Mapeo genético asociativo de caracteres agronómicos en accesiones de yuca (Manihot esculenta Crantz)

dc.contributor.advisorLópez Álvarez, Diana Carolina
dc.contributor.advisorGimode, Winnie
dc.contributor.authorMarín Lenis, Diana Victoria
dc.contributor.orcid0000-0002-8990-3497spa
dc.contributor.projectleaderLuis Augusto Becerra Lopez-Lavalle
dc.date.accessioned2025-01-23T19:08:54Z
dc.date.available2025-01-23T19:08:54Z
dc.date.issued2025-06-06
dc.descriptionIlustraciones, fotografías, tablasspa
dc.description.abstractLa biotecnología cumple un papel de gran importancia en el mejoramiento de cultivos, para Manihot esculenta comúnmente conocida como yuca, los avances en mejoramiento genético en plantas han ido incrementando, a la fecha, se han realizado estudios de asociación de genoma completo (GWAS), para caracterizar la diversidad fenotípica del germoplasma con respecto a varios caracteres agronómicos. Por ello y basándose en estudios anteriores el objetivo de esta investigación fue identificar marcadores tipo SNPs (Polimorfismo puntual o variación en la secuencia de DNA) asociados a características de interés agronómico como porcentaje de materia seca gravimétrica (%MSG), tipo de planta (EP) y rendimiento t/ha (Rend) en un panel de 399 accesiones de yuca. Los datos fueron analizados a través de la metodología GWAS, el control de calidad de los datos se llevó a cabo utilizando GAPIT mediante el paquete lme4 en el software R. 4. Se identificaron 9 SNPs en rendimiento, 19 en porcentaje de materia seca, y ningún SNPs para tipo de planta, cada SNPs fue anotado e investigado en cada una de las plataformas bioinformáticas (NCBI, Panther, gramene, Uniprot, Interpro y Phytozome) para correlacionarlos directamente con los genes y proteínas codificantes, para posteriormente relacionarlas con las características de interés agronómico y más adelanté ser tenidas en cuenta en futuras investigaciones y proyectos en los programas de mejoramiento del programa de yuca en CIAT. (Texto tomado de la fuente)spa
dc.description.abstractBiotechnology plays a crucial role in crop improvement, particularly for Manihot esculenta, commonly known as cassava. Advances in genetic improvement in plants have been steadily increasing. To date, genome-wide association studies (GWAS) have been conducted to characterize the phenotypic diversity of germplasm associated with various agronomic traits. Therefore, building on previous studies, the objective of this research was to identify Single Nucleotide Polymorphism (SNP) markers associated with agronomically significant traits such as dry matter content, plant type (EP), and yield in a panel of 399 cassava accessions. Data were analyzed through GWAS methodology, and data quality control was performed using GAPIT through the lme4 package in R software. Nine SNPs were identified for yield, nineteen for dry matter percentage, and no SNPs for plant type. Each SNP was annotated and investigated using various bioinformatics platforms (NCBI, Panther, Gramene, Uniprot, Interpro, and Phytozome) o directly correlate them with the coding genes and proteins. Subsequently, these correlations were linked to the agronomically significant traits and will be considered in future research and projects within the cassava improvement programs at CIAT.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsEl material vegetal se obtuvo de la colección del banco de germoplasma de CIAT, específicamente de un panel de diversidad genética proveniente de diferentes zonas tropicales (Tabla 1), selección que se fue depurando a través de los años de acuerdo con la disponibilidad y estudios que se fueron efectuando para conocer calidad, procedencia y contribución en los materiales de mejoramiento. Estas accesiones fueron sembradas anualmente y cosechadas a los 10 meses después de la siembra durante dos ciclos de cosecha. Cada unidad experimental se basó en asignar una parcela a una accesión específica de yuca seleccionada para el estudio. Cada parcela estaba compuesta por un total de 16 plantas, distribuidas a una distancia de 40 cm dentro del surco y 60 cm. Se tuvieron en cuenta datos históricos de un panel de diversidad del programa de mejoramiento de yuca del CIAT y datos de los ensayos de diversidad que se encontraban en vigencia. La evaluación se realizó planta por planta, donde se evaluaron 18 variables en un transcurso de siete años consecutivos. Posteriormente, se seleccionaron las variables de interés de acuerdo con la agrupación del análisis estadístico y el interés agronómico en el programa de mejoramientospa
dc.description.researchareaBiotecnología Vegetalspa
dc.format.extentxv, 94 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87359
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAfolabi Agbona, I. N. and N. M. B. T. I. U. (2022). Ontología de la yuca.spa
dc.relation.referencesAkoh, C. C., Lee, G. C., Liaw, Y. C., Huang, T. H., & Shaw, J. F. (2004). GDSL family of serine esterases/lipases. In Progress in Lipid Research (Vol. 43, Issue 6). https://doi.org/10.1016/j.plipres.2004.09.002spa
dc.relation.referencesAn, F., Xiao, X., Chen, T., Xue, J., Luo, X., Ou, W., Li, K., Cai, J., & Chen, S. (2022). Systematic Analysis of bHLH Transcription Factors in Cassava Uncovers Their Roles in Postharvest Physiological Deterioration and Cyanogenic Glycosides Biosynthesis. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.901128spa
dc.relation.referencesAndrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. In Nature Reviews Genetics (Vol. 17, Issue 2). https://doi.org/10.1038/nrg.2015.28spa
dc.relation.referencesBaird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003376spa
dc.relation.referencesBalyejusa Kizito, E., Rönnberg-Wästljung, A. C., Egwang, T., Gullberg, U., Fregene, M., & Westerbergh, A. (2007). Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas, 144(4). https://doi.org/10.1111/j.2007.0018-0661.01975.xspa
dc.relation.referencesBarre, A., Bourne, Y., Van Damme, E. J. M., Peumans, W. J., & Rougé, P. (2001). Mannose-binding plant lectins: Different structural scaffolds for a common sugar-recognition process. In Biochimie (Vol. 83, Issue 7). https://doi.org/10.1016/S0300-9084(01)01315-3spa
dc.relation.referencesBarre, A., Van Damme, E. J. M., Peumans, W. J., & Rougé, P. (1997). Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Molecular Biology, 33(4). https://doi.org/10.1023/A:1005704616565spa
dc.relation.referencesBecerra V., V., & Paredes C., M. (2000). USO DE MARCADORES BIOQUÍMICOS Y MOLECULARES EN ESTUDIOS DE DIVERSIDAD GENÉTICA. Agricultura Técnica, 60(3). https://doi.org/10.4067/s0365-28072000000300007spa
dc.relation.referencesBonnafous, F., Fievet, G., Blanchet, N., Boniface, M. C., Carrère, S., Gouzy, J., Legrand, L., Marage, G., Bret-Mestries, E., Munos, S., Pouilly, N., Vincourt, P., Langlade, N., & Mangin, B. (2018). Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theoretical and Applied Genetics, 131(2). https://doi.org/10.1007/s00122-017-3003-4spa
dc.relation.referencesBrachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. In Genome Biology (Vol. 12, Issue 10). https://doi.org/10.1186/gb-2011-12-10-232spa
dc.relation.referencesBradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19). https://doi.org/10.1093/bioinformatics/btm308spa
dc.relation.referencesBredeson, J. V., Lyons, J. B., Prochnik, S. E., Wu, G. A., Ha, C. M., Edsinger-Gonzales, E., Grimwood, J., Schmutz, J., Rabbi, I. Y., Egesi, C., Nauluvula, P., Lebot, V., Ndunguru, J., Mkamilo, G., Bart, R. S., Setter, T. L., Gleadow, R. M., Kulakow, P., Ferguson, M. E., … Rokhsar, D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 34(5), 562–570. https://doi.org/10.1038/nbt.3535spa
dc.relation.referencesCeballos, H. (2002). La yuca en el Tercer Milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización. In Ciat.spa
dc.relation.referencesCeballos, H., & De la Cruz, G. A. (2002). Capitulo 2 Taxonomía y Morfología de la Yuca. In La Yuca en el Tercer Milenio: Sistemas modernos de produccion, procesamiento, utilizacion y comercializacion.spa
dc.relation.referencesCeballos, H., Kulakow, P., & Hershey, C. (2012). Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools. Tropical Plant Biology, 5(1). https://doi.org/10.1007/s12042-012-9094-9spa
dc.relation.referencesChávez, Y. A., & Martínez, B. (2010). Estudios de asociación mediante rastreo genómico y su contribución en la genética del asma. In Salud Uninorte (Vol. 26, Issue 2). Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pangspa
dc.relation.referencesCollard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. In Euphytica (Vol. 142, Issues 1–2). https://doi.org/10.1007/s10681-005-1681 Chaves-Barrantes, N. F., & Gutiérrez-Soto, M. V. (2016). Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y siológicos. Agronomía Mesoamericana, 28(1). https://doi.org/10.15517/am.v28i1.21903spa
dc.relation.referencesDe Silva, K., Laska, B., Brown, C., Sederoff, H. W., & Khodakovskaya, M. (2011). Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): A novel repressor of abiotic stress response. In Journal of Experimental Botany (Vol. 62, Issue 8). https://doi.org/10.1093/jxb/erq468spa
dc.relation.referencesDing, L. N., Li, M., Guo, X. J., Tang, M. Q., Cao, J., Wang, Z., Liu, R., Zhu, K. M., Guo, L., Liu, S. Y., & Tan, X. L. (2020). Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnology Journal, 18(5). https://doi.org/10.1111/pbi.13289spa
dc.relation.referencesDjami-Tchatchou, A. T., & Dubery, I. A. (2019). miR393 regulation of lectin receptor-like kinases associated with LPS perception in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 513(1). https://doi.org/10.1016/j.bbrc.2019.03.170spa
dc.relation.referencesDoyle, JJ; Doyle, J. (1990). Isolation of plant DNA from fresh tissue. In Focus (Vol. 12, Issue 1).spa
dc.relation.referencesDubin, M. J., Zhang, P., Meng, D., Remigereau, M. S., Osborne, E. J., Casale, F. P., Drewe, P., Kahles, A., Jean, G., Vilhjálmsson, B., Jagoda, J., Irez, S., Voronin, V., Song, Q., Long, Q., Rätsch, G., Stegle, O., Clark, R. M., & Nordborg, M. (2015). DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. ELife, 4(MAY). https://doi.org/10.7554/eLife.05255spa
dc.relation.referencesEl-Sharkawy, M. A. (2004). Cassava biology and physiology. In Plant molecular biology (Vol. 56, Issue 4). https://doi.org/10.1007/s11103-005-2270-7spa
dc.relation.referencesEsuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., Buckler, E. S., & Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1). https://doi.org/10.1007/s10681-016-1772-5spa
dc.relation.referencesFAOSTAT. (2022). Food and Agriculture Organization of the United Nations - Statistics Division, http://www.fao.org/faostat/en/#data/QC (accessed 08.03.2022). In FAOSTAT.spa
dc.relation.referencesFernández-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, & Mueller LA. (n.d.). YucaBase. Retrieved April 28, 2024, from https://www.cassavabase.org/helpspa
dc.relation.referencesFood and Agriculture Organization. (2021). FAO, 2021. In The State of Food Security and Nutrition in the World.spa
dc.relation.referencesGlaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0090346spa
dc.relation.referencesGómez-Espejo, A. L., Sansaloni, C. P., Burgueño, J., Toledo, F. H., & Reyes-Valdés, M. H. (2021). Asociación de genoma completo para el hábito de crecimiento en trigo harinero (Triticum aestivum L.). Ecosistemas y Recursos Agropecuarios, 8(2). https://doi.org/10.19136/era.a8n2.2912spa
dc.relation.referencesGuo, J., Sun, B., He, H., Zhang, Y., Tian, H., & Wang, B. (2021). Current understanding of bhlh transcription factors in plant abiotic stress tolerance. In International Journal of Molecular Sciences (Vol. 22, Issue 9). https://doi.org/10.3390/ijms22094921spa
dc.relation.referencesHerder, G. Den, Van Isterdael, G., Beeckman, T., & De Smet, I. (2010). The roots of a new green revolution. In Trends in Plant Science (Vol. 15, Issue 11). https://doi.org/10.1016/j.tplants.2010.08.009spa
dc.relation.referencesHester, G., Kaku, H., Goldstein, I. J., & Wright, C. S. (1995). Structure of mannose-specific snowdrop (Galanthusnivalis) lectin is representative of a new plant lectin family. Nature Structural Biology, 2(6). https://doi.org/10.1038/nsb0695-472spa
dc.relation.referencesHong, J. K., Choi, H. W., Hwang, I. S., Kim, D. S., Kim, N. H., Choi, D. S., Kim, Y. J., & Hwang, B. K. (2008). Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta, 227(3). https://doi.org/10.1007/s00425-007-0637-5spa
dc.relation.referencesJung, H. J., & Kang, H. (2014 Jung, H. J., & Kang, H. (2014 Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2019). BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2). https://doi.ospa
dc.relation.referencesThe Arabidopsis U11/U12-65K is an indispensible component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development. Plant Journal, 78(5). https://doi.org/10.1111/tpj.12498spa
dc.relation.referencesKarp, A., Edwards, K., Caetano-Anollés, G., & Peter Gresshoff, M. (1998). DNA markers: a global overview. In DNA markers: protocols, aplications and overviews.spa
dc.relation.referencesKawashima, T. (2019). Comparative and Evolutionary Genomics. In Encyclopedia of Bioinformatics and Computational Biology (pp. 257–267). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20236-7spa
dc.relation.referencesKnighton, D. R., Zheng, J., Ten Eyck, L. F., Ashford, V. A., Xuong, N.-H., Taylor, S. S., & Sowadski, J. M. (1991). Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Science, 253(5018), 407–414. https://doi.org/10.1126/science.1862342spa
dc.relation.referencesKorte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. https://doi.org/10.1186/1746-4811-9-29spa
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923spa
dc.relation.referencesLee, D. S., Kim, B. K., Kwon, S. J., Jin, H. C., & Park, O. K. (2009). Arabidopsis GDSL lipase two plays a role in pathogen defense via negative regulation of auxin signaling. Biochemical and Biophysical Research Communications, 379(4), 1038–1042. https://doi.org/10.1016/j.bbrc.2009.01.006spa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301spa
dc.relation.referencesLi, S., Liu, K., & Sun, Q. (2019). Comprehensive classification of the RNaseH-like domain-containing proteins in plants. BioRxiv, 1.spa
dc.relation.referencesLi, Y., Fan, C., Xing, Y., Yun, P., Luo, L., Yan, B., Peng, B., Xie, W., Wang, G., Li, X., Xiao, J., Xu, C., & He, Y. (2014). Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 46(4), 398–404. https://doi.org/10.1038/ng.2923spa
dc.relation.referencesLiao, W., Cai, J., Xu, H., Wang, Y., Cao, Y., Ruan, M., Chen, S., & Peng, M. (2023). The transcription factor MebHLH18 in cassava functions in decreasing low temperature-induced leaf abscission to promote low-temperature tolerance. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1101821spa
dc.relation.referencesLipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444spa
dc.relation.referencesLópez de Heredia, U. (2016). Las técnicas de secuenciación masiva en el estudio de la diversidad biológica. Munibe Ciencias Naturales, 64. https://doi.org/10.21630/mcn.2016.64.07spa
dc.relation.referencesLorković, Z. J., Lehner, R., Forstner, C., & Barta, A. (2005). Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA, 11(7). https://doi.org/10.1261/rna.2440305spa
dc.relation.referencesMa, R., Yuan, H., An, J., Hao, X., & Li, H. (2018). A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis. PLOS ONE, 13(4), e0195556. https://doi.org/10.1371/journal.pone.0195556spa
dc.relation.referencesMiller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17(2). https://doi.org/10.1101/gr.5681207spa
dc.relation.referencesMojena, M., & Bertolí, M. P. (2004). RENDIMIENTO EN LA YUCA (Manihot esculenta). Agronomía Costarricense, 28(2), 87–94spa
dc.relation.referencesMoorthy, S. N., Jos, J. S., Nair, R. B., & Sreekumari, M. T. (1990). Variability of β-carotene content in cassava germplasm. Food Chemistry, 36(3). https://doi.org/10.1016/0308-8146(90)90058-Cspa
dc.relation.referencesMorante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J. C., Egesi, C., Cuambe, C. E., Escobar, A. F., Ortiz, D., Chávez, A. L., & Fregene, M. (2010). Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop Science, 50(4), 1333–1338. https://doi.org/10.2135/cropsci2009.11.0666spa
dc.relation.referencesMostajo, G. (2018). PLAN NACIONAL DE CULTIVOS 2018-2019 APROBACION.compressed. Gerencia Regional de Agricultura.spa
dc.relation.referencesNARANJO, M. Á., FORMENT, J., ROLDÁN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1 , a salt‐induced gene encoding a GDSL‐motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell & Environment, 29(10), 1890–1900. https://doi.org/10.1111/j.1365-3040.2006.01565.xspa
dc.relation.referencesNational Human Genome Research Institute. (2020). Genome-Wide Association Studies Fact Sheet. Genome-Wide Association Studies Fact Sheet.spa
dc.relation.referencesNovoa Montenegro, N. A. (2017). Evaluación del tamaño de genoma en siete subpoblaciones de yuca Manihot esculenta Crantz representativas del Banco de Germoplasma de CIAT por citometría de flujo. https://ciencia.lasalle.edu.co/biologiaspa
dc.relation.referencesOakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5). https://doi.org/10.1007/s00122-006-0333-zspa
dc.relation.referencesPantalião, G. F., Narciso, M., Guimarães, C., Castro, A., Colombari, J. M., Breseghello, F., Rodrigues, L., Vianello, R. P., Borba, T. O., & Brondani, C. (2016). Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica, 144(6), 651–664. https://doi.org/10.1007/s10709-016-9932-zspa
dc.relation.referencesRabbi, I. Y., Kayondo, S. I., Bauchet, G., Yusuf, M., Aghogho, C. I., Ogunpaimo, K., Uwugiaren, R., Smith, I. A., Peteti, P., Agbona, A., Parkes, E., Lydia, E., Wolfe, M., Jannink, J.-L., Egesi, C., & Kulakow, P. (2022). Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 109(3), 195–213. https://doi.org/10.1007/s11103-020-01038-3spa
dc.relation.referencesRabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., Ramu, P., Jannink, J., & Kulakow, P. (2017). Genome‐Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. The Plant Genome, 10(3). https://doi.org/10.3835/plantgenome2016.09.0094spa
dc.relation.referencesRanc, N., Muños, S., Xu, J., Le Paslier, M.-C., Chauveau, A., Bounon, R., Rolland, S., Bouchet, J.-P., Brunel, D., & Causse, M. (2012). Genome-Wide Association Mapping in Tomato ( Solanum lycopersicum ) Is Possible Using Genome Admixture of Solanum lycopersicum var. cerasiforme. G3 Genes|Genomes|Genetics, 2(8), 853–864. https://doi.org/10.1534/g3.112.002667spa
dc.relation.referencesRanf, S., Gisch, N., Schäffer, M., Illig, T., Westphal, L., Knirel, Y. A., Sánchez-Carballo, P. M., Zähringer, U., Hückelhoven, R., Lee, J., & Scheel, D. (2015). A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology, 16(4), 426–433. https://doi.org/10.1038/ni.3124spa
dc.relation.referencesRebolledo, M. C., Peña, A. L., Duitama, J., Cruz, D. F., Dingkuhn, M., Grenier, C., & Tohme, J. (2016). Combining Image Analysis, Genome Wide Association Studies and Different Field Trials to Reveal Stable Genetic Regions Related to Panicle Architecture and the Number of Spikelets per Panicle in Rice. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01384spa
dc.relation.referencesSachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., Hunt, S. E., Cole, C. G., Coggill, P. C., Rice, C. M., Ning, Z., Rogers, J., Bentley, D. R., Kwok, P. Y., Mardis, E. R., … Altshuler, D. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409(6822). https://doi.org/10.1038/35057149spa
dc.relation.referencesSánchez, T., Dufour, D., Moreno, J. L., Pizarro, M., Aragón, I. J., Domínguez, M., & Ceballos, H. (2013). Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biology and Technology, 86, 520–528. https://doi.org/10.1016/j.postharvbio.2013.07.014spa
dc.relation.referencesSchapire, A. L., Valpuesta, V., & Botella, M. A. (2006). TPR Proteins in Plant Hormone Signaling. Plant Signaling & Behavior, 1(5), 229–230. https://doi.org/10.4161/psb.1.5.3491spa
dc.relation.referencesShen, G., Sun, W., Chen, Z., Shi, L., Hong, J., & Shi, J. (2022). Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. Plants, 11(4), 468. https://doi.org/10.3390/plants11040468spa
dc.relation.referencesSolis, J., Villordon, A., Baisakh, N., LaBonte, D., & Firon, N. (2014). Effect of drought on storage root development and gene expression profile of sweetpotato under greenhouse and field conditions. Journal of the American Society for Horticultural Science, 139(3). https://doi.org/10.21273/jashs.139.3.317spa
dc.relation.referencesSu, H. G., Zhang, X. H., Wang, T. T., Wei, W. L., Wang, Y. X., Chen, J., Zhou, Y. Bin, Chen, M., Ma, Y. Z., Xu, Z. S., & Min, D. H. (2020). Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00726spa
dc.relation.referencesSuazo S, J., Santos M, L., Silva A, V., Jara S, L., Palomino Z, H., & Blanco C, R. (2005). Estudio de asociación por desequilibrio de ligamiento entre los genes TGFA, RARA, y BCL3 y fisura labiopalatina no sindrómica (FLPNS) en la población chilena. Revista Médica de Chile, 133(9). https://doi.org/10.4067/s0034-98872005000900008spa
dc.relation.referencesTan, X., Yan, S., Tan, R., Zhang, Z., Wang, Z., & Chen, J. (2014). Characterization and expression of a GDSL-like lipase gene from brassica napus in nicotiana benthamiana. Protein Journal, 33(1). https://doi.org/10.1007/s10930-013-9532-zspa
dc.relation.referencesTéllez De Pablos, J. (2021). UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA.spa
dc.relation.referencesTello, D., Gonzalez‐Garcia, L. N., Gomez, J., Zuluaga‐Monares, J. C., Garcia, R., Angel, R., Mahecha, D., Duarte, E., Leon, M. del R., Reyes, F., Escobar‐Velásquez, C., Linares‐Vásquez, M., Cardozo, N., & Duitama, J. (2023). NGSEP 4: Efficient and accurate identification of orthogroups and whole‐genome alignment. Molecular Ecology Resources, 23(3), 712–724. https://doi.org/10.1111/1755-0998.13737spa
dc.relation.referencesToledo-Ortiz, G., Huq, E., & Quail, P. H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 15(8). https://doi.org/10.1105/tpc.013839spa
dc.relation.referencesToro, J. C., & Canas, A. (1983). Determinacion del contenido de materia seca y almidon en yuca por el sistema de gravedad especifica. International Center for Tropical Agriculture. https://hdl.handle.net/10568/81746spa
dc.relation.referencesToro, J. C., & Cañas, A. (2002). Tecnologia 2, Determinación de Mateira Seca de las Raíces Frescas por el Método de la Gravedad Específica. In Centro Internacional de Agricultura Tropical - CIAT (Ed.), La yuca en el tercer milenio: sistemas modernos de producción, procesamiento, utilización y comercialización. Centro Internacional de Agricultura Tropical - CIAT.spa
dc.relation.referencesUpton, C., & Buckley, J. T. (1995). A new family of lipolytic enzymes? Trends in Biochemical Sciences, 20(5), 178–179. https://doi.org/10.1016/S0968-0004(00)89002-7spa
dc.relation.referencesVan Verk, M. C., Hickman, R., Pieterse, C. M. J., & Van Wees, S. C. M. (2013). RNA-Seq: Revelation of the messengers. In Trends in Plant Science (Vol. 18, Issue 4). https://doi.org/10.1016/j.tplants.2013.02.001spa
dc.relation.referencesWang, M., Jiang, N., Jia, T., Leach, L., Cockram, J., Waugh, R., Ramsay, L., Thomas, B., & Luo, Z. (2012). Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics, 124(2), 233–246. https://doi.org/10.1007/s00122-011-1697-2spa
dc.relation.referencesWong, W. W. L., Griesman, J., & Feng, Z. Z. (2014). Imputing genotypes using regularized generalized linear regression models. Statistical Applications in Genetics and Molecular Biology, 13(5). https://doi.org/10.1515/sagmb-2012-0044spa
dc.relation.referencesWoo, H. R., Kim, H. J., Lim, P. O., & Nam, H. G. (2019). Leaf Senescence: Systems and Dynamics Aspects. In Annual Review of Plant Biology (Vol. 70). https://doi.org/10.1146/annurev-arplant-050718-095859spa
dc.relation.referencesXu, T., Kim, B. M., Kwak, K. J., Jung, H. J., & Kang, H. (2016). The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development. Journal of Experimental Botany, 67(11). https://doi.org/10.1093/jxb/erw158spa
dc.relation.referencesYadav, V. K., Yadav, V. K., Pant, P., Singh, S. P., Maurya, R., Sable, A., & Sawant, S. V. (2017). GhMYB1 regulates SCW stage‐specific expression of the GhGDSL promoter in the fibres of Gossypium hirsutum L. Plant Biotechnology Journal, 15(9), 1163–1174. https://doi.org/10.1111/pbi.12706spa
dc.relation.referencesZapata, A., Mecánico, I., Neme, R., Sanabria, C., & López, C. (2011). ANÁLISIS DE ESTs DE YUCA (Manihot esculenta): UNA HERRAMIENTA PARA EL DESCUBRIMIENTO DE GENES Analysis of Cassava (Manihot esculenta) ESTs: A Tool for the Discovery of Genes. In Acta biol. Colomb (Vol. 16, Issue 1). http://www.ncbi.nlm.nih.gov/genomes/PLANTS/spa
dc.relation.referencesZeng, C., Chen, Z., Xia, J., Zhang, K., Chen, X., Zhou, Y., Bo, W., Song, S., Deng, D., Guo, X., Wang, B., Zhou, J., Peng, H., Wang, W., Peng, M., & Zhang, W. (2014). Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava. BMC Plant Biology, 14(1), 207. https://doi.org/10.1186/s12870-014-0207-5spa
dc.relation.referencesZhang, B., Zhang, L., Li, F., Zhang, D., Liu, X., Wang, H., Xu, Z., Chu, C., & Zhou, Y. (2017). Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nature Plants, 3. https://doi.org/10.1038/nplants.2017.17spa
dc.relation.referencesZhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K., Ordovas, J. M., & Buckler, E. S. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42(4). https://doi.org/10.1038/ng.546spa
dc.relation.referencesZhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., McClung, A. M., Bustamante, C. D., & McCouch, S. R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2(1), 467. https://doi.org/10.1038/ncomms1467spa
dc.relation.referencesZheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocMapeo de asociación
dc.subject.agrovocAssociation mapping
dc.subject.agrovocTécnica genética
dc.subject.agrovocGenetic techniques
dc.subject.agrovocGenómica
dc.subject.agrovocGenomics
dc.subject.agrovocMejoramiento genético
dc.subject.agrovocGenetic improvement
dc.subject.agrovocMarcador genético
dc.subject.agrovocGenetic markers
dc.subject.agrovocFenotipado
dc.subject.agrovocPhénotypage
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalYucaspa
dc.subject.proposalGWASspa
dc.subject.proposalSNPsspa
dc.subject.proposalPolimorfismospa
dc.subject.proposalCassavaeng
dc.subject.proposalPolymorphismeng
dc.titleMapeo genético asociativo de caracteres agronómicos en accesiones de yuca (Manihot esculenta Crantz)spa
dc.title.translatedAssociative genetic mapping of agronomic traits in accessions of cassava (Manihot esculenta Crantz)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.fundernameAlianza Bioversity-CIATspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1113669136.2024.pdf
Tamaño:
7.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Biológicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: