Evaluación de un sistema Smart Sensors de bajo costo para el monitoreo de la escorrentía superficial

dc.contributor.advisorMancipe Munoz, Nestor Alonsospa
dc.contributor.authorBeltrán Huertas, Diana Catalinaspa
dc.contributor.researchgroupGrupo de Investigación en Ingeniería de Recursos Hidrícos Girehspa
dc.date.accessioned2024-05-16T22:28:24Z
dc.date.available2024-05-16T22:28:24Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl seguimiento de la escorrentía superficial, especialmente en relación con las estructuras que gestionan este fenómeno tales como los sistemas urbanos de drenaje sostenible (SUDS), ha experimentado un notable interés en la última década. Los sensores de bajo costo han surgido como herramientas esenciales para la monitorización del agua y los SUDS, siendo empleados por diversos investigadores. Estas herramientas, han tenido una aplicación limitada en investigaciones colombianas, específicamente en el monitoreo de SUDS. Es por esto que surge la pregunta de investigación: ¿cuáles son las ventajas y desventajas de los Smart Sensors en el seguimiento de la escorrentía superficial y su aplicabilidad en SUDS en tiempo casi real? Para abordar esta pregunta, la presente investigación evalúa un sistema de Smart sensor que incluye mediciones de pH, conductividad y temperatura en escenarios tales como en laboratorio, en muestreo in-situ y en muestreo continuo. Los resultados obtenidos revelan que el desempeño (en términos de exactitud y precisión) del Smart sensor es comparable al de un multiparámetro comercial en mediciones puntuales, con un ahorro del 80% del costo. Sin embargo, se identifican desafíos en la transmisión de datos en entornos con conectividad limitada para escenarios de monitoreo continuo. Estos hallazgos indican que, si bien los sensores de bajo costo son viables para medición puntual, aún existen obstáculos para su implementación en medición continua y en tiempo real. Esta investigación no solo contribuye al avance del monitoreo de SUDS en Bogotá mediante la adopción de sensores de bajo costo, sino que también señala un potencial significativo para investigaciones futuras centradas en la mejora de la implementación en medición continua de estos sensores. (Texto tomado de la fuente).spa
dc.description.abstractThe surface runoff monitoring related to structures such as Sustainable Urban Drainage Systems (SUDS) has increased significantly in the past decade. Low-cost sensors have emerged as essential tools for water and SUDS monitoring, widely adopted by various researchers. However, these tools have seen limited application in Colombian research, specifically in SUDS monitoring. The research question to be addressed is: What are the advantages and disadvantages of Smart Sensors for monitoring surface runoff and its applicability for monitoring SUDS in near-real-time? This research evaluates a Smart Sensor system for measuring pH, conductivity, and temperature in scenarios such as: laboratory, in-situ sampling, and continuous monitoring. The results point out that the Smart Sensor's performance is similar to that of a commercial multiparameter for punctual monitoring, saving 80% of its cost. However, challenges in data transmission are identified for environments with limited connectivity in continuous monitoring circumstances. These findings suggest that while low-cost sensors show promise for punctual measurements, obstacles persist for continuous and real-time implementation. This research not only contributes to advance in SUDS monitoring in Bogotá by using low-cost sensors but also demonstrates its potential for future research to enhance implementation of continuous monitoring of these type sensors.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaModelación de fenómenos y amenazas naturalesspa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86103
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAbbas, O., Abou Rjeily, Y., Sadek, M., & Shahrour, I. (2017). A large-scale experimentation of the smart sewage system. Water and Environment Journal, 31(4), 515–521. https://doi.org/10.1111/WEJ.12273spa
dc.relation.referencesAdla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. (2020). Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors. Sensors 2020, Vol. 20, Page 363, 20(2), 363. https://doi.org/10.3390/S20020363spa
dc.relation.referencesAgade, P., & Bean, E. (2023). GatorByte-An Internet of Things-Based Low-Cost, Compact, and Real-Time Water Resource Monitoring Buoy Specifications table. HardwareX, 14, e00427. https://doi.org/10.1016/j.ohx.2023.e00427spa
dc.relation.referencesAgriMetSoft. (2019). Root Mean Square Error Calculator. https://agrimetsoft.com/calculators/Root%20Mean%20Square%20Error#spa
dc.relation.referencesAhmed, U., Mumtaz, R., Anwar, H., Mumtaz, S., & Qamar, A. M. (2020). Water quality monitoring: from conventional to emerging technologies. Water Supply, 20(1), 28– 45. https://doi.org/10.2166/WS.2019.144spa
dc.relation.referencesAli, A. N. A., Khan, M. Y. M. A., Bolong, N., Maarof, K. A., & Tanalol, S. H. (2020, September 26). conceptual and design framework for smart stormwater filtration. IEEE international conference on artificial intelligence in engineering and technology, iicaiet 2020. https://doi.org/10.1109/iicaiet49801.2020.9257828spa
dc.relation.referencesAlmetwally, S. A. H., Hassan, M. K., & Mourad, M. H. (2020). Real Time Internet of Things (IoT) Based Water Quality Management System. Procedia CIRP, 91, 478–485. https://doi.org/10.1016/J.PROCIR.2020.03.107spa
dc.relation.referencesAmerican Public Health Association (APHA). (2005). Standard method for examination of water and wastewater. https://www.standardmethods.org/spa
dc.relation.referencesArévalo Junco, A. D. (2019). Prototipo de un sistema de monitoreo de calidad del agua subterránea en instalaciones de captación de una localidad rural del municipio de Tibaná – Boyacáspa
dc.relation.referencesAssendelft, R. S., & Ilja van Meerveld, H. J. (2019). a low-cost, multi-sensor system to monitor temporary stream dynamics in mountainous headwater catchments. sensors (switzerland), 19(21). https://doi.org/10.3390/s19214645spa
dc.relation.referencesBarbosa, A. E., Fernandes, J. N., & David, L. M. (2012). Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798. https://doi.org/10.1016/j.watres.2012.05.029spa
dc.relation.referencesBartos, M., Wong, B., & Kerkez, B. (2018). Open storm: a complete framework for sensing and control of urban watersheds. Environmental Science: Water Research & Technology, 4(3), 346–358. https://doi.org/10.1039/C7EW00374Aspa
dc.relation.referencesBerndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36, 351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014spa
dc.relation.referencesCamarena Gamarra, P. A. (2022). Desarrollo de una red LoRaWAN® para IoTspa
dc.relation.referencesCastro, J. (2012). Validación parámetros de pH y conductividad en aguas superficiales y residuales domesticas en el laboratorio de ambiental de la CRC bajo la norma NTCISO/IEC 17025. http://repositorio.unicauca.edu.co:8080/bitstream/handle/123456789/7307/Validaci% C3%B3n%20par%C3%A1metros%20de%20pH%20y%20conductividad%20en%20a guas%20superficiales%20y%20residuales%20domesticas.pdf?sequence=1&isAllow ed=yspa
dc.relation.referencesChen, T., Wang, M., Su, J., Ikram, R. M. A., & Li, J. (2023). Application of Internet of Things (IoT) Technologies in Green Stormwater Infrastructure (GSI): A Bibliometric Review. Sustainability, 15(18), 13317. https://doi.org/10.3390/su151813317spa
dc.relation.referencesDelgado, A., Briciu-Burghina, C., & Regan, F. (2021). Antifouling Strategies for Sensors Used in Water Monitoring: Review and Future Perspectives. Sensors 2021, Vol. 21, Page 389, 21(2), 389. https://doi.org/10.3390/S21020389spa
dc.relation.referencesDFRobot. (2023). Liquid Sensor. https://www.dfrobot.com/category-68.htmlspa
dc.relation.referencesFell, J., Pead, J., & Winter, K. (2019). low-cost flow sensors: making smart water monitoring technology affordable. IEEE Consumer Electronics Magazine, 8(1), 72– 77. https://doi.org/10.1109/MCE.2018.2867984spa
dc.relation.referencesFL0 - backend engineering, supercharged. (n.d.). Retrieved January 28, 2024, from https://www.fl0.com/spa
dc.relation.referencesGiraldo, M., Jiménez Ariza, S., Martínez, J., Ramírez, P., Rodríguez Sánchez, J., Camacho-Botero, L., & Diazgranados, M. (2019). (PDF) Quantifying the performance of a SUDS treatment train. A case-study of San Cristobal Park, Bogotá (Colombia). https://www.researchgate.net/publication/336767584_Quantifying_the_performance_ of_a_SUDS_treatment_train_A_casestudy_of_San_Cristobal_Park_Bogota_Colombiaspa
dc.relation.referencesHANNA. (2023). HI 9829 Medidor Multiparámetro Impermeable para pH / ISE / CE / OD / Turbidez con Opción de GPS | HANNA Instruments Colombia. HANNA. https://www.hannacolombia.com/productos/producto/hi-9829-medidormultiparametro-impermeable-para-ph-ise-ce-od-turbidez-con-opcion-de-gpsspa
dc.relation.referencesHanna. (2023). HI 9829 Medidor Multiparámetro Impermeable para pH / ISE / CE / OD / Turbidez con Opción de GPS | HANNA Instruments Colombia. https://www.hannacolombia.com/productos/producto/hi-9829-medidormultiparametro-impermeable-para-ph-ise-ce-od-turbidez-con-opcion-de-gpsspa
dc.relation.referencesIdeam, & Invemar. (2021). Protocolo de monitoreo y seguimiento del agua. In Ideam, Invemar.spa
dc.relation.referencesLakshmikantha, V., Hiriyannagowda, A., Manjunath, A., Patted, A., Basavaiah, J., & Anthony, A. A. (2021). IoT based smart water quality monitoring system. Global Transitions Proceedings, 2, 181–186. https://doi.org/10.1016/j.gltp.2021.08.062spa
dc.relation.referencesLambrou, T. P., Anastasiou, C. C., Panayiotou, C. G., & Polycarpou, M. M. (2014). a lowcost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sensors Journal, 14(8), 2765–2772. https://doi.org/10.1109/JSEN.2014.2316414spa
dc.relation.referencesLinjama, J., Puustinen, M., Koskiaho, J., Sirkka, T., Kotilainen, H., & Granlund, K. (2009). implementation of automatic sensors for continuous monitoring of runoff quantity and quality in small catchments. Agricultural and Food Science, 18(3–4), 417–427. https://doi.org/10.23986/afsci.5957spa
dc.relation.referencesLiu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H. J., Kumar, S., Moradkhani, H., Seo, D. J., Schwanenberg, D., Smith, P., Van Dijk, A. I. J. M., Van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., & Restrepo, P. (2012). advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16(10), 3863–3887. https://doi.org/10.5194/hess-16-3863-2012spa
dc.relation.referencesMalek, K., Ortíz Rodríguez, E., Lee, Y.-C., Murillo, J., Mohammadkhorasani, A., Vigil, L., Zhang, S., & Moreu, F. (2023). Design and implementation of sustainable solar energy harvesting for low-cost remote sensors equipped with real-time monitoring systems. Journal of Infrastructure Intelligence and Resilience, 2(3), 100051. https://doi.org/10.1016/J.IINTEL.2023.100051spa
dc.relation.referencesMancipe, N., Beltrán, D., Sandoval, J., Riaño, M. F., Rodríguez, E., Castañeda, P., & Alarcón, E. (2022). Evaluación del impacto hidrológico y ambiental de sistemas urbanos de drenaje sostenible (SUDS), caso de estudio en el campus de la Universidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesMontenegro, A. (2016). Desarrollo de un sistema de monitoreo de la calidad del agua utilizando sensores capacitivos de bajo costo (Tesis de maestría). Pontificia Universidad Javeriana,spa
dc.relation.referencesMurphy, K., Heery, B., Sullivan, T., Zhang, D., Paludetti, L., Lau, K. T., Diamond, D., Costa, E., O’Connor, N., & Regan, F. (2015). a low-cost autonomous optical sensor for water quality monitoring. Talanta, 132, 520–527. https://doi.org/10.1016/j.talanta.2014.09.045spa
dc.relation.referencesO’Flynn, B., Martínez-Català, R., Harte, S., O’Mathuna, C., Geary, J., Slater, C., Regan, F., Diamond, D., & Murphy, H. (2007). SmartCoast: A Wireless Sensor Network for water quality monitoring. Proceedings - Conference on Local Computer Networks, LCN, 815–816. https://doi.org/10.1109/LCN.2007.151spa
dc.relation.referencesParra, L., Rocher, J., Escrivá, J., & Lloret, J. (2018). design and development of low cost smart turbidity sensor for water quality monitoring in fish farms. Aquacultural Engineering, 81, 10–18. https://doi.org/10.1016/j.aquaeng.2018.01.004spa
dc.relation.referencesPoquita-Du, R. C., Morgia Du, I. P., & Todd, P. A. (2023). EmerSense: A low-cost multiparameter logger to monitor occurrence and duration of emersion events within intertidal zones. HardwareX, 14, e00410. https://doi.org/10.1016/J.OHX.2023.E00410spa
dc.relation.referencesRaja, L., Shanthi, G., & Periasamy, P. S. (2019). internet of things based real time water monitoring system. International Journal of Recent Technology and Engineering, 8(2), 1368–1372. https://doi.org/10.35940/ijrte.B2026.078219spa
dc.relation.referencesRasin, Z., & Rizal Abdullah, M. (2012). water quality monitoring system using zigbee based wireless sensor network grid-connected quasi-z-source photovoltaic inverter with energy storage view project water quality monitoring system using zigbee based wireless sensor network. https://www.researchgate.net/publication/228785823spa
dc.relation.referencesRizzo, A., Bresciani, R., Martinuzzi, N., & Masi, F. (2020). Online monitoring of a longterm full-scale constructed wetland for the treatment of winery wastewater in Italy. Applied Sciences (Switzerland), 10(2), 555. https://doi.org/10.3390/app10020555spa
dc.relation.referencesSalam, A. E. U., Sadjad, R. S. oed, Rezkullah, F. A. S., & Fakhri, M. (2019). online hydraulic parameter monitoring system in water distribution network. ICIC Express Letters, Part B: Applications, 10(12), 1037–1045. https://doi.org/10.24507/icicelb.10.12.1037spa
dc.relation.referencesSalim, T. I., Haiyunnisa, T., & Alam, H. S. (2017). design and implementation of water quality monitoring for eel fish aquaculture. 2016 International Symposium on Electronics and Smart Devices, ISESD 2016, 208–213. https://doi.org/10.1109/ISESD.2016.7886720spa
dc.relation.referencesSDA. (2020). SISISTEMAS URBANOS DE DRENAJE SOSTENIBLE (SUDS).spa
dc.relation.referencesSeders, L. A., Shea, C. A., Lemmon, M. D., Maurice, P. A., & Talley, J. W. (2007). LakeNet: An Integrated Sensor Network for Environmental Sensing in Lakes. Https://Home.Liebertpub.Com/Ees, 24(2), 183–191. https://doi.org/10.1089/EES.2006.0044spa
dc.relation.referencesValle, L. (2017). Sensor de nivel de agua con Arduino utilizando ultrasonidos. https://programarfacil.com/blog/arduino-blog/sensor-de-nivel-de-agua-con-arduino/spa
dc.relation.referencesVijayakumar, N., & Ramya, R. (2015, July 15). the real time monitoring of water quality in iot environment. IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2015. https://doi.org/10.1109/ICCPCT.2015.7159459spa
dc.relation.referencesZita, A. (2018). Diferencia entre exactitud y precisión - Diferenciador. https://www.diferenciador.com/diferencia-entre-exactitud-y-precision/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalSensor de bajo costospa
dc.subject.proposalMultiparámetrospa
dc.subject.proposalPHspa
dc.subject.proposalTemperaturaspa
dc.subject.proposalConductividadspa
dc.subject.proposalEvaluaciónspa
dc.subject.proposalSmart sensoreng
dc.subject.proposalLow-cost sensoreng
dc.subject.proposalMultiparametereng
dc.subject.proposalTemperatureeng
dc.subject.proposalConductivityeng
dc.subject.proposalAssessmenteng
dc.subject.unescoEscorrentíaspa
dc.subject.unescoRunoffeng
dc.subject.unescoIngeniería de drenajespa
dc.subject.unescoDrainage engineeringeng
dc.subject.wikidatasensorspa
dc.subject.wikidatasensoreng
dc.titleEvaluación de un sistema Smart Sensors de bajo costo para el monitoreo de la escorrentía superficialspa
dc.title.translatedAssessment of a low-cost Smart Sensors system for surface runoff monitoringeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010209903.2024.pdf
Tamaño:
3.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: