, M. (1998). DNA markers: a global overview. In DNA markers: protocols, aplications and overviews. | spa |
dc.relation.references | Kawashima, T. (2019). Comparative and Evolutionary Genomics. In Encyclopedia of Bioinformatics and Computational Biology (pp. 257–267). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20236-7 | spa |
dc.relation.references | Knighton, D. R., Zheng, J., Ten Eyck, L. F., Ashford, V. A., Xuong, N.-H., Taylor, S. S., & Sowadski, J. M. (1991). Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Science, 253(5018), 407–414. https://doi.org/10.1126/science.1862342 | spa |
dc.relation.references | Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. https://doi.org/10.1186/1746-4811-9-29 | spa |
dc.relation.references | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 | spa |
dc.relation.references | Lee, D. S., Kim, B. K., Kwon, S. J., Jin, H. C., & Park, O. K. (2009). Arabidopsis GDSL lipase two plays a role in pathogen defense via negative regulation of auxin signaling. Biochemical and Biophysical Research Communications, 379(4), 1038–1042. https://doi.org/10.1016/j.bbrc.2009.01.006 | spa |
dc.relation.references | Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 | spa |
dc.relation.references | Li, S., Liu, K., & Sun, Q. (2019). Comprehensive classification of the RNaseH-like domain-containing proteins in plants. BioRxiv, 1. | spa |
dc.relation.references | Li, Y., Fan, C., Xing, Y., Yun, P., Luo, L., Yan, B., Peng, B., Xie, W., Wang, G., Li, X., Xiao, J., Xu, C., & He, Y. (2014). Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 46(4), 398–404. https://doi.org/10.1038/ng.2923 | spa |
dc.relation.references | Liao, W., Cai, J., Xu, H., Wang, Y., Cao, Y., Ruan, M., Chen, S., & Peng, M. (2023). The transcription factor MebHLH18 in cassava functions in decreasing low temperature-induced leaf abscission to promote low-temperature tolerance. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1101821 | spa |
dc.relation.references | Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444 | spa |
dc.relation.references | López de Heredia, U. (2016). Las técnicas de secuenciación masiva en el estudio de la diversidad biológica. Munibe Ciencias Naturales, 64. https://doi.org/10.21630/mcn.2016.64.07 | spa |
dc.relation.references | Lorković, Z. J., Lehner, R., Forstner, C., & Barta, A. (2005). Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA, 11(7). https://doi.org/10.1261/rna.2440305 | spa |
dc.relation.references | Ma, R., Yuan, H., An, J., Hao, X., & Li, H. (2018). A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis. PLOS ONE, 13(4), e0195556. https://doi.org/10.1371/journal.pone.0195556 | spa |
dc.relation.references | Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17(2). https://doi.org/10.1101/gr.5681207 | spa |
dc.relation.references | Mojena, M., & Bertolí, M. P. (2004). RENDIMIENTO EN LA YUCA (Manihot esculenta). Agronomía Costarricense, 28(2), 87–94 | spa |
dc.relation.references | Moorthy, S. N., Jos, J. S., Nair, R. B., & Sreekumari, M. T. (1990). Variability of β-carotene content in cassava germplasm. Food Chemistry, 36(3). https://doi.org/10.1016/0308-8146(90)90058-C | spa |
dc.relation.references | Morante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J. C., Egesi, C., Cuambe, C. E., Escobar, A. F., Ortiz, D., Chávez, A. L., & Fregene, M. (2010). Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop Science, 50(4), 1333–1338. https://doi.org/10.2135/cropsci2009.11.0666 | spa |
dc.relation.references | Mostajo, G. (2018). PLAN NACIONAL DE CULTIVOS 2018-2019 APROBACION.compressed. Gerencia Regional de Agricultura. | spa |
dc.relation.references | NARANJO, M. Á., FORMENT, J., ROLDÁN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1 , a salt‐induced gene encoding a GDSL‐motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell & Environment, 29(10), 1890–1900. https://doi.org/10.1111/j.1365-3040.2006.01565.x | spa |
dc.relation.references | National Human Genome Research Institute. (2020). Genome-Wide Association Studies Fact Sheet. Genome-Wide Association Studies Fact Sheet. | spa |
dc.relation.references | Novoa Montenegro, N. A. (2017). Evaluación del tamaño de genoma en siete subpoblaciones de yuca Manihot esculenta Crantz representativas del Banco de Germoplasma de CIAT por citometría de flujo. https://ciencia.lasalle.edu.co/biologia | spa |
dc.relation.references | Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5). https://doi.org/10.1007/s00122-006-0333-z | spa |
dc.relation.references | Pantalião, G. F., Narciso, M., Guimarães, C., Castro, A., Colombari, J. M., Breseghello, F., Rodrigues, L., Vianello, R. P., Borba, T. O., & Brondani, C. (2016). Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica, 144(6), 651–664. https://doi.org/10.1007/s10709-016-9932-z | spa |
dc.relation.references | Rabbi, I. Y., Kayondo, S. I., Bauchet, G., Yusuf, M., Aghogho, C. I., Ogunpaimo, K., Uwugiaren, R., Smith, I. A., Peteti, P., Agbona, A., Parkes, E., Lydia, E., Wolfe, M., Jannink, J.-L., Egesi, C., & Kulakow, P. (2022). Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 109(3), 195–213. https://doi.org/10.1007/s11103-020-01038-3 | spa |
dc.relation.references | Rabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., Ramu, P., Jannink, J., & Kulakow, P. (2017). Genome‐Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. The Plant Genome, 10(3). https://doi.org/10.3835/plantgenome2016.09.0094 | spa |
dc.relation.references | Ranc, N., Muños, S., Xu, J., Le Paslier, M.-C., Chauveau, A., Bounon, R., Rolland, S., Bouchet, J.-P., Brunel, D., & Causse, M. (2012). Genome-Wide Association Mapping in Tomato ( Solanum lycopersicum ) Is Possible Using Genome Admixture of Solanum lycopersicum var. cerasiforme. G3 Genes|Genomes|Genetics, 2(8), 853–864. https://doi.org/10.1534/g3.112.002667 | spa |
dc.relation.references | Ranf, S., Gisch, N., Schäffer, M., Illig, T., Westphal, L., Knirel, Y. A., Sánchez-Carballo, P. M., Zähringer, U., Hückelhoven, R., Lee, J., & Scheel, D. (2015). A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology, 16(4), 426–433. https://doi.org/10.1038/ni.3124 | spa |
dc.relation.references | Rebolledo, M. C., Peña, A. L., Duitama, J., Cruz, D. F., Dingkuhn, M., Grenier, C., & Tohme, J. (2016). Combining Image Analysis, Genome Wide Association Studies and Different Field Trials to Reveal Stable Genetic Regions Related to Panicle Architecture and the Number of Spikelets per Panicle in Rice. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01384 | spa |
dc.relation.references | Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., Hunt, S. E., Cole, C. G., Coggill, P. C., Rice, C. M., Ning, Z., Rogers, J., Bentley, D. R., Kwok, P. Y., Mardis, E. R., … Altshuler, D. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409(6822). https://doi.org/10.1038/35057149 | spa |
dc.relation.references | Sánchez, T., Dufour, D., Moreno, J. L., Pizarro, M., Aragón, I. J., Domínguez, M., & Ceballos, H. (2013). Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biology and Technology, 86, 520–528. https://doi.org/10.1016/j.postharvbio.2013.07.014 | spa |
dc.relation.references | Schapire, A. L., Valpuesta, V., & Botella, M. A. (2006). TPR Proteins in Plant Hormone Signaling. Plant Signaling & Behavior, 1(5), 229–230. https://doi.org/10.4161/psb.1.5.3491 | spa |
dc.relation.references | Shen, G., Sun, W., Chen, Z., Shi, L., Hong, J., & Shi, J. (2022). Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. Plants, 11(4), 468. https://doi.org/10.3390/plants11040468 | spa |
dc.relation.references | Solis, J., Villordon, A., Baisakh, N., LaBonte, D., & Firon, N. (2014). Effect of drought on storage root development and gene expression profile of sweetpotato under greenhouse and field conditions. Journal of the American Society for Horticultural Science, 139(3). https://doi.org/10.21273/jashs.139.3.317 | spa |
dc.relation.references | Su, H. G., Zhang, X. H., Wang, T. T., Wei, W. L., Wang, Y. X., Chen, J., Zhou, Y. Bin, Chen, M., Ma, Y. Z., Xu, Z. S., & Min, D. H. (2020). Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00726 | spa |
dc.relation.references | Suazo S, J., Santos M, L., Silva A, V., Jara S, L., Palomino Z, H., & Blanco C, R. (2005). Estudio de asociación por desequilibrio de ligamiento entre los genes TGFA, RARA, y BCL3 y fisura labiopalatina no sindrómica (FLPNS) en la población chilena. Revista Médica de Chile, 133(9). https://doi.org/10.4067/s0034-98872005000900008 | spa |
dc.relation.references | Tan, X., Yan, S., Tan, R., Zhang, Z., Wang, Z., & Chen, J. (2014). Characterization and expression of a GDSL-like lipase gene from brassica napus in nicotiana benthamiana. Protein Journal, 33(1). https://doi.org/10.1007/s10930-013-9532-z | spa |
dc.relation.references | Téllez De Pablos, J. (2021). UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA. | spa |
dc.relation.references | Tello, D., Gonzalez‐Garcia, L. N., Gomez, J., Zuluaga‐Monares, J. C., Garcia, R., Angel, R., Mahecha, D., Duarte, E., Leon, M. del R., Reyes, F., Escobar‐Velásquez, C., Linares‐Vásquez, M., Cardozo, N., & Duitama, J. (2023). NGSEP 4: Efficient and accurate identification of orthogroups and whole‐genome alignment. Molecular Ecology Resources, 23(3), 712–724. https://doi.org/10.1111/1755-0998.13737 | spa |
dc.relation.references | Toledo-Ortiz, G., Huq, E., & Quail, P. H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 15(8). https://doi.org/10.1105/tpc.013839 | spa |
dc.relation.references | Toro, J. C., & Canas, A. (1983). Determinacion del contenido de materia seca y almidon en yuca por el sistema de gravedad especifica. International Center for Tropical Agriculture. https://hdl.handle.net/10568/81746 | spa |
dc.relation.references | Toro, J. C., & Cañas, A. (2002). Tecnologia 2, Determinación de Mateira Seca de las Raíces Frescas por el Método de la Gravedad Específica. In Centro Internacional de Agricultura Tropical - CIAT (Ed.), La yuca en el tercer milenio: sistemas modernos de producción, procesamiento, utilización y comercialización. Centro Internacional de Agricultura Tropical - CIAT. | spa |
dc.relation.references | Upton, C., & Buckley, J. T. (1995). A new family of lipolytic enzymes? Trends in Biochemical Sciences, 20(5), 178–179. https://doi.org/10.1016/S0968-0004(00)89002-7 | spa |
dc.relation.references | Van Verk, M. C., Hickman, R., Pieterse, C. M. J., & Van Wees, S. C. M. (2013). RNA-Seq: Revelation of the messengers. In Trends in Plant Science (Vol. 18, Issue 4). https://doi.org/10.1016/j.tplants.2013.02.001 | spa |
dc.relation.references | Wang, M., Jiang, N., Jia, T., Leach, L., Cockram, J., Waugh, R., Ramsay, L., Thomas, B., & Luo, Z. (2012). Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics, 124(2), 233–246. https://doi.org/10.1007/s00122-011-1697-2 | spa |
dc.relation.references | Wong, W. W. L., Griesman, J., & Feng, Z. Z. (2014). Imputing genotypes using regularized generalized linear regression models. Statistical Applications in Genetics and Molecular Biology, 13(5). https://doi.org/10.1515/sagmb-2012-0044 | spa |
dc.relation.references | Woo, H. R., Kim, H. J., Lim, P. O., & Nam, H. G. (2019). Leaf Senescence: Systems and Dynamics Aspects. In Annual Review of Plant Biology (Vol. 70). https://doi.org/10.1146/annurev-arplant-050718-095859 | spa |
dc.relation.references | Xu, T., Kim, B. M., Kwak, K. J., Jung, H. J., & Kang, H. (2016). The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development. Journal of Experimental Botany, 67(11). https://doi.org/10.1093/jxb/erw158 | spa |
dc.relation.references | Yadav, V. K., Yadav, V. K., Pant, P., Singh, S. P., Maurya, R., Sable, A., & Sawant, S. V. (2017). GhMYB1 regulates SCW stage‐specific expression of the GhGDSL promoter in the fibres of Gossypium hirsutum L. Plant Biotechnology Journal, 15(9), 1163–1174. https://doi.org/10.1111/pbi.12706 | spa |
dc.relation.references | Zapata, A., Mecánico, I., Neme, R., Sanabria, C., & López, C. (2011). ANÁLISIS DE ESTs DE YUCA (Manihot esculenta): UNA HERRAMIENTA PARA EL DESCUBRIMIENTO DE GENES Analysis of Cassava (Manihot esculenta) ESTs: A Tool for the Discovery of Genes. In Acta biol. Colomb (Vol. 16, Issue 1). http://www.ncbi.nlm.nih.gov/genomes/PLANTS/ | spa |
dc.relation.references | Zeng, C., Chen, Z., Xia, J., Zhang, K., Chen, X., Zhou, Y., Bo, W., Song, S., Deng, D., Guo, X., Wang, B., Zhou, J., Peng, H., Wang, W., Peng, M., & Zhang, W. (2014). Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava. BMC Plant Biology, 14(1), 207. https://doi.org/10.1186/s12870-014-0207-5 | spa |
dc.relation.references | Zhang, B., Zhang, L., Li, F., Zhang, D., Liu, X., Wang, H., Xu, Z., Chu, C., & Zhou, Y. (2017). Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nature Plants, 3. https://doi.org/10.1038/nplants.2017.17 | spa |
dc.relation.references | Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K., Ordovas, J. M., & Buckler, E. S. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42(4). https://doi.org/10.1038/ng.546 | spa |
dc.relation.references | Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., McClung, A. M., Bustamante, C. D., & McCouch, S. R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2(1), 467. https://doi.org/10.1038/ncomms1467 | spa |
dc.relation.references | Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Mapeo de asociación | |
dc.subject.agrovoc | Association mapping | |
dc.subject.agrovoc | Técnica genética | |
dc.subject.agrovoc | Genetic techniques | |
dc.subject.agrovoc | Genómica | |
dc.subject.agrovoc | Genomics | |
dc.subject.agrovoc | Mejoramiento genético | |
dc.subject.agrovoc | Genetic improvement | |
dc.subject.agrovoc | Marcador genético | |
dc.subject.agrovoc | Genetic markers | |
dc.subject.agrovoc | Fenotipado | |
dc.subject.agrovoc | Phénotypage | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.proposal | Yuca | spa |
dc.subject.proposal | GWAS | spa |
dc.subject.proposal | SNPs | spa |
dc.subject.proposal | Polimorfismo | spa |
dc.subject.proposal | Cassava | eng |
dc.subject.proposal | Polymorphism | eng |
dc.title | Mapeo genético asociativo de caracteres agronómicos en accesiones de yuca (Manihot esculenta Crantz) | spa |
dc.title.translated | Associative genetic mapping of agronomic traits in accessions of cassava (Manihot esculenta Crantz) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.fundername | Alianza Bioversity-CIAT | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1113669136.2024.pdf
- Tamaño:
- 7.13 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ciencias Biológicas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: