Modelo de comportamiento de conductores y la generación de accidentes de tránsito.

dc.contributor.advisorCórdoba Maquilón, Jorge Eliecer
dc.contributor.authorArias Rojas, Wilson
dc.contributor.researchgroupVIAS Y TRANSPORTE (VITRA)spa
dc.date.accessioned2021-10-07T20:12:08Z
dc.date.available2021-10-07T20:12:08Z
dc.date.issued2021
dc.descriptionIlustracionesspa
dc.description.abstractEsta investigación doctoral, presenta el resultado del análisis del comportamiento de conductores en un escenario controlado, en un simulador de conducción, en el cual, mediante la medición de ondas cerebrales, se determinó el grado de concentración al conducir y por medio del uso de Machine Learning, se planteó un modelo de comportamiento de los conductores al someterse a un efecto distractor mientras se conduce, el cual permite analizar los factores más relevantes que se reflejan en errores y malas prácticas al momento de conducir. En esta investigación se analizó una muestra poblacional desde los 16 hasta los 90 años, compuesta de hombres y mujeres, a partir de un universo obtenido de una base de datos de fatalidades durante 7 años, se construyó un simulador de conducción con un software para la simulación que permite diferentes escenarios de conducción. Se elaboró un programa de captura de ondas cerebrales el cual midió el grado de concentración de los participantes del experimento mientras eran sometidos al efecto distractor de envío de mensajes de Whatsapp mientras conducían en el escenario escogido. Posteriormente se hizo un análisis de la información obtenida por medio de redes neuronales, obteniendo los resultados del comportamiento de los conductores y errores más comunes durante el experimento, se planteó un modelo de comportamiento de conductores ante los efectos distractores Finalmente se clasificaron conductas riesgosas de conductores al ser sometidas a un efecto distractor, observando el comportamiento de conductores mayores de 50 años, los cuales son más cautelosos ante efectos distractores, y se planteó un modelo matemático que depende del grado de concentración de usuarios y varía de acuerdo con el escenario escogido por cada uno de los participantes del experimento (Texto tomado de la fuente)spa
dc.description.abstractThis doctoral research is the result of the analysis of drivers behavior in a controlled scenario, using a driving simulator, in which, by measuring brain waves, the degree of concentration was measured when driving and through the use of Machine Learning, a model of behavior of drivers was proposed to be subjected to a distracting effect while driving, which allows analyzing the most relevant factors that are reflected in errors and bad practices at the time of driving. In this research was determined a population sample of men and woman whose ages oscillate between 16 to 90 years, composed of men and women, from a universe obtained from a database of fatalities for 7 years. A driving simulator was built, and it was using a software for the simulation that allows different driving scenarios. A brainwave capture program was developed in which the participants' degree of concentration, the experiment, the moment, the effect, the sending factor of the WhatsApp messages were measured, while it was carried out in the chosen scenario. Subsequently, an analysis of the information was made in the neural networks, obtaining the results of the behavior of the drivers and the most common errors in the experiment, A model of behavior of the drivers was presented before the distracting effects. Finally, risk behaviors were classified to be a factor of distraction, observing the behavior of drivers over 50, who are more cautious about the effects of distraction, and a mathematical model was proposed that depends on the degree of concentration of users and according to the scenario chosen by each one of the participants of the experiment.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaPlaneación e infraestructura para el transportespa
dc.format.extentxvii, 154 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80429
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.referencesAASHTO. 2004. A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials. Washington, D.C., USA.spa
dc.relation.referencesAf Wåhlberg, A.E., 2012. Changes in driver acceleration behavior over time: Do drivers learn from collisions? Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), pp.471–479spa
dc.relation.referencesAlonso G. et al (2004), Entrenamiento de una red neuronal artificial usando el algoritmo simulated annealing, Revista Scientia et Technica. Año X, No 24, Mayo 2004. UTP. ISSN 0122-1701 .spa
dc.relation.referencesAgencia Nacional de Seguridad Vial, Observatorio Nacional de Seguridad Vial. página web https://ansv.gov.co/observatorio/index.html recuperada el 24-11-2019.spa
dc.relation.referencesAlicea, L. 2004. Analysis and Evaluation of Crashes Involving Pedestrians in Puerto Rico. Tesis de Maestría en Ingeniería Civil, Recinto Universitario de Mayagüez, Universidad de Puerto Rico.spa
dc.relation.referencesAlonso, M., 2016. La integración del factor humano en el ámbito técnico de la gestión de las carreteras y la seguridad vial: Un enfoque investigativo. Available at: http://roderic.uv.es/handle/10550/51943.spa
dc.relation.referencesArias, W., Colucci, B., 2006. Road Safety Audit. , Newsletter El puente, 19(3), p.28.spa
dc.relation.referencesBear, F., Connors. W, 2002. Neurociencia, explorando el cerebro, Editorial Masson, Barcelona.spa
dc.relation.referencesBella, F., 2014. Effects of Combined Curves on Driver’s Speed Behavior: Driving Simulator Study. Transportation Research Procedia, 3, pp.100–108.spa
dc.relation.referencesBen-Bassat, T. & Shinar, D., 2011. Effect of shoulder width, guardrail and roadway geometry on driver perception and behavior. Accident Analysis and Prevention, 43(6), pp.2142–2152.spa
dc.relation.referencesBenekohal, R.F., Hashmi, A.M. 1992, Procedures for estimating accident reductions on two-lane highways, Journal of Transportation Engineering, 118 (1), pp. 111-129.spa
dc.relation.referencesBreen, J., 2009. Car telephone use and road safety, an overview prepared for the European Commission, European Commission.spa
dc.relation.referencesBreiman, L., 2001. Statistical modeling: the two cultures. Statistical Science 16, 199–231spa
dc.relation.referencesBriem, V., & Hedman, L. R. (1995). Behavioural effects of mobile telephone use during simulated driving. Ergonomics, 38(12), 2536-2562.spa
dc.relation.referencesBrookhuis, K.A., de Vries, G., de Waard, D., 1991. The effects of mobile telephoning on driving performance, Accident Analysis & Prevention 23(4), 309-316.spa
dc.relation.referencesBruyas,M., Corinne Brusque, Sandrine Debailleux, Max Duraz, Isabelle Aillerie, 2009 ,Does making a conversation asynchronous reduce the negative impact of phone call on driving?, Transportation Research Part F: Traffic Psychology and Behaviourspa
dc.relation.referencesBurgeois JP, Goldman-Rakic PS, Rakic P. 1994, Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex; 4: 78-96.spa
dc.relation.referencesCarmona, E., 2014, Tutorial sobre Máquinas de Vectores Soporte (SVM) Dpto. de Inteligencia Artificial, ETS de Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal, 16, 28040-Madrid (Spain)spa
dc.relation.referencesChaves S, E.W.V. (2012). () "Mecánica del Medio Continuo. Conceptos Básicos".3ª Edición, Centro Internacional de Métodos Numéricos en Ingeniería - CIMNE - Barcelona. ISBN: 978-84-96736-38-2.spa
dc.relation.referencesCherri, C., Nodari, E., Toffetti, A. (2004). AIDE Subproject 2: Review of existing tools and methods (Tech. Inf.), Information Society Technologies Programme " Adaptive integrated driver-vehicle interface" (AIDE)spa
dc.relation.referencesCobos, C. Modelo de un meta buscador que realiza agrupación de documentos web, enriquecido con una taxonomía, ontologías e información del usuario, tesis doctoral Ingeniería de Sistemas, Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesColab (2020), What is Colaboratory? página web disponible para ejecución de pruebas en https://colab.research.google.com/notebooks/intro.ipynb#spa
dc.relation.referencesCórdoba, J.E., (2011) Modelo de elección discreta integrando variables latentes y racionalidad limitada, tesis doctoral, Universidad Nacional de Colombia, sede Medellín.spa
dc.relation.referencesDans. E. Disponible en:http://www.enriquedans. com/2011/10/big-data-una-pequena- introduccion.html, 2011.spa
dc.relation.referencesDataSmart, (2020), Automachine Learling con Tpot, consulta realizada el 9 de junio de 2020, disponible en https://datasmarts.net/es/automl-con-tpot/spa
dc.relation.referencesDe la Fuente, S. (2011), Regresión logística, Facultad de Ciencias Económicas y Empresariales, Universidad Autónoma de Madrid, pp. 2-29.spa
dc.relation.referencesDuchek, J. M., Hunt, L., Ball, K., Buckles, V., Morris, J.C., 1998. Attention and driving performance in Alzheimer’s disease. Journal of Gerontology Series B, Psychological Sciences and Social Sciences, 53, 130-141spa
dc.relation.referencesEllison, A.B., Greaves, S.P. & Bliemer, M.C.J., 2015. Driver behaviour profiles for road safety analysis. Accident Analysis & Prevention, 76, pp.118–132.spa
dc.relation.referencesElvik R, Vaa T., 2004. The handbook of road safety measures. Amsterdam, Elsevier Science.spa
dc.relation.referencesEngelbrecht, A.P., 2007. Computational Intelligence. An Introduction, second ed. Wiley, NY.spa
dc.relation.referencesEngström, J., Johansson, E., Östlund, J., 2005. Effects of visual and cognitive load in real and simulated motorway driving. Transportation Research Part F: Traffic Psychology and Behaviour, 8, 97-120spa
dc.relation.referencesEvans, L., 2004. Traffic safety. Bloomfield Hills, MI: Science Serving Society.spa
dc.relation.referencesP. Fancher, R. Ervin, J. Sayer, M. Hagan, S. Bogard, Z. Bareket, M. Mefford, J. Haugen, Intelligent cruise control field operational test. Technical report, Universitv of Michigan-Transportation Research Institute, 1998 May.spa
dc.relation.referencesFerrer, A., Smith, R. & Cuellar, M., 2013. Análisis de la Capacidad de Gestión de la Seguridad Vial. Banco Mundial, pp.92–93.spa
dc.relation.referencesFigueroa, A., 2005. Speed factors on four lane highways in free flow conditions Doctoral thesis. Purdue Universityspa
dc.relation.referencesFigueroa, A., Kong, S., A. Tarko. 2005. Roadway and Driver Factors of Risk Perception on Four-Lane Highways, International: Road Safety on Four Continents, Warsaw, Poland.spa
dc.relation.referencesFigueroa, A., Colucci, B. Arias, W. 2006, Sistema de Gerencia en Seguridad Vial: Integrando la Planificación, el Diseño Geométrico y la Auditoria de las Carreteras Primera cumbre puertorriqueña de seguridad vial, San Juan, , Puerto Rico, USA, 2006spa
dc.relation.referencesFire, M. et al., 2012. Data mining opportunities in geosocial networks for improving road safety. 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, IEEEI 2012.spa
dc.relation.referencesGallegos, M. Gorostegui, M.E., Procesos cognitivos metodologia-de-la-investigacion/procesos-cognitivos, Pontificia Universidad Católica de Chile, 1990.spa
dc.relation.referencesGeorgiou, T. et al., 2015. Mining Complaints for Traffic-Jam Estimation. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM ’15, pp.330–335.spa
dc.relation.referencesGibson, J.J., 1986. The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum.spa
dc.relation.referencesGlymour, C., Madigan, D., Pregibon, D., Smyth, P., 1997. Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery 1 (1), 11–28.spa
dc.relation.referencesGodley, S.T., Triggs, T.J., and Fildes, B.N., 2002. Driving simulator validation for speed research, Accident Analysis and Prevention 34 (5), 589-600.spa
dc.relation.referencesGómez, E. 2017, concepto, metáforas, modelos y bases cerebrales de la atención, Universidad de Granada, 77 pág.spa
dc.relation.referencesGu, Y., Qian, Z. (Sean) & Chen, F., 2016. From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, pp.321–342.spa
dc.relation.referencesGustafson, E. 1998. Gender Differences in Risk Perception: Theoretical and Methodological Perspectives. Risk Analysis, Vol. 18, No. 6, pp. 805-811.spa
dc.relation.referencesHaigney, D.E., Taylor, R.G., Westerman, S.J., 2000. Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transportation Research Part F, 3, 113-121.spa
dc.relation.referencesHamdar, S.H. & Schorr, J., 2013. Interrupted versus uninterrupted flow: a safety propensity index for driver behavior. Accident; analysis and prevention, 55, pp.22–33. Available at: http://www.sciencedirect.com/science/article/pii/S0001457513000420 [Accessed March 11, 2016].spa
dc.relation.referencesHand, D.J., 2000. Data mining, new challenges for statisticians. Social Science Computer Review 18 (4), 442–449spa
dc.relation.referencesHassan, H.M. & Abdel-Aty, M.A., 2013. Exploring the safety implications of young drivers’ behavior, attitudes and perceptions. Accident Analysis and Prevention, 50, pp.361–370.spa
dc.relation.referencesHauer, E. 1990. The engineering of safety and the safety of engineering. Challenging the Old Order -Towards New Directions in Traffic Safety Theory, J.P. Rothe, ed., Transaction, New Brunswick.spa
dc.relation.referencesHaykin, S., 1999. Neural Networks: A Comprehensive Foundation. Macmillan, NY.spa
dc.relation.referencesHorberry, T., Anderson, J., Regan, M.A., Triggs, T.J., Brown, J., 2006. Driver distraction: The effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance. Accident Analysis and Prevention, n.38, pp.185-191.spa
dc.relation.referencesHuttenlocher PR, Dabholkar AS. 1997, Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol; 387: 167-78.spa
dc.relation.referencesIversen, H.H. & Rundmo, T., 2012. Changes in Norwegian drivers’ attitudes towards traffic safety and driver behaviour from 2000 to 2008. Transportation Research Part F: Traffic Psychology and Behaviour, 15(2), pp.95–100.spa
dc.relation.referencesIzaurieta, F. y Saavedra, C. 2015.. Redes Neuronales Artificiales. Dpto. de Física, U. de Concepción, Chile. http://www.uta.cl/charlas/volumen16/Indice/C h-csaavedra.pdfspa
dc.relation.referencesJacobson, D. Brail G. Woods, D., 2012. APIs: A Strategy Guide First rele., Sebastopol, CA.: O’Reilly Media Inc. Available at: www.oreilly.com.spa
dc.relation.referencesJamson, A.H., 2001. Image characteristics and their effect on driving simulator validity. Proceedings of the first international driving symposium on human factors in driver assessment, training and vehicle design (pp.190-195). Aspen, CO.spa
dc.relation.referencesJiang, Shan, Yang, Yingxiang Gupta, Siddharth, Veneziano, Daniele Athavale, Shounak González, Marta C. 2016, The Timegeo modeling framework for urban mobility without travel surveys, Proceedings of the National Academy of Sciences of the United States of Americaspa
dc.relation.referencesJohnston, I. 2006. Highway Safety. En: The Handbook of Highway Engineering. CRC Press.spa
dc.relation.referencesJovović, I., Peraković, D., & Husnjak, S. (2018). The Impact of Using Modern Information and Communication Equipment and Services on Driving Safety. Promet-Traffic&Transportation, 30(5), 635-645spa
dc.relation.referencesKhan, I., Khusro, S., & Alam, I. (2019, July). Smartphone Distractions and its Effect on Driving Performance using Vehicular Lifelog Dataset. In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEEspa
dc.relation.referencesKass, S., Beede, K., 2007. Engrossed in Conversations: The impact on cell phones on simulated driving performance. Accident Analysis and Prevention, 38, 415.spa
dc.relation.referencesKaptei, N.A., Theeuwes, J., van der Horst, R., 1996. Driving simulator validity: some considerations, Transportation Research Record 1550, 30, 1996.spa
dc.relation.referencesKarlaftis, M.G, Vlahogianni E.I., 2010 Statistical methods versus neural networks in transportation research, Transportation Research part C,spa
dc.relation.referencesKhoo, H.L. & Asitha, K.S., 2016. Quantifying impact of traffic images applications (APPS) on travel choices. KSCE Journal of Civil Engineering, 20(2), pp.899–912.spa
dc.relation.referencesKircher, K., 2007. Driver distraction - A review of the literature. VTI Report 594A. VTI, Linköping, Sweden.spa
dc.relation.referencesKuan, Ch.-M., White, H., 1994. Artificial neural networks: an econometric perspective. Econometric Reviews 13 (l), 1–9spa
dc.relation.referencesKummetha, V., Kondyli, A., Chrysikou, E., Schrock, S. 2020, Safety analysis of work zone complexity with respect to driver characteristics — A simulator study employing performance and gaze measures,Accident Analysis & Prevention,Volume 142,ISSN 0001-4575,spa
dc.relation.referencesLaBerge, D., 1997. Attention, awareness, and the triangular circuit. Consciousness and Cognition, 6, 148-181.spa
dc.relation.referencesLancheros-Cuesta, J. L. Ramirez. Y. Forero and A. C. Duran, "Evaluation of e-learning activities with NeuroSky MindWave EEG," 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, 2018, pp. 1-6.spa
dc.relation.referencesLedesma, R. D., Poó, F. M., Montes, S. A. 2011, Psicología del tránsito: logros y desafíos de la investigación. PSIENCIA. Revista Latinoamericana de Ciencia Psicológica ISSN: 2250-5490. Disponible en: https://www.redalyc.org/articulo.oa?id=333127105007spa
dc.relation.referencesLuce, D. (1959), Individual Choice Behavior, John Wiley and Sons, New Yorkspa
dc.relation.referencesLuna del Castillo, J.D., Andrés, A.M. Tablas 2×2 y test exacto de Fisher. TDE 2, 15–43 (1987). https://doi.org/10.1007/BF02864816spa
dc.relation.referencesMa, R., Kaber, D. 2005. Situation awareness and workload in driving while using adaptive cruise control and a cell phone, International Journal of Industrial Ergonomics, 35, 939-953spa
dc.relation.referencesMcFadden, D. (1974), ‘Conditional logit analysis of qualitative choice behavior’, in P. Zarembka, ed., Frontiers in Econometrics, Academic Press, New York, pp. 105–142spa
dc.relation.referencesMarkkula,G., Romano, R., Waldram, R., Giles, O., Mole, C., Wilkie, R., 2019 Modelling visual-vestibular integration and behavioural adaptation in the driving simulator, Transportation Research Part F: Traffic Psychology and Behaviour, Volume 66, Pages 310-323, ISSN 1369-8478spa
dc.relation.referencesMarschak, J. (1960), ‘Binary choice constraints on random utility indications’, in K. Arrow, ed., Stanford Symposium on Mathematical Methods in the Social Sciences, Stanford University Press, Stanford, CA, pp. 312–329spa
dc.relation.referencesMATLAB, 2017 Users Manual, Mathworks Inc, www.mathworks.comspa
dc.relation.referencesMatthews, R., Legg, S., & Charlt on, S. (2003). The effect of cell phone type on drivers’ subjective workload during concurrent driving and conversing. Accident Analysis and Prevention, 35, 441-450.spa
dc.relation.referencesMcEvoy, S.P., Stevenson, M.R., McCartt, A.T., Woodward, M., Haworth, C., Palamara, P., Cercarelli, R., 2005. Role of mobile phones in motor vehicle crashes resulting in hospital attendance: a case-crossover study. BMJ, Aug. 20; 331(7514):428, Epub 2005.spa
dc.relation.referencesMcKnight A.J., McKnight A.S. (1993). The effect of mobile phone use upon driver attention. Accident Analysis and Prevention 25, 259-265. Mallikarjuna, C., Rao, K. R. (2006). Area occupancy characteristics of heterogeneous traffic. Transportmetrica, 2(3), 223–236spa
dc.relation.referencesMurillo, M. (2003). Modelo de Comportamiento de Conductores de Automóviles Usando Razonamiento Basado en Contextos. Revista Eletrôcnica de Sistemas de Informação, 2(2).spa
dc.relation.referencesMusicant, O., Lotan, T. & Albert, G., 2015. Do we really need to use our smartphones while driving? Accident; analysis and prevention, 85, pp.13–21.spa
dc.relation.referencesNational Center for Statistics and Analysis (NCSA). 2006a. Race and Ethnicity in Fatal Motor Vehicle Traffic Crashes 1999-2004. National Highway Traffic Safety Administration, Washington, D.C.spa
dc.relation.referencesNational Center for Statistics and Analysis (NCSA). 2006. Puerto Rico Toll of Motor Vehicle Crashes, 2005. National Highway Traffic Safety Administration, Washington, D.C.spa
dc.relation.referencesNational Center for Statistics and Analysis (NCSA). 2005. Traffic Safety Facts 2004. National Highway Traffic Safety Administration, Washington, D.C.spa
dc.relation.referencesNicholls, D., 1999. Statistics into the 21st century. Australia & New Zealand, Journal of Statistics 41 (2), 127–139.spa
dc.relation.referencesNorza, E. Useche, S. Moreno, J. Granados, E. Romero, M., 2014. Componentes descriptivos y explicativos de la accidentalidad vial en Colombia: incidencia del factor humano. Revista Criminalidad, 56(1), pp.157–187.spa
dc.relation.referencesOlsen, E.C.B., Lerner, N., Perel, M., Simmons-Morton, B.G., 2005. In-car electronic device use among teen drivers. In: Paper presented at the Transportation Research Board Meeting, Washington, DC.spa
dc.relation.referencesOrtiz, C., Ortiz-Peregrina, S., Castro, J. J., Casares-López, M., & Salas, C. (2018). Driver distraction by smartphone use (WhatsApp) in different age groups. Accident Analysis & Prevention, 117, 239-249spa
dc.relation.referencesOkamoto, K. , Tsiotras, P. 2019, Data-driven human driver lateral control models for developing haptic-shared control advanced driver assist systems, Robotics and Autonomous Systems, Volume 114, Pages 155-171, ISSN 0921-8890spa
dc.relation.referencesOviedo-Trespalacios, O, MM Haque, M King, Understanding the impacts of mobile phone distraction on driving performance: A systematic review - Transportation research part C: emerging technologies, 2016spa
dc.relation.referencesOviedo-Trespalacios, O., King, M., Vaezipour, A., & Truelove, V. (2019). Can our phones keep us safe? A content analysis of smartphone applications to prevent mobile phone distracted driving. Transportation research part F: traffic psychology and behaviour, 60, 657-668.spa
dc.relation.referencesPolicía Nacional de Colombia, Dirección de Tránsito 2018, Base de datos de fatalidades de 1 de enero de 2011 a 31 de diciembre de 2017, información suministrada a solicitud del autor de esta tesis doctoral.spa
dc.relation.referencesPapantoniou, P. Risk factors, driver behaviour and accident probability. The case of distracted driving., Doctoral thesis, National Technical University of Athens, 2015.spa
dc.relation.referencesParasuraman, R., Nestor, P.G., 1991. Attention and Driving Skills in Aging and Alzheimer's disease, Human Factors: The Journal of the Human Factors and Ergonomics Society, 33, no. 5, 539-557.spa
dc.relation.referencesPeden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A.A., Jarawan, E., Mathers, C., 2004, World report on road traffic injury prevention. Geneva, World Health Organization.spa
dc.relation.referencesPentland, A., & Liu, A. (1999). Modeling and prediction of human behavior. Neural computation, 11(1), 229–242. https://doi.org/10.1162/089976699300016890spa
dc.relation.referencesPetridou, E., Moustaki, M., 2000.Human factors in the causation of road traffic crashes, European Journal of Epidemiology, 16, pp 819-826.spa
dc.relation.referencesPollatsek, A., Fisher, D.L., Pradhan, A.K., 2006. Identifying and remediating failures of selective attention in younger drivers. Current directions in Psychological Science, 15, 255-259.spa
dc.relation.referencesProakis, J. Manolakis, D., 1997, Tratamiento digital de señales, Prentice Hall.spa
dc.relation.referencesRaajan, Narasimhan & Isra, A.R. & Greeta, S & Hemapriya, N & Narayan, S.K.G. & Madhupriya, G & Hariharan, K. (2018). Driver fatigue detection using neurosky mindwave headset. International Journal of Pure and Applied Mathematics. 119. 16383-16388spa
dc.relation.referencesRakauskas, M. E., Gugerty, L.J., Ward, N.J., 2004. Effects of naturalistic cell phone conversations on driving performance, Journal of Safety Research 35 (4), 453-464, 2004.spa
dc.relation.referencesRam, T. & Chand, K., 2016. Effect of drivers’ risk perception and perception of driving tasks on road safety attitude. Transportation Research Part F: Traffic Psychology and Behaviour.spa
dc.relation.referencesTibshirani RJ., 1997 Association between cellular-telephone calls and motor vehicle collisions, The New England Journal of Medicine, Volume 336, number 7.spa
dc.relation.referencesRegan, M.A., Lee, J.D., Young, K.L. (Eds.), 2008. Driver Distraction: Theory, Effects, and Mitigation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 31–40.spa
dc.relation.referencesReger, M.A., Welsh, R.K., Watson, G.S., Cholerton, B., Baker, L.D., Craft, S., 2004. The relationship between neuropsychological functioning and driving ability in dementia: a meta-analysis. Neuropsychology 18, 85-93.spa
dc.relation.referencesRehmann, A.J., Mitman, R.D., Reynolds, M.C., 2010. A Handbook of Flight Simulation Fidelity Requirements for Human Factors Research, Report No. DOT/FFF/CT-TN95/46, U.S. Department of Transportation, Federal Aviation Administration, Atlantic City, NJ.spa
dc.relation.referencesReimer, B., Mehler, B., D’Ambrosio, L. A., & Fried, R. (2010). The impact of distractions on young adult drivers with attention deficit hyperactivity disorder (ADHD). Accident Analysis and Prevention, 42(3), 842–851. https://doi.org/10.1016/j.aap.2009.06.021spa
dc.relation.referencesRoman, G.D. et al., 2015. Novice drivers’ individual trajectories of driver behavior over the first three years of driving. Accident Analysis & Prevention, 82, pp.61–69.spa
dc.relation.referencesRubiano, A. 2016. Smart control of soft robotic hand, Doctoral thesis, Université Paris Quest Narrente,spa
dc.relation.referencesRumar, K. 1985. The Role of Perceptual and Cognitive Filters in Observed Behavior. En: Human Behavior in Traffic Safety. Evans and Schwing, Plenum Press.spa
dc.relation.referencesSadek, A.W., Spring, G., Smith, B.L., 2003. Toward more effective transportation applications of computational intelligence paradigms. Transportation Research Record 1836, 57–63spa
dc.relation.referencesSagberg, F., 2001. Accident risk of car drivers during mobile telephone use. Int.J. Vehicle Design 26, 57–69.spa
dc.relation.referencesSalgado, M. Oracle apuesta por Big Data con tecnología y proyectos. Disponible en: http://www.computerworld.es/big-data/oracle-apuesta-por-big-data-con-tecnologia-y proyectos, 2014spa
dc.relation.referencesSarle, W.S., 1994. Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference (April 1–13).spa
dc.relation.referencesSchlehofer, M., Thompson, S., Ting, S., Ostermann, S., Nierman, A., Jessica Skenderian, J., 2010 Psychological predictors of college students’ cell phone use while driving, Accident Analysis & Prevention, Volume 42, Issue 4, Pages 1107-1112,spa
dc.relation.referencesScialfa, C.T. et al., 2011. A hazard perception test for novice drivers. Accident Analysis & Prevention, 43(1), pp.204–208.spa
dc.relation.referencesSeeman P. 1999, Brain development X: pruning during development. Am J Psychiatry; 156: 168.spa
dc.relation.referencesShinar, D. y J. Stiebel. 1986. The Effectiveness of Stationary Versus Moving Police Vehicle on Compliance with Speed Limit. Human Factors, Vol. 28.spa
dc.relation.referencesShinar, D., Tractinsky, N., & Compton, R. (2005). Effects of practice, age, and task demands, on interference from a phone task while driving. Accident Analysis and Prevention, 37(2), 315-326. doi:10.1016/j.aap.2004.09.007spa
dc.relation.referencesSmith, P.M. et al., 2015. The development of a conceptual model and self-reported measure of occupational health and safety vulnerability. Accident; analysis and prevention, 82, pp.234–43.spa
dc.relation.referencesStrayer, D., Drews, F., Johnston, W., 2003. Cell phone-induced failures of visual attention during simulated driving. Journal of Experimental Psychology: Applied, 9(1), 23-32.spa
dc.relation.referencesStutts, J.C., Reinfurt, D.W., Staplin, L., Rodgman, E.A., 2001. The role οf driver distraction in traffic crashes. Report Prepared for AAA Foundation for Traffic Safety.spa
dc.relation.referencesSWOV, 2008. Fact sheet. Use of mobile phone while driving, SWOV, Leidschendam, the Netherlandsspa
dc.relation.referencesTriggs, T.J., 1996. Driving simulation for railway crossing research, In Seventh International Symposium on Railroad-Highway Grade Crossing Research and Safety – Getting Active at Passive Crossings, Monash University, Clayton, Australia.spa
dc.relation.referencesRegan, M.A., Lee, J.D., Young, K.L. (Eds.), 2008. Driver Distraction: Theory, Effects, and Mitigation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 31–40.spa
dc.relation.referencesRipley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridgespa
dc.relation.referencesÜlker, Mehmet Barış Tabakcıoğlu Bursa, Turkey Hüseyin Çizmeci1, Doruk Ayberkin, 2017 Relations of Attention and Meditation Level with Learning in Engineering Education ECAI International Conference – 9th Edition Electronics, Computers and Artificial Intelligence 29 June -01 July, 2017, Targoviste, ROMÂNIAspa
dc.relation.referencesVaa, T. 1997, Increased police enforcement> effects on speed, Accident Analysis and Prevention. 29(3) pp. 373-85.spa
dc.relation.referencesVlahogianni, E.I., Karlaftis M.G., 2010. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. Journal of Intelligent Transportation Systems 13 (2), 73–84spa
dc.relation.referencesViola, P. Jones, M. (2001) Rapid object detection using a boosted cascade of simple features. In Proceedings of the 20014 ieee computer society conference on computer vision and pattern recognition, (Vol 1, pp. I-511)spa
dc.relation.referencesWaller, J.A., 1980. Physician’s role in highway safety. Functional impairment indriving. N Y State J Med 1980; 80:1987-1991spa
dc.relation.referencesWarner, H.W. & Åberg, L., 2012. Drivers’ tendency to commit different aberrant driving behaviours in comparison with their perception of how often other drivers commit the same behaviours. Transportation Research Part F: Traffic Psychology and Behaviour, 27, pp.37–43.spa
dc.relation.referencesWarner, B., Misra, M., 1996. Understanding neural networks as statistical tools. The American Statistician 50 (4), 284–293.spa
dc.relation.referencesWild, C.J., Pfannkuch, M., 1999. Statistical thinking in empirical enquiry. International Statistical Review 67 (3), 223–265spa
dc.relation.referencesWinskel, H., Kim, T. H., Kardash, L., & Belic, I. (2019). Smartphone use and study behavior: A Korean and Australian comparison. Heliyon, 5(7), e02158.spa
dc.relation.referencesWolrld Health organization, WHO, Road Safety, Deaths, 2015, página web http://gamapserver.who.int/gho/interactive_charts/road_safety/road_traffic_deaths/atlas.html, recuperado 4/07/2017spa
dc.relation.referencesWu, X., Zhu, X., Wu, G.-Q., Ding, W., Data mining with big data, IEEE transactions on knowledge and data engineering, Vol. 26, No 1, 2014.spa
dc.relation.referencesYannis G., 2013. Review of distracted driving factors, Proceedings of the 13th World Conference on Transportation Research, COPPE - Federal University of Rio de Janeiro at Rio de Janeiro, Brazil.spa
dc.relation.referencesYoung, K., Regan, M., Hammer, M., 2003. Driver distraction: a review of the literature, MUARC, Report No. 206Zamith, M. et al., 2015. A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. Journal of Computational Science, 9, pp.51–56.spa
dc.relation.referencesZheng, F. (2011) Modelling Urban Travel Times. PhD Thesis, Deflt University of Technologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::388 - Transportespa
dc.subject.lembTraffic Safetyeng
dc.subject.lembSeguridad vialspa
dc.subject.lembSeguridad vial - Métodos de simulaciónspa
dc.subject.lembAccidentes de tránsito - Métodos de simulaciónspa
dc.subject.otherConductores de automóvilesspa
dc.subject.proposalMachine Learningeng
dc.subject.proposalNeuroskyeng
dc.subject.proposalComportamiento humanospa
dc.subject.proposalHuman behavioreng
dc.titleModelo de comportamiento de conductores y la generación de accidentes de tránsito.spa
dc.title.translatedDriver behavior model and the generation of traffic accidentseng
dc.title.translatedDriver behavior model and the generation of traffic accidents.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79857169.2021.pdf
Tamaño:
5.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctor en Ingeniería - Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: