Penalized bayesian optimal designs for nonlinear models of Continuous Response

dc.contributor.advisorLópez Ríos, Víctor Ignaciospa
dc.contributor.authorRudnykh, Svetlana Ivanovnaspa
dc.date.accessioned2020-02-14T19:04:22Zspa
dc.date.available2020-02-14T19:04:22Zspa
dc.date.issued2019spa
dc.description.abstractExperimental design is an important phase in both scienti_c and industrial research. In recent years, Bayesian optimal designs have become more and more popular, particularly in biomedical research and clinical trials. The Bayesian experimental design approach allows the prior information of unknown parameters to be incorporated into the design process in order to achieve a better design. The Bayesian optimal design theory can, however, produce inadequate designs from a practical perspective that conict with common practice in laboratories or other guidelines established. In this research, the penalized optimal design strategy with the Bayesian approach is suggested to reduce problems associated with the inadequacy of experimental designs from a practical perspective. New optimality criteria, which combine the use of desirability functions and the Bayesian approach, are constructed for linear and nonlinear regression models. The proposed technique based on the use of desirability functions helps to obtain optimal designs that ful_ll Bayesian optimal design criteria and also satisfy practical preferences. The proposed penalized strategy is illustrated with corresponding examples for both linear and nonlinear models. Furthermore, the methodology of choosing the appropriate desirability functions according to the practical design preferences is proposed and illustrated by an example of the Michaelis-Menten model.spa
dc.description.abstractEl diseño experimental es una fase importante tanto en la investigación científica como en la industria. En los últimos años, los diseños óptimos bayesianos se han vuelto cada vez más populares, particularmente en la investigación biomédica y los ensayos clínicos. El enfoque de diseño experimental bayesiano permite incorporar la información previa disponible de parámetros desconocidos en el proceso de diseño y así poder obtener un mejor diseño. Sin embargo, la teoría del diseño _optimo bayesiano puede producir diseños inadecuados desde una perspectiva práctica que entran en contacto con la práctica de laboratorio común u otras pautas establecidas. Con el objetivo de reducir los problemas asociados con la inadecuación de los diseños experimentales desde una perspectiva práctica, en esta investigación, se proponen nuevos criterios de optimalidad que combinan el uso de funciones de deseabilidad y el enfoque bayesiano, tanto para modelos de regresión lineal, como no lineal. La técnica propuesta basada en el uso de las funciones de deseabilidad ayuda a obtener diseños _óptimos penalizados que cumplen con los criterios de diseño _óptimos bayesianos y también satisfacen preferencias prácticas. La estrategia penalizada propuesta se ilustra con los respectivos ejemplos para modelos lineales y no lineales. Además, se propone y se ilustra una metodología a para elegir las funciones de deseabilidad apropiadas de acuerdo con las preferencias experimentales desde un punto de vista práctico mediante un ejemplo del modelo de Michaelis-Menten.spa
dc.description.additionalDoctora en Ciencias Estadísticaspa
dc.description.degreelevelDoctoradospa
dc.format.extent144spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75605
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.relation.referencesAlbert, J. (2009), Bayesian computation with R, Springer Science & Business Media.spa
dc.relation.referencesAtkinson, A., Bogacka, B. & Zocchi, S. (2000), `Equivalence theory for design augmentation and parsimonious model checking: response surfaces and yield density models', Listy Biometryczne-Biometrical Letters 37(2), 67{95.spa
dc.relation.referencesBates, D. M. & Watts, D. G. (1988), Nonlinear regression analysis and its applications, John Wiles & Sons, Inc.spa
dc.relation.referencesBender, R. (2009), Introduction to the use of regression models in epidemiology, in `Cancer Epidemiology', Springer, pp. 179{195.spa
dc.relation.referencesBorchers, H. W. (2018), `Package `adagio': Discrete and global optimization routines', Available: https://CRAN.R-project.org/package=adagiospa
dc.relation.referencesChaloner, K. & Larntz, K. (1989), `Optimal bayesian design applied to logistic regression experiments', Journal of Statistical Planning and Inference 21(2), 191{208.spa
dc.relation.referencesCook, D. & Fedorov, V. (1995), `Invited discussion paper constrained optimization of experimental design', Statistics 26(2), 129{148.spa
dc.relation.referencesDel Castillo, E., Montgomery, D. & McCarville, D. (1996), `Modi ed desirability functions for multiples response optimization', Journal of quality technology 28(3), 337{345spa
dc.relation.referencesDerringer, G. C. (1994), `A balancing act-optimizing a products properties', Quality Progress 27(6), 51{58.spa
dc.relation.referencesDette, H. & Biedermann, S. (2003), `Robust and e cient designs for the michaelismenten model', Journal of the American Statistical Association 98(463), 679{686.spa
dc.relation.referencesDette, H. & Sperlich, S. (1994), `A note on bayesian d-optimal designs for a generalization of the exponential growth model', South African Statist. J 28, 103{11spa
dc.relation.referencesDragalin, V., Fedorov, V. & Wu, Y. (2008), `Adaptive designs for selecting drug combinations based on e cacy{toxicity response', Journal of Statistical Planning and Inference 138(2), 352{373.spa
dc.relation.referencesErmakov, S. M. & Zhiglijavsky, A. A. (1987), The Mathematical Theory of Optimum Experiments, Nauka, Moscow. (In Russian).spa
dc.relation.referencesFirth, D. & Hinde, J. (1997), `On bayesian d-optimum design criteria and the equivalence theorem in non-linear models', Journal of the Royal Statistical Society: Series B Statistical Methodology) 59(4), 793{797.spa
dc.relation.referencesGao, L. & Rosenberger, W. F. (2013), Adaptive bayesian design with penalty based on toxicity-e cacy response, in D. Ucinski, A. C. Atkinson & M. Patan, eds, `mODa 10{Advances in Model-Oriented Design and Analysis', Springer, Heidelberg, pp. 91{ 98.spa
dc.relation.referencesGeorge, P. & Ogot, M. M. (2006), `A compromise experimental design method for parametric polynomial response surface approximations', Journal of Applied Statistics 33(10), 1037{1050spa
dc.relation.referencesHaines, L. M., Perevozskaya, I. & Rosenberger, W. F. (2003), `Bayesian optimal designs for phase i clinical trials', Biometrics 59(3), 591{600.spa
dc.relation.referencesKiefer, J. (1959), `Optimum experimental designs', Journal of the Royal Statistical Society: Series B (Methodological) 21(2), 272{304.spa
dc.relation.referencesKiefer, J., Wolfowitz, J. et al. (1959), `Optimum designs in regression problems', The Annals of Mathematical Statistics 30(2), 271{294.spa
dc.relation.referencesMukhopadhyay, S. & Haines, L. M. (1995), `Bayesian d-optimal designs for the exponential growth model', Journal of Statistical Planning and Inference 44(3), 385{397.spa
dc.relation.referencesMullen, K., Ardia, D., Gil, D. L., Windover, D. & Cline, J. (2016), `Deoptim: An r package for global optimization by di erential evolution', Available: https://CRAN.Rproject. org/package=DEoptim.spa
dc.relation.referencesParker, S. & Gennings, C. (2008), `Penalized Locally Optimal Experimental Designs for Nonlinear Models', Journal of Agricultural, Biological, and Environmental Statistics 13(3), 334{354.spa
dc.relation.referencesParker, S. M. (2005), Solutions to reduce problems associated with experimental designs for nonlinear models: Conditional analyses and penalized optimal designs, PhD thesis, Virginia Commonwealth Universityspa
dc.relation.referencesStorn, R. & Price, K. (1997), `Di erential evolution{a simple and e cient heuristicfor global optimization over continuous spaces', Journal of global optimization 11(4), 341{359.spa
dc.relation.referencesTeam, R. C. (2018), `R: A language and environment for statistical computing. r foundation for statistical computing, vienna, austria. 2013 (version 3.5.1)', Available: http://www.R-project.org.spa
dc.relation.referencesTranda r, C. & L opez-Fidalgo, J. (2004), Locally optimal designs for an extension of the michaelis-menten model, in A. Di Bucchianico, H. Ler & H. P. Wynn, eds, `mODa 7{Advances in Model-Oriented Design and Analysis', Physica-Verlag, Heidelberg, pp. 173{181.spa
dc.relation.referencesYeatts, S. D., Gennings, C. & Crofton, K. M. (2012), `Optimal design for the precise estimation of an interaction threshold: The impact of exposure to a mixture of 18 polyhalogenated aromatic hydrocarbons', Risk Analysis 32(10), 1784{1797spa
dc.relation.referencesYpma, J., Borchers, H. & Eddelbuettel, D. (2014), `R package `nloptr': R interface to nlopt', Available: https://CRAN.R-project.org/package=nloptrspa
dc.relation.referencesZhang, Y. (2006), Bayesian D-optimal design for generalized linear models, PhD thesis, Virginia Tech.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcMatemáticas::Probabilidades y matemáticas aplicadasspa
dc.subject.proposalBayesian optimal designseng
dc.subject.proposalFunciones de deseabilidadspa
dc.subject.proposalPenalized designseng
dc.titlePenalized bayesian optimal designs for nonlinear models of Continuous Responsespa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1140821034.2019.pdf
Tamaño:
995.42 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: