Diseño de bombas centrífugas utilizando el método de optimización topológica y computación paralela en la nube

dc.contributor.advisorMontealegre Rubio, Wilfredo
dc.contributor.authorArcentales Bastidas, Xavier Andres
dc.contributor.researchgroupDiseño y Optimización Aplicada (Doa)spa
dc.date.accessioned2022-03-24T14:14:35Z
dc.date.available2022-03-24T14:14:35Z
dc.date.issued2021-12-14
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEste trabajo se focaliza específicamente en bombas centrífugas de flujo radial, cuya componente de velocidad axial no es considerada en comparación con las velocidades tangenciales y radiales, dando lugar al diseño de álabes en dos dimensiones. En consecuencia, como el diseño de álabe es una tarea compleja, debido a la cantidad de parámetros geométricos libres involucrados (radio de curvatura, ángulo del alabe, etc.), se usa el Método de Optimización Topológica (MOT). La selección del MOT en comparación con otro método de optimización (paramétrica, material o de forma) se justifica por el simple hecho de que este método combina todos los métodos anteriores (optimización más robusta). Para el diseño topológico de los álabes, se solucionan las ecuaciones de estado de Navier-Stokes por medio del método de los elementos finitos (MEF), para generar los campos de velocidad y presión, que son los campos de distribución que simulan el comportamiento fluidodinámico dentro del impeler, para posteriormente minimizar dos fenómenos físicos (funciones objetivo) que son la energía de disipación viscosa y la vorticidad. Estas funciones objetivo se combinan en una función bi-objetivo mediante el método de la suma ponderada, dando así mayor minimización a una función con respecto a la otra. Adicionalmente se fórmula el problema de optimización agregando la fuerza de fricción artificial de Darcy en las ecuaciones de Navier-Stokes para flujo incompresible, el método adjunto discreto se utiliza para hallar las sensibilidades y se usa el método de las asíntotas móviles para actualizar la variable de diseño gamma. Para la solución de las ecuaciones de Navier-Stokes en conjunto al problema de optimización, se desarrolla un algoritmo computacional en MATLAB. Adicionalmente se paraleliza el algoritmo desarrollado y se ejecuta el código con la utilización de varios Cores (núcleos CPU) en la nube con dos proveedores diferentes: a) Amazon Web Services (máquina virtual) y b) Equinix (máquina bare-metal), con el objetivo de acelerar el proceso de diseño de los álabes. El resultado obtenido de la topología cuando se considera únicamente la minimización de la energía de disipación (wd=1 y wr=0) es 5.88 Watts. Adicionalmente, el desempeño que se obtiene cuando se considera la minimización de la energía de disipación y vorticidad (wd=0.8 y wr=0.2) es de 5.94 Watts. Estas topologías son extendidas en un diseño de dominio completo en un modelo 3D usando ANSYS FLUENT, con el objetivo de validar la minimización de las funciones objetivos obtenidas por el Método de Optimización Topológica (MOT). (Texto tomado de la fuente)spa
dc.description.abstractThis work focuses specifically on radial flow centrifugal pumps, whose axial velocity component is neglected compared to tangential and radials velocities, giving rise to the analysis of the blades in two dimensions. In addition, due to the design of flow machines is still a difficult task, mainly due to the large number of free geometrical parameters involved (radius of curvature, blade angle, etc.), the Topological Optimization Method (TOM) is used in this work. The selection of the TOM compared to another optimization method (parametric, material or shape) is justified by the simple fact that this method combines all the previous methods (more robust optimization). For the topological design of the blades, the Navier-Stokes equations of state are solved by means fo the finite element method (FEM) to generate the velocity and pressure fields, which are the distribution fields that simulate the fluid-dynamic behavior within the impeller, for later minimize two physical phenomena (objective functions) which are viscous dissipation energy and vorticity. These objective functions are combined into a bi-objective function using the weighted sum method, thus giving greater minimization to one function concerning the other. Additionally, the optimization problem is formulated by adding the artificial Darcy friction force in the NavierStokes equations for incompressible flow, the discrete adjoint method is used to find the sensitivities and the moving asymptotes method is used to update the design variable gamma. For the solution of the Navier-Stokes equations in conjunction with the optimization problem, a computational algorithm is developed in MATLAB. Additionally, the developed algorithm is parallelized, and the code is executed with the use of several cores (CPU cores) in the cloud on two different platforms: a) Amazon Web Services (virtual machine) and b) Equinix (bare-metal machine), to speed up the blade design process. The performance obtained from the topology result when only the minimization of the energy dissipation is considered (wwdd 1 y wwrr= 0 ) is 5.88 Watts. Additionally, the performance obtained when considering the minimization of the energy dissipation and vorticity (wwdd = 0.8 y 0.2 ) is 5.94 Watts. After these topologies results, they are extended in an entire domain design in a 3D model using ANSYS FLUENT, with the objective to validate the minimization of the objective functions obtained by the Topology Optimization Method (TOM).eng
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Mecánicaspa
dc.description.researchareaOptimización topológica aplicada al diseño de sistemas mecánicosspa
dc.format.extentxxv, 195 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81355
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesAARONSON, K. D.; SLAUGHTER, M.S, MILLER, L., “Use of an intrapericardial, continuos-flow, centrifugal pump in patients awaiting heart transplantation”, Circulation, v. 125, n. 25, p. 3191-3200, jun 2012. ISSN 0009-7322.spa
dc.relation.referencesB. Jafarzadeh, A. Hajari, M.M. Alishahi, M. Akbari, “The flow simulation of a low-specific- speed high-speed centrifugal pump”, Appl. Math. Model. 35 (2011) 242–249.spa
dc.relation.referencesK. Cheah, T.S. Lee, S.H. Winoto, Z. Zhao, “Numerical flow simulation in a centrifugal pump at design and off-design conditions”, Internat. J. Rotat. Mach. 2007 (2007) 1–8.spa
dc.relation.referencesJ.S. Romero (2014), “A topology optimization approach applied to laminar flow machine rotor design”, Comput. Methods Appl. Mech. Engrg. 279 (2014) 268–300, Department of Mechanical Engineering, Federal University of Espirito Santo, ES, Brazil.spa
dc.relation.referencesFrank White,Fluids Mechanics, McGraw-Hill, New York, Sext Edition (2008).spa
dc.relation.referencesM. P. Bendsoe y O. Sigmund, “Topology optimization: theory, methods, and applications”. Springer, 2003.spa
dc.relation.referencesO. Sigmund, “Design of multiphysics actuators using topology optimization - part I: One-material structures”, Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 49-50, pags. 6577-6604, 2001, Department of Mechanical Engineering, Solid Mechanics, the Technical university of Denmark.spa
dc.relation.referencesD. Hutton, “Comparison of Finite Element and Exact Solutions”, in Fundamentals of Finite Element Analysis, USA: McGraw−Hill, 2004, pags. 4-7.spa
dc.relation.referencesSun-Sheng Yang, “Theoretical, numerical and experimental prediction of pump as turbine performance”, Renewable Energy 48 (2012) 507-513, Research Center of fluid Machinery Engineering and Technology, Jiangsu University, China.spa
dc.relation.referencesK.W. Cheah, “Numerical flow simulation in a centrifugal pump at design and off-design conditions”, Singapore, Hindawi Publishing Corporation International Journal of Rotating Machinery Volume 2007, Article ID 83641, 8 pages.spa
dc.relation.referencesB. Kitchenham, “Procedures for performing systematic reviews”, Keele, UK, Keele University, vol. 33, 2004.spa
dc.relation.referencesHedi, L., Hatem, K.,Ridha, Z., 2010.“Numerical flow simulation in a centrifugal pump,” International Renewable Energy Congress. Sousse, Tunisia. pp. 300-304.spa
dc.relation.referencesMentzos, M.,Filios, A.,Margaris, P.,Papanikas, D.,2004. “A numerical simulation of the impeller-volute interaction in a centrifugal pump”, Proceedings of International Conference from Scientific Computing to Computational Engineering. Athens, pp. 1-7.spa
dc.relation.referencesMentzos, M., Filios, A., Margaris, P., Papanikas, D., 2005. “CFD predictions of flow through a centrifugal pump impeller,” Proceedings of International Conf. Experiments/Process/System Modelling/ Simulation/Optimization. Athens, pp. 1-8.spa
dc.relation.referencesShah, S., Jain, S., Lakhera, V., 2010. “CFD based flow analysis of centrifugal pump,” Proceedings of International Conference on Fluid Mechanics and Fluid Power. Chennai, India, paper#TM08.spa
dc.relation.referencesMedvitz, R., Kunz, R., Boger, D., Adam, J.,Yocum, A., 2002. “Performance analysis of cavitating flow in centrifugal pumps using multiphase cfd”, Journal of Fluid Engineering 124, p. 377, Applied Research Laboratory, The Pennsylvania State University.spa
dc.relation.referencesNohmi, M.,Goto, A.,Iga, Y.,Ikohagi, T., 2003.“Cavitation CFD in a centrifugal pump,” Proceedings of International Symposium on Cavitation. Osaka, Japan, pp. 1-7.spa
dc.relation.referencesCaridad, J., Asuaje, M.,Kenyery, F.,Tremante, A.,Aguillon, O., 2008. “Characterization of a centrifugal pump Impeller under two-phase flow conditions”, Journal of Petroleum Science and Engineering 63,p. 18.spa
dc.relation.referencesWilliams, A., "Pumps as turbines for low-cost micro hydropower", Renew. Energy 1996, vol. 9, pp. 1227–1234, September-december 1996.spa
dc.relation.referencesS. Natanasabapathi and J. Kshirsagar, "Pump As Turbine-An Experience With CFX-5.6," Corporate research and engineering division. Pune, India, Kirloskar Bros. Ltd, 2004.spa
dc.relation.referencesFernandez, J., Barrio, R., Blanco, E.,Parrondo, J., Marcos, A., 2010. Numerical Investigation of a Centrifugal Pump Running in Reverse Mode. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 224, p. 373.spa
dc.relation.referencesBarrio, R., Fernandez, J., Blanco, E., Parrondo, J., Marcos, A., 2011. Performance Characteristics and Internal Flow Patterns in a Reverse-Running Pump–Turbine. Proceedings of IMechE Vol. 226 Part C: J. Mechanical Engineering Science, p. 695.spa
dc.relation.referencesJasmina B., Bogdanovi-Jovanovi, “Pumps used as a Turbines, Power Recovery, Energy Efficiency, CFD Analysis” Faculty of Mechanical Engineering, University of Nis, Nis, Serbia, Jaroslav Cerni Institute for the Development of Water Resources, Belgrade, Serbia.spa
dc.relation.referencesCarlos M. OkuboJr., César Y. Kiyono, Luís F.N. Sá, Emílio C.N. Silva, “Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach”, Computers and Mathematics with Applications, vol. 96, pp. 16-30, August 2021.spa
dc.relation.referencesKhaled Alawadhi, Bashar Alzuwayer, Tareq Ali Mohammad and Mohammad H. Buhemdi, “Design and optimization of a centrifugal pump for slurry transport using the response surface method”, MDPI, 9 (3):60, March 2021.spa
dc.relation.referencesL.F.N.Sá, J.S.Romero, “Topology optimization applied to the development of small scale pump” Structural and Multidisciplinary Optimization (2016) 57:2045–2059, Department of Mechatronics and Mechanical Systems, Engineering of Escola Politecnica, University of Sao Paulo.spa
dc.relation.referencesShahram Derakhshan, “Investigation of an efficient shape optimization procedure for centrifugal pump impeller using eagle strategy algorithm and ANN (case study: slurry flow)” Structural and Multidisciplinary Optimization.spa
dc.relation.referencesL.F.N.Sá, A. A. Novotny, “Design optimization of laminar flow machine rotors based on the topological derivative concept”, Struct Multidisc Optim (2017) 56:1013–1026, Department of Mechatronics and Mechanical Systems Engineering of Escola Politecnica, University of Sao Paulo.spa
dc.relation.referencesJ.S.Romero, E.C. N.Silva, “Non-newtonian laminar flow machine rotor design by using topology optimization” Structural and Multidisciplinary Optimization, Department of Mechatronics and Mechanical Systems Engineering of Escola Politecnica, University of Sao Paulo.spa
dc.relation.referencesShahram Derakhshan, “Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm” Computers & Fluids 81 (2013) 145–151, School of Mechanical Engineering, Iran University of Science & Technology.spa
dc.relation.referencesBacharoudis, E.,Filios, A.,Mentzos, M.,Margaris, “Parametric study of a centrifugal pump impeller by varying the outlet blade angle”, The Open Mechanical Engineering Journal 2, p. 75.spa
dc.relation.referencesAnagnostopoulos, “CFD Analysis and design effects in a radial pump impeller”, WSEAS Transactions on Fluid Mechanics, vol. 1 (7), pp. 763, January 2006.spa
dc.relation.referencesGatta, S.,Salvadori, S., Adami, P.,Bertolazzi, “CFD study for assessment of axial thrust balance in centrifugal multistage pumps”, International Conferenceon Fluid Flow Technologies.spa
dc.relation.referencesDixon, J. a, Verdicchio, J. a, Benito, D., Karl, A., & Tham, K. M. (2004), “Recent developments in gas turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(4), 241–255.spa
dc.relation.referencesMustafa Golcu, “Energy saving in a deep well pump with splitter blade” Energy Conversion and Management 47 (2006) 638–651, Department of Mechanical Education, Pamukkale University, 20017 Kinikli, Denizli, Turkey.spa
dc.relation.referencesSun-Sheng Yang, “Theoretical, numerical and experimental prediction of pump as turbine performance” Renewable Energy 48 (2012) 507-513, Research Center of Fluid Machinery Engineering and Technology, Jiangsu University.spa
dc.relation.referencesS.C.M. Yu, “The flow patterns within the impeller passages of a centrifugal blood pump model” Medical Engineering & Physics 22 (2000) 381–393, Nanyang Technological University, Thermal and Fluids Engineering Division, School of Mechanical and Production Engineering, Singapore.spa
dc.relation.referencesKun-Xi, “Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump” Scientific and Technical Record, Republic of China.spa
dc.relation.referencesJuan David Berrío, “Optimización topológica de un instrumento musical idiófono tipo metalófono” Tesis de Maestría de Investigación, Universidad Nacional de Medellín.spa
dc.relation.referencesSRShah, CFD for centrifugal pumps: a review of the state-of-the-art, Ahmedabad, India, Procedia Engineering 51 (2013) 715 – 720.spa
dc.relation.referencesVentricular Assist devices www.texasheart.org/heart-health/heart-information Center/topics/ventricular-assist-devices/ Accesed: 3-Nov-2018.spa
dc.relation.referencesYongbo Deng,Yihui Wu,Zhenyu Liu, Topology optimization Theory for Laminar Flow, Applications in inverse Design of Microfluidics.spa
dc.relation.referencesMaatoug Hassine ESSTH, Sousse University Tunisia, Topology Optimization of fluid Mechanics Problems.spa
dc.relation.referencesThomas Borrvall and Joakim Petersson, Topology Optimization of fluids in Stokes flow, International Journal for Numerical Methods in fluids, 2003.spa
dc.relation.referencesNitelMuhtaroglu “Democratization of HPC cloud services with automated parallel solvers and applications containers”, Concurrency Computation Practice and Experience, 2018.spa
dc.relation.referencesJin “Research on Optmization Algorithm of BP neural network for permanent magnet synchronous TOMor based on Cloud Computing”, Institute of Electrical and Electronics Engineers Inc, 2018.spa
dc.relation.referencesK. Konopka “Improving efficiency of CCS numerical simulations through use of parallel processing”, Archives of Metallurgy and Materials, Volume 60, Pages 235-238, 2015.spa
dc.relation.referencesX. Man “A high performance Computing Cloud Computing Environment for machining simulations”, Procedia CIRP 8 57 – 62, 2013.spa
dc.relation.referencesIsmail Ari Design and implementation of a cloud computing service for finite element analysis, Advances in Engineering Software 60-61 (2013) 122–135.spa
dc.relation.referencesDazhong Wu Performance Evaluation of cloud-based high-performance computing for finite element analysis Proceedings of the ASME 2015 International Design Engineering Technical Conferences, 2015.spa
dc.relation.referencesBartosz Balis Leveraging workflows and clouds for a multi-frontal solver for finite element meshes Procedia Computer Science, Volume 51, 2015, Pages 944–953.spa
dc.relation.referencesHaiming Lin, Xiahu Liu and Kangyu Jia, “A study on linear Elastic Fem by Cloud Computing”, ACM International Conference Proceeding Series, 2013.spa
dc.relation.referencesJeremy Cohen Nekkloud a software Environment for high order finite element analysis on clusters and clouds, Proceedings - IEEE International Conference on Cluster Computing, ICCC 2013.spa
dc.relation.referencesZou Xin Structural Finite Element Method based on Cloud Computing, Proceedings - 2012 International Conference on Computer Science and Electronics Engineering.spa
dc.relation.referencesBai Xiaoyong High performance computing for finite element in cloud, Proceedings -2011 International Conference on Future Computer Sciences and Application.spa
dc.relation.referencesBook: High Performance Computing and Networking, by Wolfgang Gentzsch, Uwe Harms.spa
dc.relation.referencesWillem Himpe, “High Performance Computing applied to Dynamic Traffic” Procedia Computer Science 151 (2019) 409–416, Transport and Mobility Leuven, Diestesteenweg 57, 3010 Leuven, Belgium.spa
dc.relation.referencesMichal Janczykowski, “Large-scale urban traffic simulation with Scala and high-performance computing system” Journal of Computational Science 35 (2019) 91–101, AGH University of Science and Technology, Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, Al.Mickiewicza 30, 30-059 Krakow, Poland.spa
dc.relation.referencesS.Bastrakov, “High performance computing in biomedical applications” Procedia Computer Science 18 ( 2013 ) 10 – 19, Lobachevski State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950, a Nizhni Novgorod, Russia.spa
dc.relation.referencesFrancois-Xavier Le Dimet, “High Performance Computing in the Geoscience” Mathematical and Physical Sciences Vol. 462.spa
dc.relation.referencesJun Fang, “Direct numerical simulation of reactor two-phase flows enabled by high-performance computing” Nuclear Engineering and Design 330 (2018) 409–419, Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, United States.spa
dc.relation.referencesMarc Garbey, “High Performance Computing for CFD” Department of Computer Science, University of Houston, Houston, TX, USA.spa
dc.relation.referencesWolfgang Gentzsch, “High performance computing in the cloud” Future Generation Computer Systems 29 (2013) 1407, University of Calabria, Electronics, Informatics and Systems, Cosenza, Italy.spa
dc.relation.referencesVictor Fernandez, “Cloud Computing” Universidad Técnica Federico Santa María.spa
dc.relation.referencesJames Byrne, “A Review of Cloud Computing Simulation Platforms and Related Environments” Irish Centre for Cloud Computing and Commerce, Dublin City University, Glasnevin, Dublin 9, Ireland.spa
dc.relation.referencesSobhanayak Srichandan, “Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm” Future Computing and Informatics Journal 3 (2018) 210-230, Department of Computer Science, IIIT Bhubaneswar, Odisha, India.spa
dc.relation.referencesAzzedine Boukerche, “Vehicular Cloud Computing: Architectures, Applications, and Mobility” School of Electrical Engineering and Computer Science University of Ottawa Canada.spa
dc.relation.referencesAntonio Gómez, “An OpenFOAM-based model for heat-exchanger design in the Cloud” Applied Thermal Engineering 139 (2018) 239–255, Nabladot, S.L., WTCZ Torre Oeste, Planta 11, Avda. María Zambrano 31, 50018 Zaragoza, Spain.spa
dc.relation.referencesSimon Taylor et al, “Enabling Cloud-based Computational Fluid Dynamics with a Platform-as-a Service Solution.spa
dc.relation.referencesEdgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David Daniel, Richard Graham, and Timothy Woodall, “Open mpi: goals, concept, and design of a next generation mpi implementation”, Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 97-104, January 2004.spa
dc.relation.referencesS.L. Dixon and C.A. Hall, “Fluids Mechanics and thermodynamics of turbomachinery”, six edition.spa
dc.relation.referencesKundu, P.K.;COHEN, I.M.;DOWLING, D.R. Fluid mechanics. 5. ed. S.l. Academic Press, 2013. 920 p. ISBN 9780123821003. Citado 2 veces en página 26 y 27.spa
dc.relation.referencesCengel, Yunus A. and Cimbala, John M. (2014). Fluid Mechanics: Fundamentals and Applications, Third edition, McGraw-Hill.spa
dc.relation.referencesEndalew Getnet Tsega and V.K. Katiyar, “Finite Element Solution of the Two-dimensional Incompressible Navier-Stokes Equations Using MATLAB”, Applications and Applied Mathematics: An International Journal (AAM), Department of Mathematics, Indian Institute of Technology Roorkee.spa
dc.relation.referencesW. F. Ames, “Nonlinear partial differential equations in engineering”, Mathematics in Science & Engineering, vol. 18, 527 pages.spa
dc.relation.referencesEsteban Foronda, “Optimización Topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluido” Universidad Nacional de Medellín, Colombia.spa
dc.relation.referencesSigmund,Ole. (2000). Topology optimization: a tool for the tailoring of structures and materials. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 358, 211-227.spa
dc.relation.referencesR. T. Haftka and Z. Gürdal, Elements of Structural Optimization, 3rd rev. and expanded Ed., vol. 11. Springer, 1992.spa
dc.relation.referencesBoom, T. Van Den, & Schutter, B. De. (2007). Optimization in Systems and Control. Delft Center for Systems and Control.spa
dc.relation.referencesHans A Eschenauer and Niels Olhoff. Topology optimization of continuum structures: a review. Applied Mechanics Reviews, 54 (4):331-390,2001.spa
dc.relation.referencesA.G.M. Michell, “LVIII. The limits of economy of material in frame-structures, “Philosophical Magazine Series 6, vol 8, no. 47, pp. 589-597,1904.spa
dc.relation.referencesMartin Philip Bendse and Noboru Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineeting, 71 (2):197-224,1988.spa
dc.relation.referencesGIN Rozvany. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Structural and Multidisciplinary optimization, 21(2):90-108,2001.spa
dc.relation.referencesCampelo, F., Ram, J. A., & Igarashi, H. (2010), “A survey of topology optimization in electromagnetics: considerations and current trends”.spa
dc.relation.referencesJoshua D Deaton and Ramana V Grandhi. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization, 49 (1):1-38,2014.spa
dc.relation.referencesG.I.N. Rozvany, M. Zhou and T.Birker, “Generalized shape optimization without homogenization”, Structural Optimization Vol 4, pp 250-252.spa
dc.relation.referencesDiego Hayashi Alonso et al., “Topology Optimization applied to the design of 2D swirl flow devices”, Structural Multidisciplinary Optimization, Department of Mechatronics and Mechanical Systems Engineering, Polythechnic School of the University of Sao Paulo, 2018.spa
dc.relation.referencesZ.Q.Wang, “Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat”, Energy 40 (2012) pg:107-115, Institute of Mechanical Engineering, China.spa
dc.relation.referencesT.Lehnhauser, “A numerical approach for shape optimization of fluid flow domains”, Compu. Methods Appl. Mech. Engrg. 194 (2005) pg: 5221-5241, Department of numerical Methods in Mechanical Engineering, Germany.spa
dc.relation.referencesGerborg-Hansen, A., Sigmund, O., & Haber, R. B. (2005). Topology optimization of channel flow problems. Structural and Multidisciplinary Optimization, 30 (3), 181-192.spa
dc.relation.referencesRozvany, G. I. N., & Lewinski, “Topology optimization in structural and continuum mechanics”, in CISM International Centre for Mechanical Sciences (vol. 549).spa
dc.relation.referencesL.F.N.Sá , “Topology optimization Method applied to laminar flow machine rotor design”, Department of Mechatronics and Mechanical Systems Engineering of Escola Politecnica, University of Sao Paulo, 2016.spa
dc.relation.referencesW.H.Fraser, Flow recirculation in centrifugal pumps, Proceedings of the Tenth Turbomachinery Symposium (1981) 95-100.spa
dc.relation.referencesB.Klaus, K. Rainer, Analysis of secondary flows in centrifugal impellers, Internat. J.Rotat. Mach. 1 (2005) 45-52.spa
dc.relation.referencesW. Montealegre Rubio, “Projeto de ‘MEMS’ eletrotermomecânicos usando o método de otimização topológica,” Master’s thesis, Universidade de São Paulo (USP). Escola Politécnica, Brasil, 2005.spa
dc.relation.referencesKrister Svanberg, “MMA and GCMMA- two methods for nonlinear optimization”, Optimization and System Theory, Stockholm, Sweden.spa
dc.relation.referencesEduardo Lenz Cardoso and Jun Sergio Ono Fonseca. Complexity control in the topology optimization of continuum structures. Journal of the brazilian society of mechanical sciences and engineering, 25(3):293–301, 2003.spa
dc.relation.referencesFrancisco Javier Ramírez Gil. Diseño óptimo de micromecanismos tridimensionales con actuación electrotérmica utilizando optimización topológica y unidades de procesamiento gráfico (gpu). M.Sc. Thesis, Facultad de Minas, 2013.spa
dc.relation.referencesBenito Stradi-Granados, Cloud Computing for Engineers Applications, Springer, School of material Science, Institute of technology of Costa Rica.spa
dc.relation.referencesD.B.Kirk and W.W.Hwu, Programming Massively Parallel Processors: A Hands-on Approach,1st ed. Morgan Kaufmann, 2010.spa
dc.relation.referencesRobert Robey, Yuliana Zamora, Parallalel and High Performance Computing.spa
dc.relation.referencesHorowitz et al. and Rupp, Computational Scientist, https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/.spa
dc.relation.referencesB. Barney, “Introduction to Parallel Computing,” 16-Jul-2012. Online. Available: https://computing.llnl.gov/tutorials/parallel_comp/. Accessed: 23-Apr-2013.spa
dc.relation.referencesMichael J. Flynn and Kevin W. Rudd, “Parallel architectures”, ACM Computing Surveys, in press.spa
dc.relation.referencesMd Lokman Hosain, Rebei Bel Fdhila, “Literature review of accelerated CFD Simulation Methods towards Online Application”, Energy Procedia 75 (2015) 3307 – 3314 (2015)"spa
dc.relation.referencesR. A. Gingold and J.J. Monaghan, “Smoothed particle hydrodynamics:theory and application to non-spherical stars”, Royal Astronomical Society, vol. 181, pp. 375-389, February 1977.spa
dc.relation.referencesL. Greengard and V. Rokhlin, “A fast algorithm for particle simulations”, Journal of Computational Physics, vol. 73, pp. 325-348, February 1987.spa
dc.relation.referencesV.D. Kupradze and M.A. Aleksidze, “The method of functional equations for the approximate solution of certain boundary value problems”, USSR Comput. Math. Phys., vol. 4, pp. 82-126, June 1963.spa
dc.relation.referencesSudarshan Tiwari and Jorg Kuhnert, “Finite poinset method based on the projection method for simulations of the incompressible navier-stokes equations”, Meshfree Methods for Partial Differential Equations, pp. 373-387, July 2011.spa
dc.relation.referencesKoshizuka and Oka, “Moving particle semi-implicit method” A Meshfree Particle Method for fluid Dynamics, 1st edition, pp. count: 306, June 2018.spa
dc.relation.referencesArstid, P., “Reduction of process simulation models: a proper orthogonal approach”, P.h.D. Thesis, Technische Universiteit Eindhoven, January 2004.spa
dc.relation.referencesFrancis H. Harlow and J. Eddie Welch, “Numerical calculation of time dependent viscous incompressible flow of fluid with free surface”, The Physics of Fluids, vol. 8, number 12, December 1965.spa
dc.relation.referencesThomas A. Brenner et al., “A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition”, Computers & Chemical Engineering, vol. 43, pp. 68-80, April 2012.spa
dc.relation.referencesO. Buneman, “Dissipation of currents in ionized media”, Physical Review, vol. 115, number 3, February 1959.spa
dc.relation.referencesJ.P. Christiansen, “Numerical simulation of hydrodynamics by method of point vortices”, Journal of Computational Physics, vol. 13, pp. 363-379, October 1971.spa
dc.relation.referencesGuo Z. and Shu., “Lattice Boltzman method and its application in engineering”, World Scientific Publishing Company, pp. count: 420, March 2013.spa
dc.relation.referencesD. Kandhai et al., “A comparison between Lattice-Bolztmann and finite-element simulations of fluid flow in static mixer reactors”, International Journal of Modern Physics C., vol. 9, pp. 1123-1128, September 1998.spa
dc.relation.referencesJuan Rodríguez Pérez, “Programación Matlab en paralelo sobre Clúster Computacional: Evaluación de prestaciones”, Tesis de grado, Escueal Técnica Superior de Ingeniería de Telecomunicación,Universidad Politécnica de Cartagena, Febrero 2010.spa
dc.relation.referencesT. Borrvall and J. Petersson, “Large-scale topology optimization in 3D using parallel computing,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 46-47, pp. 6201-6229, Sep.2001.spa
dc.relation.referencesR. Farber, CUDA Application Design and Development, 1st ed. Morgan Kaufmann, 2011.spa
dc.relation.referencesHao Che 1, Min Nguyen 1, “Amdahl’s law for multithreaded multicore processors”, J. Parallel Distrib. Compu. 74 (2014) 3056-3069, 1 Department of Computer Science and Engineering, University of Texas at Arlington, TX 76019, USA.spa
dc.relation.referencesT. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd Revised edition. MIT Press, 2009.spa
dc.relation.referencesNiels Aage 1 et al, “Topology optimization of large-scale Stokes flow problems”, Struct. Multidisciplinary Optimization (2008) 35:175-180. 1Department of Mechanical Engineering Technical University of Denmark, DK-2800 Lyngby, Denmark.spa
dc.relation.referencesKentaro Yaji et al, “Large-scale topology optimization incorporating local-in-time adjoint-based method for unsteady thermal-fluid problem.spa
dc.relation.referencesChen C, Yaji K, Yamada T, Izuki K, Nishiwaki S (2017) Local-in-time adjoint-based topology optimization of unsteady fluid flows using the lattice Boltzman method. Mechanical Engineering Journal 4(3):17-00120.spa
dc.relation.referencesJoe Alexandersen 1 et al, “Large scale three-dimensional topology optimization of heat sinks cooled by natural convection”, International Journal of Heat and Mass Transfer 100 (2016) 876-891. 1Department of Mechanical Engineering Solid Mechanics, Technical University of Denmark, Nils Koppels, Allé, Building 404, DK-2800 Kgs. Lyngby, Denmark.spa
dc.relation.referencesVivien J. Challis 1, James K. Guest 2, “Level set topology optimization of fluids in Stokes flow”, International Journal for numerical methods in engineering (2009); 79:1284-1308. 1 Department of Mathematics, The University of Queensland, Brisbane, QLD 4072, Australia. 2Department of Civil Engineering, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA.spa
dc.relation.referencesKazuo Yonekura 1, Yoshihiro Kanno 2, “Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function”, Japan J. Indust. Appl. Math. (2016). 1IHI Corporation, Shin-Nakahara-Cho, Isogo-Ku, Yokohama 2358501, Japan. 2Tokyo Institute of Technology, 4259 Nagatsuta-cho,Midori-ku, Yokohama 2268503, Japan.spa
dc.relation.referencesHernan Villanueva 1, Kurt Maute 2, “CutFEM topology optimization of 3D laminar incompressible flow problems”, Comput. Methods Appl. Mech. Engrg. 1Department of Mechanical Engineering, University of Colorado Boulder, CO 427 UCB, USA. 2Department of Aerospace Engineering, University of Colorado Boulder, Boulder, CO 427 UCB, USA.spa
dc.relation.referencesSumer B. Dilgen 1 et al, “Density based topology optimization of turbulent flow heat transfer systems”, Structural and Multidisciplinary Optimization (2017). 1Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.spa
dc.relation.referencesCetin B. Dilgen 1 et al, “Topology optimization of turbulent flows”, Comput. Methods Appl. Mech. Engrg (2017). 1Department of Electrical Engineering, Technical University of Denmark, Denmark.spa
dc.relation.referencesJoe Alexandersen 1 et al, “Design of passive coolers for light-emitting diode lamps using topology optimization”, International Journal of Heat and Mass Transfer 122 (2018) 138-149. 1Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Nils Koppels Allé, Building 404, DK-2800, Denmark.spa
dc.relation.referencesMichat Tomasz Jakóbczyk, “Practical Oracle Cloud Infrastructure”, pag. 16.- Bare Metal Machine v.s. Virtual Machine.spa
dc.relation.referencesWu, C., & Buyya, R., “Cloud Infrastructure Servers. Cloud Data Centers and Cost Modeling, 371-424, (2015).spa
dc.relation.referencesM. G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation, and Practice. Springer, 2010.spa
dc.relation.referencesY. W. Kwon and H. Bang, The Finite Element Method Using Matlab. CRC Press, 2000.spa
dc.relation.referencesD.V.Hutton, Fundamentals of Finite Element Analysis,1st ed.McGraw-Hill,2003.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc530 - Física::532 - Mecánica de fluidosspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lembBombas centrífugas - Diseño
dc.subject.lembCentrifugal pumps - Design
dc.subject.proposalComputación en la nubespa
dc.subject.proposalComputación Paralelaspa
dc.subject.proposalOptimización Topológicaspa
dc.subject.proposalMétodo de los elementos finitosspa
dc.subject.proposalEnergía de disipaciónspa
dc.subject.proposalVorticidadspa
dc.subject.proposalEnergy dissipationeng
dc.subject.proposalVorticityeng
dc.subject.proposalTopology Optimizationeng
dc.subject.proposalParallel Computingeng
dc.subject.proposalCloudeng
dc.subject.proposalCentrifugal pumpseng
dc.subject.proposalFinite element methodeng
dc.titleDiseño de bombas centrífugas utilizando el método de optimización topológica y computación paralela en la nubespa
dc.title.translatedDesign of centrifugal pump rotors by using the topology optimization method and parallel cloud computingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
0918847864.2021.pdf
Tamaño:
13.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: