Caracterización genómica de un grupo de individuos con Deterioro Cognitivo Leve (DCL) en población del Atlántico, Colombia
dc.contributor.advisor | Pinzón Velasco, Andrés Mauricio | spa |
dc.contributor.advisor | Arboleda Bustos, Carlos Eduardo | spa |
dc.contributor.author | Largo González, Johan Hernando | spa |
dc.contributor.cvlac | Largo Gonzalez, Johan Hernando [0000149121] | spa |
dc.contributor.orcid | Largo Gonzalez, Johan Hernando [0000000247872960] | spa |
dc.contributor.researchgate | Largo Gonzalez, Johan Hernando [Johan-Largo-Gonzalez] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Bioinformática y Biología de Sistemas | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Atlántico | spa |
dc.date.accessioned | 2025-07-14T13:46:18Z | |
dc.date.available | 2025-07-14T13:46:18Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | El deterioro cognitivo leve (DCL) es una etapa temprana de la enfermedad de Alzheimer (EA), caracterizada por una disminución en la cognición sin llegar a ser demencia. Factores genéticos influyen en su desarrollo, y se han identificado variantes asociadas a su progresión, destacando el alelo APOE-ϵ4 como un marcador clave en la transición de DCL a EA. La prevalencia de DCL varía entre 5,0% y 36,7% a nivel mundial, mientras que en Colombia afecta al 17,5% de la población, con mayor incidencia en la región del Atlántico. A pesar de las herramientas diagnósticas actuales, es necesario un enfoque multiómico para una comprensión más profunda de la enfermedad. Los avances en secuenciación de nueva generación (NGS) permiten identificar factores genéticos clave en enfermedades neurodegenerativas, facilitando el desarrollo de estrategias preventivas y terapéuticas. En este contexto, surge la oportunidad de realizar un estudio de asociación y caracterización genómica en pacientes con DCL y controles de la población del Atlántico, Colombia, con el objetivo de profundizar en los mecanismos genéticos involucrados en esta región, que presenta una alta prevalencia de enfermedades neurodegenerativas (Texto tomado de la fuente). | spa |
dc.description.abstract | Mild Cognitive Impairment (MCI) is an early stage of Alzheimer’s disease (AD), characterized by a decline in cognition without reaching the threshold for dementia. Genetic factors influence its development, and several variants associated with its progression have been identified, with the APOE-ϵ4 allele standing out as a key marker in the transition from MCI to AD. The prevalence of MCI ranges from 5.0% to 36.7% worldwide, while in Colombia, it affects 17.5% of the population, with the highest incidence in the Atlántico region. Despite the availability of current diagnostic tools, a multi-omics approach is necessary for a deeper understanding of the disease. Advances in next-generation sequencing (NGS) enable the identification of key genetic factors in neurodegenerative diseases, facilitating the development of preventive and therapeutic strategies. In this context, the opportunity arises to conduct an association study and genomic characterization of MCI patients and controls from the Atlántico region, Colombia, aiming to gain deeper insights into the genetic mechanisms involved in this population, which exhibits a high prevalence of neurodegenerative diseases. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioinformática | spa |
dc.description.methods | Para llevar a cabo el objetivo general del trabajo de grado se determinó un estudio observacional de tipo caso control. Para tal fin se establecieron puntos críticos para el desarrollo del mismo. | spa |
dc.description.researcharea | Biología de Sistemas | spa |
dc.format.extent | 78 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88331 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.references | Aarsland, D., Batzu, L., Halliday, G. M., Geurtsen, G. J., Ballard, C., Ray Chaudhuri, K., & Weintraub, D. (2021). Parkinson disease-associated cognitive impairment. Nature Reviews Disease Primers, 7(1). https://doi.org/10.1038/s41572-021-00280-3 | spa |
dc.relation.references | Abdul Rehman, S. A., Armstrong, L. A., Lange, S. M., Kristariyanto, Y. A., Gräwert, T. W., Knebel, A., Svergun, D. I., & Kulathu, Y. (2021). Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2. Molecular Cell, 81(20), 4176-4190.e6. https://doi.org/10.1016/j.molcel.2021.08.024 | spa |
dc.relation.references | Adam, F., & Nathan, W. (2020). Best Practices for De Novo Transcriptome Assembly with Trinity. Harvard FAS Informatics. https://informatics.fas.harvard.edu/best-practices-for-de-novo-transcriptome-assembly-with-trinity.html | spa |
dc.relation.references | Alvarado, C., Gómez, J. F., Etayo, E., Giraldo, C. E., Pineda, A., & Toro, E. (2014). Estudio EDECO (Estudio poblacional de deterioro cognitivo en población colombiana). Acta Médica Colombiana, 264–271. https://doi.org/10.36104/amc.2014.196 | spa |
dc.relation.references | Anderson, N. D. (2019). State of the science on mild cognitive impairment (MCI). In CNS Spectrums (Vol. 24, Issue 1). https://doi.org/10.1017/S1092852918001347 | spa |
dc.relation.references | Andrews, S. (2010). FastQC. Babraham Bioinformatics. http://www.bioinformatics.babraham.ac.uk/projects/ | spa |
dc.relation.references | Angela M. Sanford. (2017). Mild Cognitive Impairment. Clinics in Geriatric Medicine, 33(3), 325–337. http://dx.doi.org/10.1016/j.cger.2017.02.005 | spa |
dc.relation.references | Bai, W., Chen, P., Cai, H., Zhang, Q., Su, Z., Cheung, T., Jackson, T., Sha, S., & Xiang, Y. T. (2022). Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age and Ageing, 51(8). https://doi.org/10.1093/ageing/afac173 | spa |
dc.relation.references | Baltira, C., Aronica, E., Elmquist, W. F., Langer, O., Löscher, W., Sarkaria, J. N., Wesseling, P., de Gooijer, M. C., & van Tellingen, O. (2024). The impact of ATP-binding cassette transporters in the diseased brain: Context matters. Cell Reports Medicine, 5(6), 101609. https://doi.org/10.1016/j.xcrm.2024.101609 | spa |
dc.relation.references | Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A. C., Campos-Martin, R., Grenier-Boley, B., Andrade, V., Holmans, P. A., Boland, A., Damotte, V., van der Lee, S. J., Costa, M. R., Kuulasmaa, T., Yang, Q., de Rojas, I., Bis, J. C., … Lambert, J.-C. (2022). New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nature Genetics, 54(4), 412–436. https://doi.org/10.1038/s41588-022-01024-z | spa |
dc.relation.references | Belsare, S., Levy-Sakin, M., Mostovoy, Y., Durinck, S., Chaudhuri, S., Xiao, M., Peterson, A. S., Kwok, P.-Y., Seshagiri, S., & Wall, J. D. (2019). Evaluating the quality of the 1000 genomes project data. BMC Genomics, 20(1), 620. https://doi.org/10.1186/s12864-019-5957-x | spa |
dc.relation.references | Benavides-Caro, C. . (2017). Deterioro cognitivo en el adulto mayor. Revista Mexicana de Anestesiología, 40(2). | spa |
dc.relation.references | Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. The Lancet, 368(9533), 387–403. https://doi.org/10.1016/S0140-6736(06)69113-7 | spa |
dc.relation.references | Borrás Blasco, C., & Viña Ribes, J. (2016). Neurofisiología y envejecimiento. Concepto y bases fisiopatológicas del deterioro cognitivo. Revista Espanola de Geriatria y Gerontologia, 51. https://doi.org/10.1016/S0211-139X(16)30136-6 | spa |
dc.relation.references | Brabec, J. L., Lara, M. K., Tyler, A. L., & Mahoney, J. M. (2021). System-Level Analysis of Alzheimer’s Disease Prioritizes Candidate Genes for Neurodegeneration. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.625246 | spa |
dc.relation.references | Broad Institute. (2019). Picard toolkit. In Broad Institute, GitHub repository. | spa |
dc.relation.references | Bu, S., Lv, Y., Liu, Y., Qiao, S., & Wang, H. (2021). Zinc Finger Proteins in Neuro-Related Diseases Progression. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.760567 | spa |
dc.relation.references | Calderari, S., Ria, M., Gérard, C., Nogueira, T. C., Villate, O., Collins, S. C., Neil, H., Gervasi, N., Hue, C., Suarez-Zamorano, N., Prado, C., Cnop, M., Bihoreau, M.-T., Kaisaki, P. J., Cazier, J.-B., Julier, C., Lathrop, M., Werner, M., Eizirik, D. L., & Gauguier, D. (2018). Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics, 110(2), 98–111. https://doi.org/10.1016/j.ygeno.2017.09.001 | spa |
dc.relation.references | Campbell, N. L., Unverzagt, F., LaMantia, M. A., Khan, B. A., & Boustani, M. A. (2013). Risk factors for the progression of mild cognitive impairment to dementia. In Clinics in Geriatric Medicine (Vol. 29, Issue 4). https://doi.org/10.1016/j.cger.2013.07.009 | spa |
dc.relation.references | Carrasquillo, M. M., Crook, J. E., Pedraza, O., Thomas, C. S., Pankratz, V. S., Allen, M., Nguyen, T., Malphrus, K. G., Ma, L., Bisceglio, G. D., Roberts, R. O., Lucas, J. A., Smith, G. E., Ivnik, R. J., Machulda, M. M., Graff-Radford, N. R., Petersen, R. C., Younkin, S. G., & Ertekin-Taner, N. (2015). Late-onset Alzheimer’s risk variants in memory decline, incident mild cognitive impairment, and Alzheimer’s disease. Neurobiology of Aging, 36(1), 60–67. https://doi.org/10.1016/j.neurobiolaging.2014.07.042 | spa |
dc.relation.references | Chen, Z., Simmons, M. S., Perry, R. T., Wiener, H. W., Harrell, L. E., & Go, R. C. P. (2008). Genetic Association of Neurotrophic Tyrosine Kinase Receptor Type 2 ( NTRK2 ) With Alzheimer’s Disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(3), 363–369. https://doi.org/10.1002/ajmg.b.30607 | spa |
dc.relation.references | Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2). https://doi.org/10.1093/gigascience/giab008 | spa |
dc.relation.references | de Mendonça, A., Ribeiro, F., Guerreiro, M., & Garcia, C. (2004). Frontotemporal mild cognitive impairment. Journal of Alzheimer’s Disease, 6(1), 1–9. https://doi.org/10.3233/JAD-2004-6101 | spa |
dc.relation.references | Dean, M., Moitra, K., & Allikmets, R. (2022). The human ATP‐binding cassette (ABC) transporter superfamily. Human Mutation, 43(9), 1162–1182. https://doi.org/10.1002/humu.24418 | spa |
dc.relation.references | del Carmen Díaz-Mardomingo, M., García-Herranz, S., Rodríguez-Fernández, R., Venero, C., & Peraita, H. (2017). Problems in classifying mild cognitive impairment (MCI): One or multiple syndromes? Brain Sciences, 7(9). https://doi.org/10.3390/brainsci7090111 | spa |
dc.relation.references | Delcheva, G., Stefanova, K., & Stankova, T. (2024). Ceramides—Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases, 12(9), 195. https://doi.org/10.3390/diseases12090195 | spa |
dc.relation.references | DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V, Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. https://doi.org/10.1038/ng.806 | spa |
dc.relation.references | Díaz Cabezas, R., Marulanda Mejía, F., & Martínez Arias, M. H. (2013). Prevalencia de deterioro cognitivo y demencia en mayores de 65 años en una población urbana colombiana. Acta Neurológica Colombiana, 29(3). https://actaneurologica.com/index.php/anc/article/view/1376 | spa |
dc.relation.references | Duff, K., Paulsen, J., Mills, J., Beglinger, L. J., Moser, D. J., Smith, M. M., Langbehn, D., Stout, J., Queller, S., & Harrington, D. L. (2010). Mild cognitive impairment in prediagnosed Huntington disease. Neurology, 75(6). https://doi.org/10.1212/WNL.0b013e3181eccfa2 | spa |
dc.relation.references | Elman, J. A., Panizzon, M. S., Logue, M. W., Gillespie, N. A., Neale, M. C., Reynolds, C. A., Gustavson, D. E., Rana, B. K., Andreassen, O. A., Dale, A. M., Franz, C. E., Lyons, M. J., & Kremen, W. S. (2019). Genetic risk for coronary heart disease alters the influence of Alzheimer’s genetic risk on mild cognitive impairment. Neurobiology of Aging, 84, 237.e5-237.e12. https://doi.org/10.1016/j.neurobiolaging.2019.06.001 | spa |
dc.relation.references | Espinosa, A., Hernández-Olasagarre, B., Moreno-Grau, S., Kleineidam, L., Heilmann-Heimbach, S., Hernández, I., Wolfsgruber, S., Wagner, H., Rosende-Roca, M., Mauleón, A., Vargas, L., Lafuente, A., Rodríguez-Gómez, O., Abdelnour, C., Gil, S., Marquié, M., Santos-Santos, M. A., Sanabria, Á., Ortega, G., … Ruiz, A. (2018). Exploring Genetic Associations of Alzheimer’s Disease Loci With Mild Cognitive Impairment Neurocognitive Endophenotypes. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00340 | spa |
dc.relation.references | Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19). https://doi.org/10.1093/bioinformatics/btw354 | spa |
dc.relation.references | Folstein, M. F., Folstein, S. E., & McHugh, P. R. (2014). Mini-Mental State Examination. In PsycTESTS Dataset. https://doi.org/10.1037/t07757-000 | spa |
dc.relation.references | Fortes Marin, E., Carrera Marcolin, L., Martí Melero, L., Tintoré Gazulla, M., & Beltran Porres, M. (2025). The Prevalence of Single Nucleotide Polymorphisms of the AOC1 Gene Associated with Diamine Oxidase (DAO) Enzyme Deficiency in Healthy Newborns: A Prospective Population-Based Cohort Study. Genes, 16(2). https://doi.org/10.3390/genes16020141 | spa |
dc.relation.references | Fu, X., Eikelboom, R. H., Tian, R., Liu, B., Wang, S., & Jayakody, D. M. P. (2023). The Relationship of Age-Related Hearing Loss with Cognitive Decline and Dementia in a Sinitic Language-Speaking Adult Population: A Systematic Review and Meta-Analysis. Innovation in Aging, 7(1). https://doi.org/10.1093/geroni/igac078 | spa |
dc.relation.references | Fukui, H., Rünker, A., Fabel, K., Buchholz, F., & Kempermann, G. (2018). Transcription factor Runx1 is pro-neurogenic in adult hippocampal precursor cells. PLOS ONE, 13(1), e0190789. https://doi.org/10.1371/journal.pone.0190789 | spa |
dc.relation.references | Furney, S. J., Simmons, A., Breen, G., Pedroso, I., Lunnon, K., Proitsi, P., Hodges, A., Powell, J., Wahlund, L.-O., Kloszewska, I., Mecocci, P., Soininen, H., Tsolaki, M., Vellas, B., Spenger, C., Lathrop, M., Shen, L., Kim, S., Saykin, A. J., … Lovestone, S. (2011). Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Molecular Psychiatry, 16(11), 1130–1138. https://doi.org/10.1038/mp.2010.123 | spa |
dc.relation.references | Gallione, C. J., Detter, M. R., Sheline, A., Christmas, H. M., Lee, C., & Marchuk, D. A. (2022). Genetic genealogy uncovers a founder deletion mutation in the cerebral cavernous malformations 2 gene. Human Genetics, 141(11), 1761–1769. https://doi.org/10.1007/s00439-022-02458-5 | spa |
dc.relation.references | Garcia-Cifuentes, E., Jaramillo-Jimenez, A., Aguillon, D., Gómez-Vega, M., Velez-Hernandez, J. E., Cano Gutiérrez, C., & Lopera, F. (2019). Prevenir la demencia: un reto para la salud pública en Colombia. Acta Neurológica Colombiana, 35(4), 208–210. https://doi.org/10.22379/24224022269 | spa |
dc.relation.references | Genis-Mendoza, A., Martínez-Magaña, J., Téllez Martínez, J. A., Jiménez-Guenchi, J., Roche Bergua, A., Castañeda, C., Tovilla-Zarate, C. A., & Nicolini, H. (2020). Identification of high impact variants in TREM2 and ABCA7 in Mexican individuals diagnosed with Alzheimer’s disease. Revista Mexicana de Psiquiatría y Salud Mental, 1(8), 224–229. https://goo.su/L1u26 | spa |
dc.relation.references | Genome Reference Consortium. (2019). GRCh38.p13 Genome Reference Assembly. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/ | spa |
dc.relation.references | Gil, L., Ruiz De Sánchez, C., Gil, F., Romero, S. J., & Pretelt Burgos, F. (2015). Validation of the Montreal Cognitive Assessment (MoCA) in Spanish as a screening tool for mild cognitive impairment and mild dementia in patients over 65 years old in Bogotá, Colombia. International Journal of Geriatric Psychiatry, 30(6). https://doi.org/10.1002/gps.4199 | spa |
dc.relation.references | Gjøra, L., Strand, B. H., Bergh, S., Borza, T., Brækhus, A., Engedal, K., Johannessen, A., Kvello-Alme, M., Krokstad, S., Livingston, G., Matthews, F. E., Myrstad, C., Skjellegrind, H., Thingstad, P., Aakhus, E., Aam, S., & Selbæk, G. (2021). Current and future prevalence estimates of mild cognitive impairment, dementia, and its subtypes in a population-based sample of people 70 years and older in Norway: The HUNT study. Journal of Alzheimer’s Disease, 79(3). https://doi.org/10.3233/JAD-201275 | spa |
dc.relation.references | Gomar, J. J. (2011). Utility of Combinations of Biomarkers, Cognitive Markers, and Risk Factors to Predict Conversion From Mild Cognitive Impairment to Alzheimer Disease in Patients in the Alzheimer’s Disease Neuroimaging Initiative. Archives of General Psychiatry, 68(9), 961. https://doi.org/10.1001/archgenpsychiatry.2011.96 | spa |
dc.relation.references | Granot-Hershkovitz, E., Xia, R., Yang, Y., Spitzer, B., Tarraf, W., Vásquez, P. M., Lipton, R. B., Daviglus, M., Argos, M., Cai, J., Kaplan, R., Fornage, M., DeCarli, C., Gonzalez, H. M., & Sofer, T. (2023). Interaction analysis of ancestry-enriched variants with APOE-ɛ4 on MCI in the Study of Latinos-Investigation of Neurocognitive Aging. Scientific Reports, 13(1), 5114. https://doi.org/10.1038/s41598-023-32028-2 | spa |
dc.relation.references | Gutiérrez Rodríguez, J., & Guzmán Gutiérrez, G. (2017). Definición y prevalencia del deterioro cognitivo leve. Revista Española de Geriatría y Gerontología, 52. https://doi.org/10.1016/s0211-139x(18)30072-6 | spa |
dc.relation.references | Han, M.-R., Schellenberg, G. D., & Wang, L.-S. (2010). Genome-wide association reveals genetic effects on human Aβ 42 and τ protein levels in cerebrospinal fluids: a case control study. BMC Neurology, 10(1), 90. https://doi.org/10.1186/1471-2377-10-90 | spa |
dc.relation.references | Haridy, S. F. A., Shahin, N. N., Shabayek, M. I., Selim, M. M., Abdelhafez, M. A., & Motawi, T. K. (2023). Diagnostic and prognostic value of the RUNXOR/RUNX1 axis in multiple sclerosis. Neurobiology of Disease, 178, 106032. https://doi.org/10.1016/j.nbd.2023.106032 | spa |
dc.relation.references | Henao-Arboleda, E., Moreno- Carrillo, C., Ramos, V., Aguirre-Acevedo, D. C., Pineda, D., & Lopera, F. (2010). Caracterización de síntomas neuropsiquiátricos en pacientes con DCL de tipo amnésico en una población colombiana. Revista Chilena de Neuropsicología, 5(2), 153–159. | spa |
dc.relation.references | Henao Arboleda, E., Aguirre Acevedo, D. C., Muñoz, C., Pineda Salazar, D. A., & Lopera Restrepo, F. (2008). Prevalencia de deterioro cognitivo leve de tipo amnésico en una población colombiana. Revista de Neurología, 46(12), 709. https://doi.org/10.33588/rn.4612.2007569 | spa |
dc.relation.references | Horgusluoglu-Moloch, E., Nho, K., Risacher, S. L., Kim, S., Foroud, T., Shaw, L. M., Trojanowski, J. Q., Aisen, P. S., Petersen, R. C., Jack, C. R., Lovestone, S., Simmons, A., Weiner, M. W., & Saykin, A. J. (2017). Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 60, 92–103. https://doi.org/10.1016/j.neurobiolaging.2017.08.010 | spa |
dc.relation.references | Hostage, C. A., Roy Choudhury, K., Doraiswamy, P. M., & Petrella, J. R. (2013). Dissecting the Gene Dose-Effects of the APOE ε4 and ε2 Alleles on Hippocampal Volumes in Aging and Alzheimer’s Disease. PLoS ONE, 8(2), e54483. https://doi.org/10.1371/journal.pone.0054483 | spa |
dc.relation.references | Hu, T., Chen, J., Lin, X., He, W., Liang, H., Wang, M., Li, W., Wu, Z., Han, M., Jin, X., Kristiansen, K., Xiao, L., & Zou, Y. (2024). Comparison of the DNBSEQ platform and Illumina HiSeq 2000 for bacterial genome assembly. Scientific Reports, 14(1), 1292. https://doi.org/10.1038/s41598-024-51725-0 | spa |
dc.relation.references | Hu, X., Pickering, E. H., Hall, S. K., Naik, S., Liu, Y. C., Soares, H., Katz, E., Paciga, S. A., Liu, W., Aisen, P. S., Bales, K. R., Samad, T. A., & John, S. L. (2011). Genome-wide association study identifies multiple novel loci associated with disease progression in subjects with mild cognitive impairment. Translational Psychiatry, 1(11), e54–e54. https://doi.org/10.1038/tp.2011.50 | spa |
dc.relation.references | Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140(6). https://doi.org/10.1192/bjp.140.6.566 | spa |
dc.relation.references | Hussenoeder, F. S., Conrad, I., Roehr, S., Fuchs, A., Pentzek, M., Bickel, H., Moesch, E., Weyerer, S., Werle, J., Wiese, B., Mamone, S., Brettschneider, C., Heser, K., Kleineidam, L., Kaduszkiewicz, H., Eisele, M., Maier, W., Wagner, M., Scherer, M., … Riedel-Heller, S. G. (2020). Mild cognitive impairment and quality of life in the oldest old: a closer look. Quality of Life Research, 29(6). https://doi.org/10.1007/s11136-020-02425-5 | spa |
dc.relation.references | Kelley, B. J., & Petersen, R. C. (2007). Alzheimer’s Disease and Mild Cognitive Impairment. In Neurologic Clinics (Vol. 25, Issue 3, pp. 577–609). https://doi.org/10.1016/j.ncl.2007.03.008 | spa |
dc.relation.references | Kim, H.-M., Jeon, S., Chung, O., Jun, J. H., Kim, H.-S., Blazyte, A., Lee, H.-Y., Yu, Y., Cho, Y. S., Bolser, D. M., & Bhak, J. (2021). Comparative analysis of 7 short-read sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing. GigaScience, 10(3). https://doi.org/10.1093/gigascience/giab014 | spa |
dc.relation.references | Kong, X., Liu, Z., Huang, L., Wang, X., Yang, Z., Zhou, G., Zhen, Z., & Liu, J. (2015). Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI. PLOS ONE, 10(11), e0141840. https://doi.org/10.1371/journal.pone.0141840 | spa |
dc.relation.references | Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. https://doi.org/10.1186/1746-4811-9-29 | spa |
dc.relation.references | Kubo, S., Yamamoto, H., Kajimura, N., Omori, Y., Maeda, Y., Chaya, T., & Furukawa, T. (2021). Functional analysis of Samd11, a retinal photoreceptor PRC1 component, in establishing rod photoreceptor identity. Scientific Reports, 11(1), 4180. https://doi.org/10.1038/s41598-021-83781-1 | spa |
dc.relation.references | Lacour, A., Espinosa, A., Louwersheimer, E., Heilmann, S., Hernández, I., Wolfsgruber, S., Fernández, V., Wagner, H., Rosende-Roca, M., Mauleón, A., Moreno-Grau, S., Vargas, L., Pijnenburg, Y. A. L., Koene, T., Rodríguez-Gómez, O., Ortega, G., Ruiz, S., Holstege, H., Sotolongo-Grau, O., … Ruiz, A. (2017). Genome-wide significant risk factors for Alzheimer’s disease: role in progression to dementia due to Alzheimer’s disease among subjects with mild cognitive impairment. Molecular Psychiatry, 22(1), 153–160. https://doi.org/10.1038/mp.2016.18 | spa |
dc.relation.references | Lee, E., Giovanello, K. S., Saykin, A. J., Xie, F., Kong, D., Wang, Y., Yang, L., Ibrahim, J. G., Doraiswamy, P. M., & Zhu, H. (2017). Single‐nucleotide polymorphisms are associated with cognitive decline at Alzheimer’s disease conversion within mild cognitive impairment patients. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 8(1), 86–95. https://doi.org/10.1016/j.dadm.2017.04.004 | spa |
dc.relation.references | Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England), 27(21), 2987–2993. https://doi.org/10.1093/bioinformatics/btr509 | spa |
dc.relation.references | Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 | spa |
dc.relation.references | Li, J. Q., Tan, L., Wang, H. F., Tan, M. S., Tan, L., Xu, W., Zhao, Q. F., Wang, J., Jiang, T., & Yu, J. T. (2016). Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. Journal of Neurology, Neurosurgery and Psychiatry, 87(5). https://doi.org/10.1136/jnnp-2014-310095 | spa |
dc.relation.references | Li, L., Yang, Y., Zhang, Q., Wang, J., Jiang, J., & Neuroimaging Initiative, A. D. (2021). Use of Deep-Learning Genomics to Discriminate Healthy Individuals from Those with Alzheimer’s Disease or Mild Cognitive Impairment. Behavioural Neurology, 2021, 1–15. https://doi.org/10.1155/2021/3359103 | spa |
dc.relation.references | Lin, F., Marchetti, S., Pluim, D., Iusuf, D., Mazzanti, R., Schellens, J. H. M., Beijnen, J. H., & van Tellingen, O. (2013). Abcc4 Together with Abcb1 and Abcg2 Form a Robust Cooperative Drug Efflux System That Restricts the Brain Entry of Camptothecin Analogues. Clinical Cancer Research, 19(8), 2084–2095. https://doi.org/10.1158/1078-0432.CCR-12-3105 | spa |
dc.relation.references | Liu, B., Ruan, J., Chen, M., Li, Z., Manjengwa, G., Schlüter, D., Song, W., & Wang, X. (2022). Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Molecular Psychiatry, 27(1), 259–268. https://doi.org/10.1038/s41380-021-01233-8 | spa |
dc.relation.references | Liu, L., Zhang, D., Liu, H., & Arendt, C. (2013). Robust methods for population stratification in genome wide association studies. BMC Bioinformatics, 14(1), 132. https://doi.org/10.1186/1471-2105-14-132 | spa |
dc.relation.references | Liu, P., Liu, S., Zhu, C., Li, Y., Li, Y., Fei, X., Hou, J., Wang, X., & Pan, Y. (2023). The deubiquitinating enzyme MINDY2 promotes pancreatic cancer proliferation and metastasis by stabilizing ACTN4 expression and activating the PI3K/AKT/mTOR signaling pathway. Frontiers in Oncology, 13, 1169833. https://doi.org/10.3389/fonc.2023.1169833 | spa |
dc.relation.references | Lv, N., Wang, Y., Zhao, M., Dong, L., & Wei, H. (2021). The Role of PAX2 in Neurodevelopment and Disease. Neuropsychiatric Disease and Treatment, Volume 17, 3559–3567. https://doi.org/10.2147/NDT.S332747 | spa |
dc.relation.references | Mak, S. S. T., Gopalakrishnan, S., Carøe, C., Geng, C., Liu, S., Sinding, M.-H. S., Kuderna, L. F. K., Zhang, W., Fu, S., Vieira, F. G., Germonpré, M., Bocherens, H., Fedorov, S., Petersen, B., Sicheritz-Pontén, T., Marques-Bonet, T., Zhang, G., Jiang, H., & Gilbert, M. T. P. (2017). Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. GigaScience, 6(8). https://doi.org/10.1093/gigascience/gix049 | spa |
dc.relation.references | Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., & Derks, E. M. (2018). A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608 | spa |
dc.relation.references | Maulik, U., Sen, S., Mallik, S., & Bandyopadhyay, S. (2018). Detecting TF-miRNA-gene network based modules for 5hmC and 5mC brain samples: a intra- and inter-species case-study between human and rhesus. BMC Genetics, 19(1), 9. https://doi.org/10.1186/s12863-017-0574-7 | spa |
dc.relation.references | Mayeux, R., Saunders, A. M., Shea, S., Mirra, S., Evans, D., Roses, A. D., Hyman, B. T., Crain, B., Tang, M.-X., & Phelps, C. H. (1998). Utility of the Apolipoprotein E Genotype in the Diagnosis of Alzheimer’s Disease. New England Journal of Medicine, 338(8), 506–511. https://doi.org/10.1056/NEJM199802193380804 | spa |
dc.relation.references | McInnis, J. J., Sood, D., Guo, L., Dufault, M. R., Garcia, M., Passaro, R., Gao, G., Zhang, B., & Dodge, J. C. (2024). Unravelling neuronal and glial differences in ceramide composition, synthesis, and sensitivity to toxicity. Communications Biology, 7(1), 1597. https://doi.org/10.1038/s42003-024-07231-0 | spa |
dc.relation.references | McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303. https://doi.org/10.1101/gr.107524.110 | spa |
dc.relation.references | McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Flicek, P., & Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biology, 17(1), 122. https://doi.org/10.1186/s13059-016-0974-4 | spa |
dc.relation.references | Mesa Interinstitucional de Población. (2023). 3.3. ENVEJECIMIENTO Y DERECHOS DE LAS PERSONAS MAYORES. In Fondo de Población de las Naciones Unidas(UNFPA) (Ed.), Análisis de Situación de Población (ASP Colombia 2023) Presentación y Capítulo dinámica demográfica (p. 28). Departamento Nacional de Planeación. https://colombia.unfpa.org/sites/default/files/pub-pdf/3.3_envejecimiento.pdf | spa |
dc.relation.references | Ministerio de Salud y Protección Social. (2013). Plan Decenal de Salud Pública 2012-2021. Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/PDSP.pdf | spa |
dc.relation.references | Ministerio de Salud y Protección Social. (2017). Boletín de salud mental Demencia. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/Boletin-demencia-salud-mental.pdf | spa |
dc.relation.references | Ministerio de Salud y Protección Social, & Colciencias. (2015). Política Colombiana de Envejecimiento Humano y Vejez 2015-2024 (p. 54). Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/Política-colombiana-envejecimiento-humano-vejez-2015-2024.pdf | spa |
dc.relation.references | Moreira, T., & Bond, J. (2008). Does the prevention of brain ageing constitute anti-ageing medicine? Outline of a new space of representation for Alzheimer’s Disease. Journal of Aging Studies, 22(4), 356–365. https://doi.org/10.1016/j.jaging.2008.05.008 | spa |
dc.relation.references | Morozova, A., Zorkina, Y., Abramova, O., Pavlova, O., Pavlov, K., Solovevа, K., Volkova, M., Alekseeva, P., Andryshchenko, A., Kostyuk, G., Gurina, O., & Chekhonin, V. (2022). Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ijms23031217 | spa |
dc.relation.references | Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2014). Montreal Cognitive Assessment. In PsycTESTS Dataset. https://doi.org/10.1037/t27279-000 | spa |
dc.relation.references | Ng, P. C., & Kirkness, E. F. (2010). Whole genome sequencing. In Methods in Molecular Biology (Vol. 628). https://doi.org/10.1007/978-1-60327-367-1_12 | spa |
dc.relation.references | Ophey, A., Wolfsgruber, S., Roeske, S., Polcher, A., Spottke, A., Frölich, L., Hüll, M., Jessen, F., Kornhuber, J., Maier, W., Peters, O., Ramirez, A., Wiltfang, J., Liepelt‐Scarfone, I., Becker, S., Berg, D., Schulz, J. B., Reetz, K., Wojtala, J., … Kalbe, E. (2021). Cognitive profiles of patients with mild cognitive impairment due to Alzheimer’s versus Parkinson’s disease defined using a base rate approach: Implications for neuropsychological assessments. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1). https://doi.org/10.1002/dad2.12223 | spa |
dc.relation.references | Ospina García, N. (2015). Adaptación y validación en Colombia del addenbrooke’s cognitive examination-revisado (ACE-R) en pacientes con deterioro cognoscitivo leve y demencia. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/52292 | spa |
dc.relation.references | Pathak, G. A., Silzer, T. K., Sun, J., Zhou, Z., Daniel, A. A., Johnson, L., O’Bryant, S., Phillips, N. R., & Barber, R. C. (2019). Genome-Wide Methylation of Mild Cognitive Impairment in Mexican Americans Highlights Genes Involved in Synaptic Transport, Alzheimer’s Disease-Precursor Phenotypes, and Metabolic Morbidities. Journal of Alzheimer’s Disease, 72(3), 733–749. https://doi.org/10.3233/JAD-190634 | spa |
dc.relation.references | Pedraza L, O. L., Sánchez, E., Plata, S. J., Montalvo, C., Galvis, P., Chiquillo, A., & Arévalo-Rodríguez, I. (2014). Puntuaciones del MoCA y el MMSE en pacientes con deterioro cognitivo leve y demencia en una clínica de memoria en Bogotá. Acta Neurológica Colombiana, 30(1). | spa |
dc.relation.references | Periñán, M. T., Macías‐García, D., Labrador‐Espinosa, M. Á., Jesús, S., Buiza‐Rueda, D., Adarmes‐Gómez, A. D., Muñoz‐Delgado, L., Gómez‐Garre, P., & Mir, P. (2021). Association of PICALM with Cognitive Impairment in Parkinson’s Disease. Movement Disorders, 36(1), 118–123. https://doi.org/10.1002/mds.28283 | spa |
dc.relation.references | Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3). https://doi.org/10.1111/j.1365-2796.2004.01388.x | spa |
dc.relation.references | Petersen, R. C. (2016). Mild Cognitive Impairment. CONTINUUM: Lifelong Learning in Neurology, 22(2, Dementia), 404–418. https://doi.org/10.1212/CON.0000000000000313 | spa |
dc.relation.references | Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Van der Auwera, G. A., Kling, D. E., Gauthier, L. D., Levy-Moonshine, A., Roazen, D., Shakir, K., Thibault, J., Chandran, S., Whelan, C., Lek, M., Gabriel, S., Daly, M. J., Neale, B., MacArthur, D. G., & Banks, E. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples. https://doi.org/10.1101/201178 | spa |
dc.relation.references | Porreca, G. J. (2010). Genome sequencing on nanoballs. Nature Biotechnology, 28(1), 43–44. https://doi.org/10.1038/nbt0110-43 | spa |
dc.relation.references | Pradhan, J., Noakes, P. G., & Bellingham, M. C. (2019). The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 13. https://doi.org/10.3389/fncel.2019.00368 | spa |
dc.relation.references | Pradilla A., G., Vesga A., B. E., & León-Sarmiento, F. E. (2003). Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Revista Panamericana de Salud Pública, 14(2). https://doi.org/10.1590/s1020-49892003000700005 | spa |
dc.relation.references | Prince, M., Wimo, A., Guerchet, M., Gemma-Claire, A., Wu, Y.-T., & Prina, M. (2015). World Alzheimer Report 2015: The Global Impact of Dementia - An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International. https://doi.org/10.1111/j.0963-7214.2004.00293.x | spa |
dc.relation.references | Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795 | spa |
dc.relation.references | Raghavan, N. S., Dumitrescu, L., Mormino, E., Mahoney, E. R., Lee, A. J., Gao, Y., Bilgel, M., Goldstein, D., Harrison, T., Engelman, C. D., Saykin, A. J., Whelan, C. D., Liu, J. Z., Jagust, W., Albert, M., Johnson, S. C., Yang, H.-S., Johnson, K., Aisen, P., … Mayeux, R. (2020). Association Between Common Variants in RBFOX1 , an RNA-Binding Protein, and Brain Amyloidosis in Early and Preclinical Alzheimer Disease. JAMA Neurology, 77(10), 1288. https://doi.org/10.1001/jamaneurol.2020.1760 | spa |
dc.relation.references | Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. https://doi.org/10.1093/nar/gkz369 | spa |
dc.relation.references | Reitz, C., & Mayeux, R. (2010). Use of Genetic Variation as Biomarkers for Mild Cognitive Impairment and Progression of Mild Cognitive Impairment to Dementia. Journal of Alzheimer’s Disease, 19(1), 229–251. https://doi.org/10.3233/JAD-2010-1255 | spa |
dc.relation.references | Riess, O., Thies, U., Siedlaczck, I., Potisek, S., Graham, R., Theilmann, J., Grimm, T., Epplen, J. T., & Hayden, M. R. (1994). Precise Mapping of the Brain α2-Adrenergic Receptor Gene within Chromosome 4p16. Genomics, 19(2), 298–302. https://doi.org/10.1006/geno.1994.1061 | spa |
dc.relation.references | Ríos-Gallardo, Á. M., Muñoz-Bernal, L. F., Aldana-Camacho, L. V., Santamaría-Íñiguez, M. F., & Villanueva-Bonilla, C. (2017). Perfil neuropsicológico de un grupo de adultos mayores diagnosticados con deterioro cognitivo leve. Revista Mexicana de Neurociencia, 18(5). | spa |
dc.relation.references | Roberts, R., & Knopman, D. S. (2013). Classification and Epidemiology of MCI. Clinics in Geriatric Medicine, 29(4), 753–772. https://doi.org/10.1016/j.cger.2013.07.003 | spa |
dc.relation.references | Robins, C., Liu, Y., Fan, W., Duong, D. M., Meigs, J., Harerimana, N. V., Gerasimov, E. S., Dammer, E. B., Cutler, D. J., Beach, T. G., Reiman, E. M., De Jager, P. L., Bennett, D. A., Lah, J. J., Wingo, A. P., Levey, A. I., Seyfried, N. T., & Wingo, T. S. (2021). Genetic control of the human brain proteome. The American Journal of Human Genetics, 108(3), 400–410. https://doi.org/10.1016/j.ajhg.2021.01.012 | spa |
dc.relation.references | Rollano, O. M., & Mollinedo, P. (2017). Análisis Bioinformático De Arn-Seq Con Una Perspectiva Para Bolivia. Revista Boliviana de Química, 34(2). https://bit.ly/3vk7vX5 | spa |
dc.relation.references | Sachdev, P. S., Lipnicki, D. M., Kochan, N. A., Crawford, J. D., Thalamuthu, A., Andrews, G., Brayne, C., Matthews, F. E., Stephan, B. C. M., Lipton, R. B., Katz, M. J., Ritchie, K., Carrière, I., Ancelin, M. L., Lam, L. C. W., Wong, C. H. Y., Fung, A. W. T., Guaita, A., Vaccaro, R., … Lobo, E. (2015). The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC Collaboration. PLoS ONE, 10(11). https://doi.org/10.1371/journal.pone.0142388 | spa |
dc.relation.references | Sager, K. L., Wuu, J., Leurgans, S. E., Rees, H. D., Gearing, M., Mufson, E. J., Levey, A. I., & Lah, J. J. (2007). Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Annals of Neurology, 62(6), 640–647. https://doi.org/10.1002/ana.21190 | spa |
dc.relation.references | Sarmiento Buitrago, A. F., Cerón Perdomo, D., & Mayorga Bogota, M. A. (2024). Asociación entre el deterioro cognitivo y factores socioeconómicos y sociodemográficos en adultos mayores colombianos. Revista Colombiana de Psiquiatría, 53(2), 134–141. https://doi.org/10.1016/j.rcp.2022.02.005 | spa |
dc.relation.references | Saykin, A. J., Shen, L., Yao, X., Kim, S., Nho, K., Risacher, S. L., Ramanan, V. K., Foroud, T. M., Faber, K. M., Sarwar, N., Munsie, L. M., Hu, X., Soares, H. D., Potkin, S. G., Thompson, P. M., Kauwe, J. S. K., Kaddurah‐Daouk, R., Green, R. C., Toga, A. W., & Weiner, M. W. (2015). Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer’s & Dementia, 11(7), 792–814. https://doi.org/10.1016/j.jalz.2015.05.009 | spa |
dc.relation.references | Shen, L., Kim, S., Risacher, S. L., Nho, K., Swaminathan, S., West, J. D., Foroud, T., Pankratz, N., Moore, J. H., Sloan, C. D., Weiner, M. W., & Saykin, A. J. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. NeuroImage, 53(3), 1051–1063. https://doi.org/10.1016/j.neuroimage.2010.01.042 | spa |
dc.relation.references | Shen, Y., Wang, H., Sun, Q., Yao, H., Keegan, A. P., Mullan, M., Wilson, J., Lista, S., Leyhe, T., Laske, C., Rujescu, D., Levey, A., Wallin, A., Blennow, K., Li, R., & Hampel, H. (2018). Increased Plasma Beta-Secretase 1 May Predict Conversion to Alzheimer’s Disease Dementia in Individuals With Mild Cognitive Impairment. Biological Psychiatry, 83(5). https://doi.org/10.1016/j.biopsych.2017.02.007 | spa |
dc.relation.references | Smith, A. D., & de Sena Brandine, G. (2021). Falco: High-speed FastQC emulation for quality control of sequencing data. F1000Research, 8. https://doi.org/10.12688/f1000research.21142.2 | spa |
dc.relation.references | Stein, J. L., Hua, X., Morra, J. H., Lee, S., Hibar, D. P., Ho, A. J., Leow, A. D., Toga, A. W., Sul, J. H., Kang, H. M., Eskin, E., Saykin, A. J., Shen, L., Foroud, T., Pankratz, N., Huentelman, M. J., Craig, D. W., Gerber, J. D., Allen, A. N., … Thompson, P. M. (2010). Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. NeuroImage, 51(2), 542–554. https://doi.org/10.1016/j.neuroimage.2010.02.068 | spa |
dc.relation.references | Stites, S. D., Harkins, K., Rubright, J. D., & Karlawish, J. (2018). Relationships between cognitive complaints and quality of life in older adults with mild cognitive impairment, mild Alzheimer disease dementia, and normal cognition. Alzheimer Disease and Associated Disorders, 32(4). https://doi.org/10.1097/WAD.0000000000000262 | spa |
dc.relation.references | Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000 | spa |
dc.relation.references | Szot, P., White, S. S., Greenup, J. L., Leverenz, J. B., Peskind, E. R., & Raskind, M. A. (2006). Compensatory Changes in the Noradrenergic Nervous System in the Locus Ceruleus and Hippocampus of Postmortem Subjects with Alzheimer’s Disease and Dementia with Lewy Bodies. The Journal of Neuroscience, 26(2), 467–478. https://doi.org/10.1523/JNEUROSCI.4265-05.2006 | spa |
dc.relation.references | Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., & Meyre, D. (2019). Benefits and limitations of genome-wide association studies. In Nature Reviews Genetics (Vol. 20, Issue 8). https://doi.org/10.1038/s41576-019-0127-1 | spa |
dc.relation.references | Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1(1), 59. https://doi.org/10.1038/s43586-021-00056-9 | spa |
dc.relation.references | van der Auwera, G., & O’Connor, B. D. (2020). Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O’Reilly Media, Incorporated. https://books.google.com.co/books?id=wwiCswEACAAJ | spa |
dc.relation.references | Wang, K., Lu, Y., Morrow, D. F., Xiao, D., & Xu, C. (2022). Associations of ARHGAP26 Polymorphisms with Alzheimer’s Disease and Cardiovascular Disease. Journal of Molecular Neuroscience, 72(5). https://doi.org/10.1007/s12031-022-01972-5 | spa |
dc.relation.references | Wang, M. H., Cordell, H. J., & Van Steen, K. (2019). Statistical methods for genome-wide association studies. Seminars in Cancer Biology, 55, 53–60. https://doi.org/10.1016/j.semcancer.2018.04.008 | spa |
dc.relation.references | Wang, Y., Wang, Y., Tang, J., Li, R., Jia, Y., Yang, H., & Wei, H. (2024). Impaired neural circuitry of hippocampus in Pax2 nervous system‐specific knockout mice leads to restricted repetitive behaviors. CNS Neuroscience & Therapeutics, 30(4). https://doi.org/10.1111/cns.14482 | spa |
dc.relation.references | Wechsler, D. (2012). Test de inteligencia de Wechsler para adultos-IV (WAIS-IV). Explicación Del Test. | spa |
dc.relation.references | Wen, J., Cui, Y., Yang, Z., Bao, J., Chen, J., Erus, G., Abdulkadir, A., Mamourian, E., Singh, A., Yang, S., Fan, Y., Saykin, A. J., Thompson, P. M., Jun, G. R., Ritchie, M. D., Shen, L., Wolk, D. A., Shou, H., Nasrallah, I. M., & Davatzikos, C. (2022). Genetic heterogeneity of four MCI/AD neuroanatomical dimensions discovered via deep learning. Alzheimer’s & Dementia, 18(S6). https://doi.org/10.1002/alz.065223 | spa |
dc.relation.references | Whitley, E., Deary, I. J., Ritchie, S. J., Batty, G. D., Kumari, M., & Benzeval, M. (2016). Variations in cognitive abilities across the life course: Cross-sectional evidence from Understanding Society: The UK Household Longitudinal Study. Intelligence, 59. https://doi.org/10.1016/j.intell.2016.07.001 | spa |
dc.relation.references | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. In Springer-Verlag New York. https://ggplot2.tidyverse.org | spa |
dc.relation.references | Xi, J., Ding, D., Zhao, Q., Liang, X., Zheng, L., Guo, Q., Hong, Z., Fu, H., Xu, J., & Xiao, Q. (2020). Joint Effect of ABCA7 rs4147929 and Body Mass Index on Progression from Mild Cognitive Impairment to Alzheimer’s Disease: The Shanghai Aging Study. Current Alzheimer Research, 17(2), 185–195. https://doi.org/10.2174/1567205017666200317095608 | spa |
dc.relation.references | Xiang, J., Wang, X., Gao, Y., Li, T., Cao, R., Yan, T., Ma, Y., Niu, Y., Xue, J., & Wang, B. (2020). Phosphodiesterase 4D Gene Modifies the Functional Network of Patients With Mild Cognitive Impairment and Alzheimer’s Disease. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00890 | spa |
dc.relation.references | Xu, S., Duan, P., Li, J., Senkowski, T., Guo, F., Chen, H., Romero, A., Cui, Y., Liu, J., & Jiang, S.-W. (2016). Zinc Finger and X-Linked Factor (ZFX) Binds to Human SET Transcript 2 Promoter and Transactivates SET Expression. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101737 | spa |
dc.relation.references | Xu, Y., Lin, Z., Tang, C., Tang, Y., Cai, Y., Zhong, H., Wang, X., Zhang, W., Xu, C., Wang, J., Wang, J., Yang, H., Yang, L., & Gao, Q. (2019). A new massively parallel nanoball sequencing platform for whole exome research. BMC Bioinformatics, 20(1), 153. https://doi.org/10.1186/s12859-019-2751-3 | spa |
dc.relation.references | Yadav, S. K., Bhat, A. A., Hashem, S., Nisar, S., Kamal, M., Syed, N., Temanni, M.-R., Gupta, R. K., Kamran, S., Azeem, M. W., Srivastava, A. K., Bagga, P., Chawla, S., Reddy, R., Frenneaux, M. P., Fakhro, K., & Haris, M. (2021). Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Translational Psychiatry, 11(1), 349. https://doi.org/10.1038/s41398-021-01473-w | spa |
dc.relation.references | Yoganathan, S., Arunachal, G., Gowda, V. K., Vinayan, K. P., Thomas, M., Whitney, R., & Jain, P. (2021). NTRK2-related developmental and epileptic encephalopathy: Report of 5 new cases. Seizure, 92, 52–55. https://doi.org/10.1016/j.seizure.2021.08.008 | spa |
dc.relation.references | Zhang, J., Wang, X., Duan, H., Chen, C., Lu, Z., Zhang, D., & Li, S. (2023). The Association of Calcium Signaling Pathway Gene Variants, Bone Mineral Density and Mild Cognitive Impairment in Elderly People. Genes, 14(4), 828. https://doi.org/10.3390/genes14040828 | spa |
dc.relation.references | Zhang, X. (2020). Review of genome-wide association study. In Kexue Tongbao/Chinese Science Bulletin (Vol. 65, Issue 8, pp. 671–683). Chinese Academy of Sciences. https://doi.org/10.1360/TB-2019-0063 | spa |
dc.relation.references | Zhang, Y., Elgart, M., Granot-Hershkovitz, E., Wang, H., Tarraf, W., Ramos, A. R., Stickel, A. M., Zeng, D., Garcia, T. P., Testai, F. D., Wassertheil-Smoller, S., Isasi, C. R., Daviglus, M. L., Kaplan, R., Fornage, M., DeCarli, C., Redline, S., González, H. M., & Sofer, T. (2023). Genetic associations between sleep traits and cognitive ageing outcomes in the Hispanic Community Health Study/Study of Latinos. EBioMedicine, 87, 104393. https://doi.org/10.1016/j.ebiom.2022.104393 | spa |
dc.relation.references | Zhao, Y., Hu, D., Wang, R., Sun, X., Ropelewski, P., Hubler, Z., Lundberg, K., Wang, Q., Adams, D. J., Xu, R., & Qi, X. (2022). ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer’s disease models. Nature Communications, 13(1), 1121. https://doi.org/10.1038/s41467-022-28769-9 | spa |
dc.relation.references | Zhao, Y., Sun, X., Hu, D., Prosdocimo, D. A., Hoppel, C., Jain, M. K., Ramachandran, R., & Qi, X. (2019). ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nature Communications, 10(1), 1371. https://doi.org/10.1038/s41467-019-09291-x | spa |
dc.relation.references | Zhou, Y., Hao, N., Sander, J. W., Lin, X., Xiong, W., & Zhou, D. (2023). KCNH2 variants in a family with epilepsy and long QT syndrome: A case report and literature review. Epileptic Disorders, 25(4), 492–499. https://doi.org/10.1002/epd2.20046 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Disfunción Cognitiva | spa |
dc.subject.decs | Cognitive Dysfunction | eng |
dc.subject.decs | Enfermedad de Alzheimer | spa |
dc.subject.decs | Alzheimer Disease | eng |
dc.subject.decs | Enfermedades Neurodegenerativas | spa |
dc.subject.decs | Neurodegenerative Diseases | eng |
dc.subject.decs | Inestabilidad Genómica | spa |
dc.subject.decs | Genomic Instability | eng |
dc.subject.proposal | Deterioro Cognitivo Leve | spa |
dc.subject.proposal | Atlántico | spa |
dc.subject.proposal | GWAS | spa |
dc.subject.proposal | Genómica | spa |
dc.subject.proposal | Mild Cognitive Impairment | eng |
dc.subject.proposal | Genomics | eng |
dc.subject.proposal | GWAS | eng |
dc.title | Caracterización genómica de un grupo de individuos con Deterioro Cognitivo Leve (DCL) en población del Atlántico, Colombia | spa |
dc.title.translated | Genomic characterization of a cohort with Mild Cognitive Impairment (MCI) in the population of Atlántico, Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1073518389.2025.pdf
- Tamaño:
- 739.79 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: