Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones

dc.contributor.advisorPoveda Jaramillo, Germán
dc.contributor.authorTaborda Soto, Juan Esteban
dc.contributor.orcidTaborda Soto, Juan Esteban [0000-0002-1908-6030]spa
dc.contributor.orcidPoveda Jaramillo, Germán [0000-0002-7907-6360]spa
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicosspa
dc.contributor.scopusPoveda Jaramillo, Germán [6602764979]spa
dc.coverage.spatialNorte de Sur América
dc.date.accessioned2023-08-04T17:17:53Z
dc.date.available2023-08-04T17:17:53Z
dc.date.issued2023-07-27
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEntender la precipitación a escala intraestacional es fundamental para establecer sistemas de pronóstico que permitan prever la ocurrencia de diferentes eventos que condicionen la disponibilidad del recurso hídrico y eventos extremos que impliquen inundaciones y sequías. En este sentido, se realiza un estudio de los patrones principales de precipitación sobre norte de Sudamérica, por medio del análisis de componentes principales, en tres bandas intraestacionales: 1-10 días, 10-30 días y 30-90 días. Posteriormente, se relacionan estos patrones con las ondas acopladas con la convección (CCW), los chorros de bajo nivel (LLJ) CHOCÓ, Caribe y Orinoquia, y la interacción suelo-vegetación-atmósfera representada por la evapotranspiración (ET). Los resultados muestran vínculos significativos entre las primeras PCs de la banda de 1-10 días con las ondas Kelvin, depresiones tropicales (TD), inercio-gravitacionales hacia el este (EIG) y mixtas de Rossby-gravedad (MRG), junto con la actividad de la ET. Además, en la banda de 10-30 días se encuentran vínculos principalmente con las ondas Rossby, los LLJ y la ET. Asimismo, en la banda de 30-90 días, con las ondas de Madden-Julian (MJO), los LLJ y la ET. Por último, con base en estas relaciones, se realiza un ejercicio de pronóstico de caudales medios diarios en el río Sogamoso (Colombia) con diferentes modelos estadísticos, de los cuales, los modelos de Regresión lineal (LR) y Vectores de soporte (SVM) muestran ganancias significativas respecto a los pronósticos de referencia climatológico (hasta 94% para los caudales mínimos) y antecedente (hasta 28% para los caudales medios). (Texto tomado de la fuente)spa
dc.description.abstractUnderstanding precipitation at the intraseasonal scale is essential to establish forecasting systems that allow predicting the occurrence of different events that condition the availability of water resources and extreme events involving floods and droughts. In this sense, a study of the main precipitation patterns over northern South America is carried out, by means of principal component analysis, in three intra-seasonal bands: 1-10 days, 10-30 days and 30-90 days. Subsequently, these patterns are related to Convectively coupled waves (CCW), the CHOCO, Caribbean and Orinoco low-level jets (LLJ), and the soil-vegetation-atmosphere interaction represented by evapotranspiration (ET). The results show significant links between the first PCs of the 1-10 day band with Kelvin, tropical depression (TD), eastward inertio-gravity (EIG) and mixed Rossby-gravity (MRG) waves, and ET activity. Furthermore, in the 10-30 day band, links are found mainly with Rossby waves, LLJs and ET, and in the 30-90 day band, with the Madden-Julian (MJO) waves, LLJs and ET. Finally, based on this relationships, a daily mean streamflow forecasting exercise is performed for the Sogamoso river (Colombia) where the Linear regression (LR) and Support vector machine (SVM) models show significant gains with respect to the climatological (up to 94% for minimum stremflows) and antecedent (up to 28% for mean stremflows) benchmark forecasts.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidrometeorologíaspa
dc.format.extentxx, 131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84459
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlvarez, D. M. and Poveda, G. (2022). Spatiotemporal dynamics of ndvi, soil moisture and enso in tropical south america. Remote Sensing, 14(11).spa
dc.relation.referencesAmador, J. A. (2008). The intra-americas sea low-level jet. Annals of the New York Academy of Sciences, 1146(1):153–188.spa
dc.relation.referencesAnzanello, M. J. and Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5):573–583.spa
dc.relation.referencesArenas Cárdenas, J. S. and Carvajal Serna, L. F. (2010). Desarrollo de un modelo de predicción de caudales semanales asociado a la variabilidad intraestacional en colombia. Escuela de Geociencias y Medio Ambiente.spa
dc.relation.referencesArias, P. A. (2005). Diagnostico y predicción de la variabilidad intra-anual de la hidrología colombiana. Master’s thesis, Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas.spa
dc.relation.referencesArias, P. A., Garreaud, R., Poveda, G., Espinoza, J. C., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L., and van Oevelen, P. J. (2021). Hydroclimate of the andes part ii: Hydroclimate variability and sub-continental patterns. Frontiers in Earth Science, 8.spa
dc.relation.referencesArias, P. A., Martínez, J. A., and Vieira, S. C. (2015). Moisture sources to the 2010–2012 anomalous wet season in northern south america. Climate dynamics, 45:2861–2884.spa
dc.relation.referencesBarrett, B. S. and Leslie, L. M. (2009). Links between tropical cyclone activity and madden–julian oscillation phase in the north atlantic and northeast pacific basins. Monthly Weather Review, 137(2):727 – 744.spa
dc.relation.referencesBedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of colombia (1998–2005). Frontiers in Earth Science, 7.spa
dc.relation.referencesBuiles-Jaramillo, A. and Poveda, G. (2018). Conjoint analysis of surface and atmospheric water balances in the andes-amazon system. Water Resources Research, 54(5):3472–3489.spa
dc.relation.referencesBuiles-Jaramillo, A., Yepes, J., and Salas, H. D. (2022). The orinoco low-level jet and its association with the hydroclimatology of northern south america. Journal of Hydrometeorology, 23(2):209 – 223.spa
dc.relation.referencesCook, K. H. and Vizy, E. K. (2010). Hydrodynamics of the caribbean low-level jet and its relationship to precipitation. Journal of Climate, 23(6):1477 – 1494.spa
dc.relation.referencesDurán-Quesada, A. M., Gimeno, L., and Amador, J. (2017). Role of moisture transport for central american precipitation. Earth System Dynamics, 8(1):147–161.spa
dc.relation.referencesEspinoza, J. C., Garreaud, R., Poveda, G., Arias, P. A., Molina-Carpio, J., Masiokas, M., Viale, M., and Scaff, L. (2020). Hydroclimate of the andes part i: Main climatic features. Frontiers in Earth Science, 8.spa
dc.relation.referencesGiraldo-Cardenas, S., Arias, P. A., Vieira, S. C., and Zuluaga, M. D. (2022). Easterly waves and precipitation over northern south america and the caribbean. International Journal of Climatology, 42(3):1483–1499.spa
dc.relation.referencesGrimm, A. (2019). Madden–julian oscillation impacts on south american summer monsoon season: precipitation anomalies, extreme events, teleconnections, and role in the mjo cycle. Climate Dynamics, 53.spa
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H´olm, E., Janiskov´a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th´epaut, J.-N. (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049.spa
dc.relation.referencesHodges, D. and Pu, Z. (2019). Characteristics and variations of lowlevel jets and environmental factors associated with summer precipitation extremes over the great plains. Journal of Climate, 32(16):5123 – 5144.spa
dc.relation.referencesHuffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., and Xie, P. (2020). Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG), pages 343–353. Springer International Publishing, Cham.spa
dc.relation.referencesJasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445):347–350.spa
dc.relation.referencesKayano, M. T., Andreoli, R. V., and Souza, R. A. F. d. (2019). El niño–southern oscillation related teleconnections over south america under distinct atlantic multidecadal oscillation and pacific interdecadal oscillation backgrounds: La niña. International Journal of Climatology, 39(3):1359 – 1372.spa
dc.relation.referencesKiladis, G. N., Thorncroft, C. D., and Hall, N. M. J. (2006). Threedimensional structure and dynamics of african easterly waves. part i: Observations. Journal of the Atmospheric Sciences, 63(9):2212 – 2230.spa
dc.relation.referencesKiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., and Roundy, P. E. (2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47(2).spa
dc.relation.referencesKnippertz, P., Gehne, M., Kiladis, G. N., Kikuchi, K., Rasheeda Satheesh, A., Roundy, P. E., Yang, G.-Y., ˇZagar, N., Dias, J., Fink, A. H., Methven, J., Schlueter, A., Sielmann, F., and Wheeler, M. C. (2022). The intricacies of identifying equatorial waves. Quarterly Journal of the Royal Meteorological Society, 148(747):2814–2852.spa
dc.relation.referencesLavender, S. L. and Matthews, A. J. (2009). Response of the west african monsoon to the madden–julian oscillation. Journal of Climate, 22(15):4097 – 4116.spa
dc.relation.referencesLi, T. and Hsu, P.-c. (2018). Madden-Julian Oscillation: Observations and Mechanisms, pages 61–106. Springer International Publishing, Cham.spa
dc.relation.referencesLiebmann, B. and Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6):1275–1277.spa
dc.relation.referencesLópez, M. E. and Howell, W. E. (1967). Katabatic winds in the equatorial andes. Journal of Atmospheric Sciences, 24(1):29 – 35.spa
dc.relation.referencesMadden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. Journal of Atmospheric Sciences, 28(5):702 – 708.spa
dc.relation.referencesMadden, R. A. and Julian, P. R. (1972). Description of globalscale circulation cells in the tropics with a 40–50 day period. Journal of Atmospheric Sciences, 29(6):1109 – 1123.spa
dc.relation.referencesMapes, B. E., Warner, T. T., and Xu, M. (2003). Diurnal patterns of rainfall in northwestern south america. part iii: Diurnal gravity waves and nocturnal convection offshore. Monthly weather review, 131(5):830–844.spa
dc.relation.referencesMartinez, J. A., Arias, P. A., Junquas, C., Espinoza, J. C., Condom, T., Dominguez, F., and Morales, J. S. (2022). The orinoco low-level jet and the cross-equatorial moisture transport over tropical south america: Lessons from seasonal wrf simulations. Journal of Geophysical Research: Atmospheres, 127(3):e2021JD035603.e2021JD035603 2021JD035603.spa
dc.relation.referencesMatsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1):25–43.spa
dc.relation.referencesMatthews, A. J. (2004). Intraseasonal variability over tropical africa during northern summer. Journal of Climate, 17(12):2427–2440.spa
dc.relation.referencesMayta, V., Ambrizzi, T., Espinoza, J., and Silva Dias, P. (2019). The role of the madden-julian oscillation on the amazon basin intraseasonal rainfall variability. International Journal of Climatology, 39.spa
dc.relation.referencesMayta, V., Kiladis, G., Dias, J., Silva Dias, P., and Gehne, M. (2021). Convectively coupled kelvin waves over tropical south america. Journal of Climate, pages 1–52.spa
dc.relation.referencesMejia, J., Mesa, O., Poveda, G., Velez, J., Hoyos, C., Mantilla, R., Barco, J., Cuartas, L., MONTOYA, M., and Botero, B. (1999). Distribuci´on espacial y ciclos anual y semianual de la precipitaci´on en colombia. Dyna (Medellin, Colombia), 127:7–26.spa
dc.relation.referencesMejía, J. F., Yepes, J., Henao, J. J., Poveda, G., Zuluaga, M. D., Raymond, D. J., and Fuchs-Stone, Z. (2021). Towards a mechanistic understanding of precipitation over the far eastern tropical pacific and western colombia, one of the rainiest spots on earth. Journal of Geophysical Research: Atmospheres, 126(5):e2020JD033415.e2020JD033415 2020JD033415.spa
dc.relation.referencesMontoya, G. d. J., Pelkowski, J., and Eslava, J. A. (2001). Sobre los alisios del nordeste y la existencia de una corriente en el piedemonte oriental andino. Revista de la Academia Colombiana de Ciencias Exactas, F´ısicas y Naturales, 25(96):363–371.spa
dc.relation.referencesNorth, G., Bell, T., Cahalan, R., and Moeng, F. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110.spa
dc.relation.referencesPabón Caicedo, J. D. and Dorado, J. (2008). Intraseasonal variability of rainfall over northern south america and caribbean region. Earth Sciences Research Journal, 12.spa
dc.relation.referencesPoveda, G. (2004). La bioclimatología de colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28:201–222.spa
dc.relation.referencesPoveda, G. (2022). Controlling mechanisms of the 4d distribution of rainfall over the rainest region on earth. In Fall Meeting 2022. AGU.spa
dc.relation.referencesPoveda, G., Alvarez, D. M., and Rueda, O. A. (2011). Hydro-climatic variability over the andes of colombia associated with enso: a review of climatic processes and their impact on one of the earth’s most important biodiversity hotspots. Climate Dynamics, 36(11):2233–2249.spa
dc.relation.referencesPoveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., and van Oevelen, P. J. (2020). High impact weather events in the andes. Frontiers in Earth Science, 8.spa
dc.relation.referencesPoveda, G., Jaramillo, L., and Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resources Research, 50(1):98–118.spa
dc.relation.referencesPoveda, G. and Mesa, O. (2000). On the existence of lloro (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low level jet. Geophysical Research Letters, 27:1675–1678.spa
dc.relation.referencesPoveda, G., Mesa, O., AGUDELO, P., ´ALVAREZ, J., Arias, P., Moreno, H., Salazar Velásquez, L., Toro, V., and Vieira, S. (2002a). Ondas del este, huracanes y fases de la luna en el ciclo diurno de la precipitación en los andes tropicales de colombia. volume 5, pages 3–12. Meteorología Colombiana.spa
dc.relation.referencesPoveda, G., Mesa, O., Carvajal, L., Hoyos, C., Mejia, J., Cuartas, L., and Pulgarín (2002b). Predicción de caudales medios mensuales en ríos colombianos usando métodos no lineales. Meteorología Colombiana, 6:101–110.spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical andes of colombia. Monthly Weather Review, 133(1):228 –240.spa
dc.relation.referencesPoveda, G., Waylen, P. R., and Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern south america and southern mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1):3–27. Late Quaternary climates of tropical America and adjacent seas.spa
dc.relation.referencesRecalde-Coronel, G., Zaitchik, B., and Pan, W. (2020). Madden-julian oscillation influence on sub-seasonal rainfall variability on the west of south america. Climate Dynamics, 54.spa
dc.relation.referencesReed, R., Klinker, E., and Hollingsworth, A. (1988). The structure and characteristics of african easterly wave disturbances as determined from the ecmwf operational analysis/forecast system. Meteorology and Atmospheric Physics, 38(1):22–33.spa
dc.relation.referencesRefaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-Validation, pages 532–538. Springer US, Boston, MA.spa
dc.relation.referencesRojo-Hernández, J. D. and Carvajal-Serna, L. F. (2010). Predicción no lineal de caudales utilizando variables macroclimáticas y análisis espectral singular. Tecnología y ciencias del agua, 1(4):59–73.spa
dc.relation.referencesRunge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310.spa
dc.relation.referencesRunge, J. (2020). Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Conference on Uncertainty in Artificial Intelligence, pages 1388–1397. PMLR.spa
dc.relation.referencesRunge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science advances, 5(11):eaau4996.spa
dc.relation.referencesSakamoto, M. S., Ambrizzi, T., and Poveda, G. (2011). Moisture sources and life cycle of convective systems over western colombia. Advances in Meteorology, 2011.spa
dc.relation.referencesSalazar Velásquez, J. E. and Mesa Sánchez, O. J. (1994). Aplicación de dos modelos no lineales a la simulación de series hidrológicas. Avances en Recursos Hidráulicos, (02):27–47.spa
dc.relation.referencesSanchez, J. and Poveda, G. (2006). Aplicación de los métodos mars, holt-winters y arima generalizado en el pronóstico de caudales medios mensuales en ríos de antioquia. Meteorología Colombiana, 10:36–46.spa
dc.relation.referencesSanchez, J. G. J. (2018). The Orinoco Low-Level Jet. PhD thesis, The Pennsylvania State University.spa
dc.relation.referencesSarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3):160.spa
dc.relation.referencesSerra, Y. L., Kiladis, G. N., and Hodges, K. I. (2010). Tracking and mean structure of easterly waves over the intra-americas sea. Journal of Climate, 23(18):4823 – 4840.spa
dc.relation.referencesSperber, K. R. (2003). Propagation and the vertical structure of the madden–julian oscillation. Monthly Weather Review, 131(12):3018 – 3037.spa
dc.relation.referencesTaborda, J. E. and Hoyos, C. D. (2023). The influence of equatorially trapped waves on precipitation variability in the amazon basin and northern south america. Manuscrito en preparación.spa
dc.relation.referencesTorrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1):61 – 78.spa
dc.relation.referencesTorres-Pineda, C. and Pabón Caicedo, J. D. (2017). Variabilidad intraestacional de la precipitación en colombia y su relación con la oscilación de madden-julian. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41:79.spa
dc.relation.referencesTorres Pineda, C. E. (2012). Efecto de las ondas madden-julian en la precipitación sobre algunas regiones del territorio colombiano. Master’s thesis, Universidad Nacional de Colombia, Departamento de Geociencias.spa
dc.relation.referencesvan Drongelen, W. (2007). 6 - continuous, discrete, and fast fourier transform. In van Drongelen, W., editor, Signal Processing for Neuroscientists, pages 91–105. Academic Press, Burlington.spa
dc.relation.referencesVera, C. S., Alvarez, M. S., Gonzalez, P. L., Liebmann, B., and Kiladis, G. N. (2018). Seasonal cycle of precipitation variability in south america on intraseasonal timescales. Climate Dynamics, 51(5):1991–2001.spa
dc.relation.referencesWang, C. (2007). Variability of the caribbean low-level jet and its relations to climate. Climate Dynamics, 29:411–422.spa
dc.relation.referencesWang, F., Han, Y., Zhang, S., and Zhang, R. (2020). Influence of stratospheric sudden warming on the tropical intraseasonal convection. Environmental Research Letters, 15(8):084027.spa
dc.relation.referencesWheeler, M. and Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. Journal of the Atmospheric Sciences, 56(3):374 – 399.spa
dc.relation.referencesWilks, D. S. (2019a). Chapter 13 - principal component (eof) analysis. In Wilks, D. S., editor, Statistical Methods in the Atmospheric Sciences (Fourth Edition), pages 617–668. Elsevier, fourth edition edition.spa
dc.relation.referencesWilks, D. S. (2019b). Chapter 5 - frequentist statistical inference. In Wilks, D. S., editor, Statistical Methods in the Atmospheric Sciences (Fourth Edition), pages 143–207. Elsevier, fourth edition edition.spa
dc.relation.referencesYepes, J., Mejía, J. F., Mapes, B., and Poveda, G. (2020). Gravity waves and other mechanisms modulating the diurnal precipitation over one of the rainiest spots on earth: Observations and simulations in 2016. Monthly weather review, 148(9):3933–3950.spa
dc.relation.referencesYepes Palacio, L. J. (2012). Variabilidad climática intraestacional y su efecto sobre la precipitación en colombia: Diagnóstico y pronóstico. Master’s thesis, Escuela de Geociencias y Medio Ambiente.spa
dc.relation.referencesZemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A. (2014). On the importance of cascading moisture recycling in south america. Atmospheric Chemistry and Physics, 14(23):13337–13359.spa
dc.relation.referencesZuluaga, M. D. and Houze, R. A. (2015). Extreme convection of the near-equatorial americas, africa, and adjoining oceans as seen by trmm. Monthly Weather Review, 143(1):298 – 316.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembPrecipitación atmosférica - Mediciónspa
dc.subject.lembPrecipitation (Meteorology) - Measurementeng
dc.subject.lembDepth-area-duration (hydrometeorology)eng
dc.subject.lembPrecipitación pluvialspa
dc.subject.proposalprecipitaciónspa
dc.subject.proposalVariabilidad intraestacionalspa
dc.subject.proposalPatrones principalesspa
dc.subject.proposalNorte de Sudaméricaspa
dc.subject.proposalOndas acopladas con la convecciónspa
dc.subject.proposalChorros de bajo nivelspa
dc.subject.proposalInteracción suelo-vegetación-atmósferaspa
dc.subject.proposalPronósticospa
dc.subject.proposalCaudalspa
dc.subject.proposalPrecipitationeng
dc.subject.proposalIntra-seasonal variabilityeng
dc.subject.proposalNorthern South Americaeng
dc.subject.proposalConvectively coupled waveseng
dc.subject.proposalLow-level jetseng
dc.subject.proposalSoil-vegetationatmosphere interactioneng
dc.subject.proposalForecasteng
dc.subject.proposalStreamfloweng
dc.titleVariabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexionesspa
dc.title.translatedIntraseasonal variability of precipitation over northern South America: diagnosis and connectionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1214737969.2023.pdf
Tamaño:
55.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: