Evaluación de nuevas tecnologías para el estudio de función génica en Pseudocercospora fijiensis con potencial para el manejo de la Sigatoka Negra en el cultivo del banano.

dc.contributor.advisorArango Isaza, Rafael Eduardo
dc.contributor.authorCanacuán Melo, Flor Yuranny
dc.contributor.educationalvalidatorJuan Gonzalo Morales
dc.contributor.researchgroupBiotecnología vegetalspa
dc.date.accessioned2025-02-17T13:57:12Z
dc.date.available2025-02-17T13:57:12Z
dc.date.issued2024
dc.descriptionIlustraciones
dc.description.abstractEste estudio evaluó el uso de la tecnología RNAi y CRISPR-Cas9 para mejorar el manejo de la Sigatoka Negra en el banano. Se sintetizaron secuencias de RNA de doble cadena cortas (siRNA) que silenciaron los genes PfFus3, PfAC y PfCYP51 y se aplicaron en ascosporas y fragmentos miceliales. También se sintetizaron secuencias de RNA de doble cadena largas (double-stranded RNA, dsRNA), y se evaluaron en los mismos materiales fúngicos en condiciones in vitro. Las secuencias de dsRNA con mejor inhibición in vitro y las secuencias de siRNA se aplicaron en plantas de banano susceptibles, encapsuladas en hidróxidos dobles laminares (layered double hydroxide, LDH) y sin nanoencapsular, para evaluar su efecto protector contra la enfermedad. Adicionalmente, se investigó el uso de CRISPR-Cas para la edición de genes en P. fijensis, utilizando un vector con la enzima Cas9 y un RNA guía (gRNA) dirigido al gen escitalona deshidratasa (SCD1), implicado en la síntesis de melanina, permitiendo observar un cambio visual en el fenotipo de los transformantes. Los resultados mostraron que las secuencias de siRNA causaron una inhibición del crecimiento de los tubos germinativos. La eficiencia de ingreso de las secuencias de siRNA en micelio a través del método de polietilenglicol fue de 62 ± 4.4 %. La transfección de estas secuencias en micelio usando este método provocó una disminución del crecimiento micelial, una reducción en los niveles de expresión génica y una menor severidad de la infección en hojas de banano. Además, los siRNA dirigidos contra el gen PfCYP51 lograron reducir la tolerancia al propiconazol en una cepa de P. fijiensis resistente a los azoles, en condiciones in vitro. De manera similar, las secuencias de dsRNA homólogas a los genes PfCYP51 y PfFus3 inhibieron la longitud del tubo germinativo, los niveles de expresión de los genes objetivo y la patogenicidad en P. fijiensis. Tanto las secuencias de siRNA como las de dsRNA mostraron eficacia en la inhibición de la infección cuando se aplicaron a plantas de banano susceptibles, ya sea encapsuladas en LDH o sin encapsular. Adicionalmente, la edición de P. fijiensis utilizando el sistema CRISPR-Cas resultó en la obtención de colonias de color blanco, lo que indica una alteración en el proceso de producción de melanina. Aunque el cambio fenotípico indica que la edición fue en parte exitosa, no se detectaron modificaciones en la secuencia genómica mediante secuenciación; sin embargo, se observaron cambios en los niveles de expresión génica. Este resultado podría deberse a una edición parcial en la que solo algunos núcleos del hongo fueron editados. Este estudio sugiere que la RNAi y CRISPR-Cas9 tienen potencial como herramientas para el manejo y estudio de P. fijiensis. Sin embargo, se requieren optimizaciones adicionales para la aplicación práctica del RNAi en agricultura y para mejorar la eficiencia de entrega y precisión de la edición genética mediante CRISPR-Cas9. (Texto tomado de la fuente)spa
dc.description.abstractThis study evaluated the use of RNAi and CRISPR-Cas9 technologies to improve the management of Black Sigatoka in banana. Short double-stranded RNA (siRNA) sequences were synthesized to silence the genes PfFus3, PfAC, and PfCYP51, and applied to ascospores and mycelial fragments. Long double-stranded RNA (dsRNA) sequences were also synthesized and tested on the same fungal materials under in vitro conditions. The dsRNA sequences with the best in vitro inhibition and the siRNA sequences were applied to susceptible banana plants, both encapsulated in layered double hydroxides (LDH) and non-encapsulated, to evaluate their protective effect against the disease. Additionally, the study explored the use of CRISPR-Cas for gene editing in P. fijiensis, employing a vector with the Cas9 enzyme and a guide RNA (gRNA) targeting the scytalone dehydratase (SCD1) gene, which is involved in melanin synthesis, allowing a visual change in the phenotype of the transformants. The results showed that siRNA sequences caused inhibition of germ tube growth. The siRNA uptake efficiency in mycelium using the polyethylene glycol method was 62 ± 4.4%. Transfecting these sequences into mycelium with this method led to reduced mycelial growth, lowered gene expression levels, and decreased infection severity on banana leaves. Additionally, siRNAs targeting the PfCYP51 gene successfully reduced tolerance to propiconazole in an azole-resistant P. fijiensis strain under in vitro conditions. Similarly, dsRNA sequences homologous to the PfCYP51 and PfFus3 genes inhibited germ tube length, target gene expression levels, and pathogenicity in P. fijiensis. Both siRNA and dsRNA sequences effectively inhibited infection when applied to susceptible banana plants, either encapsulated in LDH or non-encapsulated. Furthermore, CRISPR-Cas editing of P. fijiensis resulted in the production of white colonies, indicating an alteration in the melanin production pathway. Although the phenotypic changes suggested effective editing, no genomic sequence alterations were detected through sequencing; however, changes were observed in gene expression levels. This outcome could be due to partial editing, where only some of the fungus’s nuclei were edited. This study suggests that RNAi and CRISPR-Cas9 have potential as tools for managing and studying P. fijiensis. However, further optimization is required for the practical application of RNAi in agriculture and to improve delivery efficiency and editing precision of the CRISPR-Cas9 system.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaPatosistema P. fijiensis-Musaspa
dc.description.sponsorshipAsociación de Bananeros de Colombia AUGURA, Centro de Investigaciones del Banano CENIBANANO. Universidad Nacional de Colombia sede Medellín. Corporación para Investigaciones Biológicas CIB y la Universidad Pontificia Bolivariana.spa
dc.format.extent148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87499
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAbdel-Hadi AM, Caley DP, Carter DR, Magan N. 2011. Control of aflatoxin production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing technology by targeting aflD (nor-1) gene. Toxins (Basel) 3:647-659.spa
dc.relation.referencesAmarillas L, Estrada-Acosta M, Leon-Chan RG, Lopez-Orona C, Lightbourn L. 2020. First Draft Genome Sequence Resource of a Strain of Pseudocercospora fijiensis Isolated in North America. Phytopathology 110:1620-1622.spa
dc.relation.referencesAndrade CM, Tinoco MLP, Rieth AF, Maia FCO, Aragão FJL. 2016. Host‐induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology 65:626-632.spa
dc.relation.referencesArango IP, Beltrán ER, Cardona AS, Isaza REA. 2003. Diagnóstico y caracterización molecular de aislamientos de Mycosphaerella sp. Provenientes de plantaciones de banano y plátano de diferentes regiones de Colombia. Revista Facultad Nacional de Agronomía Medellín 56:1941-1950.spa
dc.relation.referencesArango Isaza RE, et al. 2016. Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genet 12:e1005876.spa
dc.relation.referencesArazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S. 2015. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543-2549.spa
dc.relation.referencesArcila-Galvis JE, Arango RE, Torres-Bonilla JM, Arias T. 2021. The Mitochondrial Genome of a Plant Fungal Pathogen Pseudocercospora fijiensis (Mycosphaerellaceae), Comparative Analysis and Diversification Times of the Sigatoka Disease Complex Using Fossil Calibrated Phylogenies. Life (Basel) 11.spa
dc.relation.referencesAUGURA. 2024. Coyuntura Económica 2023: análisis del mercado del banano. https://augura.com.co/wp-content/uploads/2024/04/Coyuntura-Bananera-2023.pdfspa
dc.relation.referencesBaird R, Bridgewater L. 2017. Standard methods for the examination of water and wastewater. American Public Health Association.spa
dc.relation.referencesBarcellos FG, Fungaro MH, Furlaneto MC, Lejeune B, Pizzirani-Kleiner AA, de Azevedo JL. 1998. Genetic analysis of Aspergillus nidulans unstable transformants obtained by the biolistic process. Can J Microbiol 44:1137-1141.spa
dc.relation.referencesBarrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-1712.spa
dc.relation.referencesBelalcázar S. 1991. El Cultivo del Plátano en el trópico. Manual de Asistencia Técnica Nº 50. Instituto Colombiano Agropecuario ICA. Armenia.spa
dc.relation.referencesBeltran-Garcia MJ, Prado FM, Oliveira MS, Ortiz-Mendoza D, Scalfo AC, Pessoa A, Jr., Medeiros MH, White JF, Di Mascio P. 2014. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas. PLoS One 9:e91616.spa
dc.relation.referencesBennett R, Arneson P. 2003. Black Sigatoka. The Plant Health Instructor.spa
dc.relation.referencesBirmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J, Khvorova A. 2007. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2:2068-2078.spa
dc.relation.referencesBlair A, Ritz B, Wesseling C, Freeman LB. 2015. Pesticides and human health. Occup Environ Med 72:81-82.spa
dc.relation.referencesBrisbois BW, Harris L, Spiegel JM. 2018. Political ecologies of global health: pesticide exposure in southwestern Ecuador's banana industry. Antipode 50:61-81.spa
dc.relation.referencesCagliari D, Dias NP, Galdeano DM, Dos Santos EA, Smagghe G, Zotti MJ. 2019. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi. Frontiers in Plant Science 10:1319.spa
dc.relation.referencesCai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126-1129.spa
dc.relation.referencesCairns TC, Studholme DJ, Talbot NJ, Haynes K. 2016. New and Improved Techniques for the Study of Pathogenic Fungi. Trends Microbiol 24:35-50.spa
dc.relation.referencesCanacuán Melo F. 2017. Silenciamiento mediado por RNA de genes asociados a patogenicidad y crecimiento en Pseucercospora fijiensis (Mycosphaerella fijensis). Universidad Nacional de Colombia Sede Medellín.spa
dc.relation.referencesCanas-Gutierrez GP, Angarita-Velasquez MJ, Restrepo-Florez JM, Rodriguez P, Moreno CX, Arango R. 2009. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag Sci 65:892-899.spa
dc.relation.referencesCapriotti L, Baraldi E, Mezzetti B, Limera C, Sabbadini S. 2020. Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control Fungal and Oomycete Diseases in Grapevine. Int J Mol Sci 21.spa
dc.relation.referencesChan CY, Carmack CS, Long DD, Maliyekkel A, Shao Y, Roninson IB, Ding Y. 2009. A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10 Suppl 1:S33.spa
dc.relation.referencesChang TC, Salvucci A, Crous PW, Stergiopoulos I. 2016. Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host. PLoS Genet 12:e1005904.spa
dc.relation.referencesChen M, Cooper HM, Zhou JZ, Bartlett PF, Xu ZP. 2013. Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery. J Colloid Interface Sci 390:275-281.spa
dc.relation.referencesChoi W, Dean RA. 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973-1983.spa
dc.relation.referencesChong P, Arango R, Stergiopoulus I, Guzmán M, Crous P, Silva Gd, Wit Pd, Kema G. 2010. Analysis of azole fungicide resistance in Mycosphaerella fijiensis, causal agent of black Sigatoka. Paper presented at Proceedings of the 16th International Reinhardsbrunn Symposium on Modern Fungicides and Antifungal Compoundsspa
dc.relation.referencesChong P, et al. 2016. Global analysis of reduced sensitivity to azole fungicides in the banana black Sigatoka pathogen Pseudocercospora fijiensis. Submitted to PLoS One.spa
dc.relation.referencesChong P, et al. 2021. A world-wide analysis of reduced sensitivity to DMI fungicides in the banana pathogen Pseudocercospora fijiensis. Pest Manag Sci 77:3273-3288.spa
dc.relation.referencesChurchill AC. 2011. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12:307-328.spa
dc.relation.referencesCoca-Ruiz V, Cabrera-Gomez N, Collado IG, Aleu J. 2024. Improved Protoplast Production Protocol for Fungal Transformations Mediated by CRISPR/Cas9 in Botrytis cinerea Non-Sporulating Isolates. Plants (Basel) 13.spa
dc.relation.referencesComisión Europea. 2024. Maximum Residue Levels (MRLs) for pesticides. https://food.ec.europa.eu/plants/pesticides/maximum-residue-levels_en.spa
dc.relation.referencesCousin A, Mehrabi R, Guilleroux M, Dufresne M, T VDL, Waalwijk C, Langin T, Kema GH. 2006. The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol Plant Pathol 7:269-278.spa
dc.relation.referencesDang Y, Yang Q, Xue Z, Liu Y. 2011. RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell 10:1148-1155.spa
dc.relation.referencesDegnan RM, et al. 2023. Exogenous double-stranded RNA inhibits the infection physiology of rust fungi to reduce symptoms in planta. Mol Plant Pathol 24:191-207.spa
dc.relation.referencesDiaz-Trujillo C, et al. 2018a. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis. Molecular Plant Pathology 19:1491-1503.spa
dc.relation.referencesDiaz-Trujillo C, Kobayashi AK, Souza M, Chong P, Meijer HJG, Arango Isaza RE, Kema GHJ. 2018b. Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 148:127-137.spa
dc.relation.referencesDiaz A, Villanueva P, Oliva V, Gil-Duran C, Fierro F, Chavez R, Vaca I. 2019. Genetic Transformation of the Filamentous Fungus Pseudogymnoascus verrucosus of Antarctic Origin. Front Microbiol 10:2675.spa
dc.relation.referencesDíaz C, Chong P, Cunha VCD, Guzman M, Wit PJGMD, Stergiopoulos I. 2016. A new resistance mechanism to azole fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis is driven by increased expression of Pfcyp51 through multiple promotor repeats. Submitted to Molecular Plant Pathology.spa
dc.relation.referencesDoench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262-1267.spa
dc.relation.referencesDong H, Chen M, Rahman S, Parekh HS, Cooper HM, Xu ZP. 2014. Engineering small MgAl-layered double hydroxide nanoparticles for enhanced gene delivery. Applied clay science 100:66-75.spa
dc.relation.referencesDonzelli BG, Churchill AC. 2007. A Quantitative Assay Using Mycelial Fragments to Assess Virulence of Mycosphaerella fijiensis. Phytopathology 97:916-929.spa
dc.relation.referencesDou T, et al. 2020. Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol J 18:11-13.spa
dc.relation.referencesDoudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.spa
dc.relation.referencesDuanis-Assaf D, Galsurker O, Davydov O, Maurer D, Feygenberg O, Sagi M, Poverenov E, Fluhr R, Alkan N. 2022. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould. Plant Biotechnol J 20:226-237.spa
dc.relation.referencesElton LRB, Jackson DF. 1966. X-Ray Diffraction and the Bragg Law. American Journal of Physics 34:1036–1038.spa
dc.relation.referencesEscobar-Tovar L, Magana-Ortiz D, Fernandez F, Guzman-Quesada M, Sandoval-Fernandez JA, Ortiz-Vazquez E, Loske AM, Gomez-Lim MA. 2015. Efficient transformation of Mycosphaerella fijiensis by underwater shock waves. Journal of Microbiol Methods 119:98-105.spa
dc.relation.referencesEsguera JG, Balendres MA, Paguntalan DP. 2024. Overview of the Sigatoka leaf spot complex in banana and its current management. Tropical Plants 3.spa
dc.relation.referencesEspinal C, Martínez H, Peña Y. 2005. La cadena del banano en Colombia : una mirada global de su estructura y dinamica 1991-2005. AGRONET.spa
dc.relation.referencesFang Y, Tyler BM. 2016. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127-139.spa
dc.relation.referencesFAO. 2023. Banano. Análisis del Mercado. Resultados preliminares 2022. Roma.spa
dc.relation.referencesFletcher SJ, Reeves PT, Hoang BT, Mitter N. 2020. A Perspective on RNAi-Based Biopesticides. Frontiers in Plant Science 11:51.spa
dc.relation.referencesForster H, Shuai B. 2020. Exogenous siRNAs against chitin synthase gene suppress the growth of the pathogenic fungus Macrophomina phaseolina. Mycologia 112:699-710.spa
dc.relation.referencesFouré E. 1985. Black leaf streak disease of bananas and plantains (Mycosphaerella fijiensis Morelet), study of the symptoms and stages of the disease in Gabon. IRFA, París, France.spa
dc.relation.referencesFouré E. 1986. Varietal reactions of bananas and plantains to black leaf streak disease. Banana and plantain breeding strategies 21:110-113.spa
dc.relation.referencesFriesen TL. 2016. Combating the Sigatoka Disease Complex on Banana. PLoS Genet 12:e1006234.spa
dc.relation.referencesFuller KK, Chen S, Loros JJ, Dunlap JC. 2015. Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. Eukaryot Cell 14:1073-1080.spa
dc.relation.referencesGaur RK. 2011. RNAi technology. CRC Press.spa
dc.relation.referencesGhag SB, Shekhawat UK, Ganapathi TR. 2014. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol Journal 12:541-553.spa
dc.relation.referencesGirard IJ, McLoughlin AG, de Kievit TR, Fernando DW, Belmonte MF. 2016. Integrating Large-Scale Data and RNA Technology to Protect Crops from Fungal Pathogens. Frontiers in Plant Science 7:631.spa
dc.relation.referencesGold S, Duncan G, Barrett K, Kronstad J. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8:2805-2816.spa
dc.relation.referencesGu KX, Song XS, Xiao XM, Duan XX, Wang JX, Duan YB, Hou YP, Zhou MG. 2019. A beta2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance. Pestic Biochem Physiol 153:36-46.spa
dc.relation.referencesGuzman M. 2003. Situacion de la sigatoka negra en banano y platano en el tropico americano. In: Taller manejo convencional y alternativo de la sigatoka negra, nematodos y otras plagas asociadas al cultivo de musaceas. MUSALAC, INIBAP, FUNDAGRO. Guayaquil, Ecuador:p.11-12.spa
dc.relation.referencesHazell BW, Te'o VS, Bradner JR, Bergquist PL, Nevalainen KM. 2000. Rapid transformation of high cellulase-producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol 30:282-286.spa
dc.relation.referencesHe J, Cui S, Wang SY. 2008. Preparation and Crystalline Analysis of High-Grade Bamboo Dissolving Pulp for Cellulose Acetate. Journal of Applied Polymer Science 107:1029–1038.spa
dc.relation.referencesHong SW, Jiang Y, Kim S, Li CJ, Lee DK. 2014. Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing. Nucleic Acid Ther 24:192-198.spa
dc.relation.referencesHu Z, Parekh U, Maruta N, Trusov Y, Botella JR. 2015. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance. Front Chem 3:1.spa
dc.relation.referencesIdnurm A, Meyer V. 2018. The CRISPR revolution in fungal biology and biotechnology, and beyond. Fungal Biol Biotechnol 5:19.spa
dc.relation.referencesJiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. 2013. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31:1562-1574.spa
dc.relation.referencesJiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30:100-111.spa
dc.relation.referencesJochl C, Loh E, Ploner A, Haas H, Huttenhofer A. 2009. Development-dependent scavenging of nucleic acids in the filamentous fungus Aspergillus fumigatus. RNA Biol 6:179-186.spa
dc.relation.referencesJohanson A, Jeger MJ. 1993. Use of peR for detection of Mycosphaerella fijiensis and M. musicola, the causal agents of Sigatoka leaf spots in banana and plantain. Mycol Res 97:670-674.spa
dc.relation.referencesJurick WM, 2nd, Rollins JA. 2007. Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genetics and Biology 44:521-530.spa
dc.relation.referencesKhatri M, Rajam MV. 2007. Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45:211-220.spa
dc.relation.referencesKim HS, Park SY, Lee S, Adams EL, Czymmek K, Kang S. 2011. Loss of cAMP-dependent protein kinase A affects multiple traits important for root pathogenesis by Fusarium oxysporum. Molecular Plant-Microbe Interactions 24:719-732.spa
dc.relation.referencesKlimpel A, Gronover CS, Williamson B, Stewart JA, Tudzynski B. 2002. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology 3:439-450.spa
dc.relation.referencesKoch A, et al. 2016. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathog 12:e1005901.spa
dc.relation.referencesKoch A, Kogel KH. 2014. RNAi-mediated Gene Silencing and Its Implications for Agriculture. ISB news report.spa
dc.relation.referencesKoch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14alpha-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci U S A 110:19324-19329.spa
dc.relation.referencesKoonin EV, Makarova KS, Zhang F. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67-78.spa
dc.relation.referencesKrappmann S, Sasse C, Braus GH. 2006. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212-215.spa
dc.relation.referencesKrishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sanchez-Vallet A. 2018. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol 16:78.spa
dc.relation.referencesKronstad J, De Maria AD, Funnell D, Laidlaw RD, Lee N, de Sa MM, Ramesh M. 1998. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170:395-404.spa
dc.relation.referencesKujoth GC, Sullivan TD, Merkhofer R, Lee TJ, Wang H, Brandhorst T, Wuthrich M, Klein BS. 2018. CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis. mBio 9.spa
dc.relation.referencesLakrod K, Chaisrisook C, Skinner DZ. 2003. Expression of pigmentation genes following electroporation of albino Monascus purpureus. J Ind Microbiol Biotechnol 30:369-374.spa
dc.relation.referencesLangford JI, Wilson AJC. 1978. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. Journal of applied crystallography 11:102–113.spa
dc.relation.referencesLarsson E, Sander C, Marks D. 2010. mRNA turnover rate limits siRNA and microRNA efficacy. Mol Syst Biol 6:433.spa
dc.relation.referencesLi D, Tang Y, Lin J, Cai W. 2017. Methods for genetic transformation of filamentous fungi. Microb Cell Fact 16:168.spa
dc.relation.referencesLi H, Guan R, Guo H, Miao X. 2015. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ 38:2277-2285.spa
dc.relation.referencesLi H, et al. 2022. A polyketide synthase from Verticillium dahliae modulates melanin biosynthesis and hyphal growth to promote virulence. BMC Biol 20:125.spa
dc.relation.referencesLi J, Wu M, Igarashi Y, Luo F, Chang P. 2023. Agrobacterium tumefaciens-mediated transformation of the white-rot fungus Dichomitus squalens. J Microbiol Methods 214:106842.spa
dc.relation.referencesLiu R, Chen L, Jiang Y, Zhou Z, Zou G. 2015. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007.spa
dc.relation.referencesLiu X, Liu L, Wang Y, Wang X, Ma Y, Li Y. 2014. The Study on the factors affecting transformation efficiency of E. coli competent cells. Pak J Pharm Sci 27:679-684.spa
dc.relation.referencesLivak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.spa
dc.relation.referencesLorenzo I, Consuegra G, Nobmann de B VM, Merchán A, Hernández A. 2002 Comportamiento de la Sigatoka negra en seis genotipos de musáceas en el distrito de Sevilla, zona bananera del Magdalena. En: XV Reunión Internacional ACORBAT, Cartagena de Indias, Colombia, 27 oct – 2 nov.:241.spa
dc.relation.referencesMa B, Tredway LP. 2013. Induced overexpression of cytochrome P450 sterol 14alpha-demethylase gene (CYP51) correlates with sensitivity to demethylation inhibitors (DMIs) in Sclerotinia homoeocarpa. Pest Manag Sci 69:1369-1378.spa
dc.relation.referencesMalonek S, Meinhardt F. 2001. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152-155.spa
dc.relation.referencesMarais I, Buitendag C, Duong TA, Crampton BG, Theron J, Kidanemariam D, Berger DK. 2024. Double‐stranded RNA uptake for the control of the maize pathogen Cercospora zeina. Plant Pathology.spa
dc.relation.referencesMarin DH, Romero RA, Guzman M, Sutton TB. 2003. Black Sigatoka: An Increasing Threat to Banana Cultivation. Plant Dis 87:208-222.spa
dc.relation.referencesMarín DH, Romero RA, Guzmán M, Sutton TB. 2003. Black Sigatoka: an increasing threat to banana cultivation. Plant Disease 87:208-222.spa
dc.relation.referencesMcLoughlin AG, Wytinck N, Walker PL, Girard IJ, Rashid KY, de Kievit T, Fernando WGD, Whyard S, Belmonte MF. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep 8:7320.spa
dc.relation.referencesMerchán VM. 2000. Prevención y manejo de la Sigatoka negra. Boletín informativo ICA Ed. N°2, Manizales - Caldas:30spa
dc.relation.referencesMinagricultura. 2020. Cadena de banano.spa
dc.relation.referencesMitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207.spa
dc.relation.referencesMoazeni M, Khoramizadeh MR, Kordbacheh P, Sepehrizadeh Z, Zeraati H, Noorbakhsh F, Teimoori-Toolabi L, Rezaie S. 2012. RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology. Mycopathologia 174:177-185.spa
dc.relation.referencesMosa MA, Youssef K. 2021. Topical delivery of host induced RNAi silencing by layered double hydroxide nanosheets: An efficient tool to decipher pathogenicity gene function of Fusarium crown and root rot in tomato. Physiological and molecular plant pathology 115:101684.spa
dc.relation.referencesMourichon X, Carlier J, Fouré E. 1997. Enfermedades de Sigatoka. INIBAP, Parc Scientifique Agropolis II 8.spa
dc.relation.referencesMumbanza FM, Kiggundu A, Tusiime G, Tushemereirwe WK, Niblett C, Bailey A. 2013. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis. Pest Manag Sci 69:1155-1162.spa
dc.relation.referencesMurugan K, Babu K, Sundaresan R, Rajan R, Sashital DG. 2017. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell 68:15-25.spa
dc.relation.referencesNakamura M, Okamura Y, Iwai H. 2019. Plasmid-based and -free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae. Sci Rep 9:18947.spa
dc.relation.referencesNakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275-283.spa
dc.relation.referencesNiehl A, Soininen M, Poranen MM, Heinlein M. 2018. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol J.spa
dc.relation.referencesNino-Sanchez J, et al. 2022. BioClay prolongs RNA interference-mediated crop protection against Botrytis cinerea. J Integr Plant Biol 64:2187-2198.spa
dc.relation.referencesNoar RD, Thomas E, Daub ME. 2022. Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka. Plants (Basel) 11.spa
dc.relation.referencesNodvig CS, Nielsen JB, Kogle ME, Mortensen UH. 2015. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLoS One 10:e0133085.spa
dc.relation.referencesNowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130-3141.spa
dc.relation.referencesOhm RA, et al. 2012. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8:e1003037.spa
dc.relation.referencesOliveira TYK, Silva TC, Moreira SI, Christiano FSJ, Gasparoto MCG, Fraaije BA, Ceresini PC. 2022. Evidence of Resistance to QoI Fungicides in Contemporary Populations of Mycosphaerella fijiensis, M. musicola and M. thailandica from Banana Plantations in Southeastern Brazil. Agronomy 12.spa
dc.relation.referencesOnyilo F, Tusiime G, Chen LH, Falk B, Stergiopoulos I, Tripathi JN, Tushemereirwe W, Kubiriba J, Changa C, Tripathi L. 2017. Agrobacterium tumefaciens-Mediated Transformation of Pseudocercospora fijiensis to Determine the Role of PfHog1 in Osmotic Stress Regulation and Virulence Modulation. Front Microbiol 8:830.spa
dc.relation.referencesOnyilo F, Tusiime G, Tripathi JN, Chen LH, Falk B, Stergiopoulos I, Tushemereirwe W, Kubiriba J, Tripathi L. 2018. Silencing of the Mitogen-Activated Protein Kinases (MAPK) Fus3 and Slt2 in Pseudocercospora fijiensis Reduces Growth and Virulence on Host Plants. Frontiers in Plant Science 9:291.spa
dc.relation.referencesOuyang SQ, Ji HM, Feng T, Luo SJ, Cheng L, Wang N. 2023. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease. PLoS Pathog 19:e1011463.spa
dc.relation.referencesPatiño L, Bustamante E. 2002. Efecto de tres inductores de resistencia y un sustrato foliar sobre Sigatoka negra en banano. XXIII Congreso ASCOLFI Nuevas tendencias en Fitopatología Ciencia y técnica cada vez más cerca. Bogotá:98.spa
dc.relation.referencesPatiño L, Mejía MG. 1999 La dinámica climatológica y su relación con el hongo Mycosphaerella fijiensis. En: Foro Sigatoka negra, situación actual y perspectivas para el año 2000, en la zona bananera del Magdalena. AUGURA – CENIBANANO. CALIMA. Santa Marta:7.spa
dc.relation.referencesPeláez Montoya JE, David V, Estella, L.,, Díaz Brito TJ, Castañeda Sánchez DA, Rodríguez Beltrán E, Arango Isaza RE. 2006. Use of a micro title plate dilution assay to measure activity of antifungal compounds against Mycosphaerella Fijiensis, MORELET. Revista Facultad Nacional de Agronomía, Medellín 59:3425-3433.spa
dc.relation.referencesPerrier X, et al. 2011. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A 108:11311-11318.spa
dc.relation.referencesPillay M, Tripathi L. 2007. Banana in Kole C, ed. Genome Mapping and Molecular Breeding in Plants, vol. 4. Berlin, Heidelberg: Springer.spa
dc.relation.referencesPloetz RC. 2001. Black Sigatoka of banana. Plant Health Instr. doi, 10, 1094.spa
dc.relation.referencesPloetz RC. 2007. Diseases of Tropical Perennial Crops: Challenging Problems in Diverse Environments. Plan Desease 91 N°6.spa
dc.relation.referencesQi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ. 2018. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proc Natl Acad Sci U S A 115:E10979-E10987.spa
dc.relation.referencesR Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.spa
dc.relation.referencesReynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. 2004. Rational siRNA design for RNA interference. Nat Biotechnol 22:326-330.spa
dc.relation.referencesRodriguez H. 2011. Analisis de secuencias expresadas diferencialmente de la variedad “calcutta 4” (musa aa) en respuesta a Mycosphaerella fijiensis morelet mediante microarreglos. Tesis de maestría. Universidad Nacional de Colombia-Sede Medellín.spa
dc.relation.referencesRomero RA, Sutton TB. 1997. Sensitivity of Mycosphaerella fijiensis, Causal Agent of Black Sigatoka of Banana, to Propiconazole. Phytopathology 87:96-100.spa
dc.relation.referencesSallé G, Pichard V, Mourichon X. 1990. Cytological study of the interaction between Mycosphaerella fijiensis Morelet and three cultivars of Musa presenting different levels of resistance. In International Workshop on Sigatoka Leaf Spot Diseases of Bananas, San Jose (Costa Rica). INIBAP:180-190.spa
dc.relation.referencesSambrook J, Russell DW. 2006. Preparation and Transformation of Competent E. coli Using Calcium Chloride. CSH Protoc 2006.spa
dc.relation.referencesSang H, Kim J-I. 2020. Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnology Reports 14:1-8.spa
dc.relation.referencesSchneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671-675.spa
dc.relation.referencesSchumann U, Ayliffe M, Kazan K, Wang MB. 2010. RNA silencing in fungi. Frontiers in Biology 5:478-494.spa
dc.relation.referencesSchuster M, Kahmann R. 2019. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet Biol 130:43-53.spa
dc.relation.referencesSepúlveda L, Vásquez LE, Paniagua CI, Echeverry D, Hernández CA, Rodríguez E, Arango R. 2009. The presence and spectrum of light influences the in vitro conidia production of Mycosphaerella fijiensis causal agent of black Sigatoka. Australasian Plant Pathology 38:514-517.spa
dc.relation.referencesSeymour GB. 1993. Banana. Pages 83-106 in Netherlands S, ed. Biochemistry of fruit ripening.spa
dc.relation.referencesSierra SL. 1993. El cultivo del banano. Producción y Comercio.spa
dc.relation.referencesSong XS, Gu KX, Duan XX, Xiao XM, Hou YP, Duan YB, Wang JX, Zhou MG. 2018. A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium asiaticum. Pestic Biochem Physiol 150:1-9.spa
dc.relation.referencesSpada M, Pugliesi C, Fambrini M, Pecchia S. 2021. Silencing of the Slt2-Type MAP Kinase Bmp3 in Botrytis cinerea by Application of Exogenous dsRNA Affects Fungal Growth and Virulence on Lactuca sativa. Int J Mol Sci 22.spa
dc.relation.referencesSun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y. 2018. CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. 19:2716.spa
dc.relation.referencesTinoco ML, Dias BB, Dall'Astta RC, Pamphile JA, Aragao FJ. 2010. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27.spa
dc.relation.referencesTsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ. 1999. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469-6477.spa
dc.relation.referencesVermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A. 2005. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11:674-682.spa
dc.relation.referencesWang JY, Li HY. 2008. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus Penicillium digitatum. J Zhejiang Univ Sci B 9:823-828.spa
dc.relation.referencesWang K. 2015. Agrobacterium Protocols.spa
dc.relation.referencesWang M, Jin H. 2017. Spray-Induced Gene Silencing: a Powerful Innovative Strategy for Crop Protection. Trends in Microbiology 25:4-6.spa
dc.relation.referencesWang M, Thomas N, Jin H. 2017. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol 38:133-141.spa
dc.relation.referencesWang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants 2:16151.spa
dc.relation.referencesWang S, Chen H, Wang Y, Pan C, Tang X, Zhang H, Chen W, Chen YQ. 2020a. Effects of Agrobacterium tumefaciens strain types on the Agrobacterium-mediated transformation efficiency of filamentous fungus Mortierella alpina. Lett Appl Microbiol 70:388-393.spa
dc.relation.referencesWang T, Ren D, Guo H, Chen X, Zhu P, Nie H, Xu L. 2020b. CgSCD1 Is Essential for Melanin Biosynthesis and Pathogenicity of Colletotrichum gloeosporioides. Pathogens 9.spa
dc.relation.referencesWang Y, Guo Y, Guo S, Qi L, Li B, Jiang L, Xu C, An M, Wu Y. 2024. RNA interference-based exogenous double-stranded RNAs confer resistance to Rhizoctonia solani AG-3 on Nicotiana tabacum. Pest Manag Sci 80:2170-2178.spa
dc.relation.referencesWeld RJ, Plummer KM, Carpenter MA, Ridgway HJ. 2006. Approaches to functional genomics in filamentous fungi. Cell Res 16:31-44.spa
dc.relation.referencesWenderoth M, Pinecker C, Voss B, Fischer R. 2017. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet Biol 101:55-60.spa
dc.relation.referencesWheatley MS, Yang Y. 2021. Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease Management. Phytopathology 111:1080-1090.spa
dc.relation.referencesWorrall EA, Bravo-Cazar A, Nilon AT, Fletcher SJ, Robinson KE, Carr JP, Mitter N. 2019. Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Frontiers in Plant Science 10:265.spa
dc.relation.referencesWytinck N, Manchur CL, Li VH, Whyard S, Belmonte MF. 2020. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. Plants (Basel) 9.spa
dc.relation.referencesXu JR. 2000. Map kinases in fungal pathogens. Fungal Genet Biol 31:137-152.spa
dc.relation.referencesYamada K, Yamamoto T, Uwasa K, Osakabe K, Takano Y. 2023. The establishment of multiple knockout mutants of Colletotrichum orbiculare by CRISPR-Cas9 and Cre-loxP systems. Fungal Genet Biol 165:103777.spa
dc.relation.referencesYamato T, Handa A, Arazoe T, Kuroki M, Nozaka A, Kamakura T, Ohsato S, Arie T, Kuwata S. 2019. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus. Sci Rep 9:7427.spa
dc.relation.referencesYong J, Zhang R, Bi S, Li P, Sun L, Mitter N, Carroll BJ, Xu ZP. 2021. Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. Plant Physiol 187:886-899.spa
dc.relation.referencesYuan H, Hou H, Huang T, Zhou Z, Tu H, Wang L. 2021. Agrobacterium tumefaciens-mediated transformation of Coniella granati. J Microbiol Methods 182:106149.spa
dc.relation.referencesZhao H, et al. 2018. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcHongos fitopatogenos
dc.subject.armarcBanano - Enfermedades y plagas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembControl biológico de hongos
dc.subject.proposalRNAi
dc.subject.proposalPfAC
dc.subject.proposalPfCYP51
dc.subject.proposalPfFus3
dc.subject.proposalCRISPR-Cas9
dc.subject.proposalbananospa
dc.subject.proposalPseudocercospora fijiensisspa
dc.subject.proposalSigatoka Negraspa
dc.subject.proposalBananospa
dc.subject.proposalBananaspa
dc.titleEvaluación de nuevas tecnologías para el estudio de función génica en Pseudocercospora fijiensis con potencial para el manejo de la Sigatoka Negra en el cultivo del banano.spa
dc.title.translatedEvaluation of new technologies for gene function study in pseudocercospora fijiensis with potential for managing Black Sigatoka in bananaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de nuevas tecnologías para el estudio de función génica en Pseudocercospora fijiensis con potencial para el manejo de la Sigatoka Negra en el cultivo del banano.spa
oaire.fundernameAsociación de Bananeros de Colombia AUGURA, Universidad Nacional de Colombia sede Medellínspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1086299834.pdf
Tamaño:
4.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: