Procesos de conteo, sobredispersión y extensiones

dc.contributor.advisorCepeda-Cuervo, Edilberto
dc.contributor.authorCifuentes Amado, Maria Victoria
dc.date.accessioned2021-10-05T16:56:33Z
dc.date.available2021-10-05T16:56:33Z
dc.date.issued2021-04-19
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractSe presenta una revisión detallada de modelos sobredispersos de regresión lineal y no lineal para datos de conteo, desde un enfoque Bayesiano. Se propone la función de distribución beta inclinada binomial, se estudian sus propiedades y se proponen los modelos de regresión lineal, donde se asignan estructuras de regresión a la media, parámetro de dispersión y parámetro de mixtura. Adicionalmente, se presentan las reparametrizaciones de las distribuciones beta binomial y binomial negativa, en términos de la media, y se establecen los modelos de regresión Bayesiana, proponiendo nuevas variables de trabajo para el parámetro de dispersión, que reducen la autocorrelación y mejoran la convergencia de las cadenas. Se define una extensión a modelos de regresión no lineal y se propone el algoritmo Bayesiano para este caso. Se definen nuevos modelos de regresión no lineal con exceso de ceros y se extiende la metodología Bayesiana propuesta en [21] para estos modelos: se desarrolla el algoritmo de Metropolis-Hastings y se proponen las variables de trabajo requeridas, a partir del método de aumento de datos de [74]. Se proponen modelos subdispersos no lineales doblemente generalizados para datos de conteo que presentan subdispersión con respecto a las distribuciones Poisson o binomial, y se definen funciones de cuasi-verosimilitud adecuadas, a partir del enfoque de [106], para el ajuste de los modelos Bayesianos. Finalmente, se proponen nuevos procesos de Poisson no homogéneos cíclicos y se definen modelos autoregresivos no lineales doblemente generalizados para series de conteo, basados en distribuciones de conteo subdispersas y se aplica el paradigma Bayesiano para la estimación. (Texto tomado de la fuente).spa
dc.description.abstractA review of overdispersed linear and nonlinear regression models for counting data is presented, from a Bayesian approach. The tilted beta binomial distribution function is proposed, its properties are studied and the linear regression models are proposed, where regression structures are assigned to the mean, parameter of dispersion and mixture parameter. In addition, the reparametrizations of the beta binomial and negative binomial distributions are presented, in terms of the mean, and the Bayesian regression models are inroduced, by proposing new suitable working variables for the dispersion parameter, which reduce autocorrelation and improve chain convergence. An extension to non-linear regression models is defined and the Bayesian algorithm is proposed for this case. New nonlinear regression models zero-inflated are defined and the Bayesian methodology, proposed by [21], is extended for these models: the Metropolis-Hastings algorithm is developed and the requiered working variables are proposed, from the data augmentation method of [74]. Double generalized nonlinear sub-dispersed models are proposed for counting data that present subdispersion with respect to the Poisson or binomial distributions, and appropriate quasi-likelihood functions are defined, from the [106] approach, which are useful for the Bayesian regression in these models. New cyclic non-homogeneous Poisson processes are proposed and doubly generalized nonlinear autoregressive models are defined for count series, based on sub-dispersed count distributions and Bayesian paradigm is applied for the estimation.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.format.extentix, 151 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80388
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.references[1] J. Achcar, E. Cuervo, and E. Martinez. Use of non-homogeneous poisson processes in the modeling of hospital over admissions in ribeirao preto and region, brazil: An application to respiratory diseases. Journal of Biometrics & Biostatistics, 03, 01 2012.spa
dc.relation.references[2] H. Ahn and J. J. Chen. Generation of over-dispersed and under-dispersed binomial variates. Journal of Computational and Graphical Statistics, 4(1):55–64, 1995.spa
dc.relation.references[3] M. Al-Osh and A. A. Alzaid. First-order integer-valued autoregressive (inar (1)) process. Journal of Time Series Analysis, 8(3):261–275, 1987.spa
dc.relation.references[4] M. Al-Osh and A. A. Alzaid. Integer-valued moving average (inma) process. Statistical Papers, 29(1):281–300, 1988.spa
dc.relation.references[5] P. S. Albert, H. F. McFarland, M. E. Smith, and J. A. Frank. Time series for modelling counts from a relapsing-remitting disease: application to modelling disease activity in multiple sclerosis. Statistics in Medicine, 13(5-7):453–466, 1994spa
dc.relation.references[6] A. Alzaid and M. Al-Osh. An integer-valued pth-order autoregressive structure (inar (p)) process. Journal of Applied Probability, pages 314–324, 1990.spa
dc.relation.references[7] A. A. Alzaid and M. Al-Osh. Some autoregressive moving average processes with generalized poisson marginal distributions. Annals of the Institute of Statistical Mathematics, 45(2):223–232, 1993.spa
dc.relation.references[8] O. Barndorff-Nielsen. Introductory Theory of Exponential Families. John Wiley & Sons, Ltd, 1978.spa
dc.relation.references[9] D. Bates and D.Watts. Nonlinear Regression Analysis and Its Applications. Wiley Series in Probability and Statistics. Wiley, 2007.spa
dc.relation.references[10] C. Bayes, J. Bazán, and C. Garcia. A new robust regression model for proportions. Bayesian Analysis, 7:841 – 866, 08 2012spa
dc.relation.references[11] N. Bleistein and R. A. Handelsman. Asymptotic expansions of integrals. Dover Books on Mathematics. Dover Publications, New York, 1975.spa
dc.relation.references[12] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307–327, 1986.spa
dc.relation.references[13] W. Bonat, B. Jørgensen, C. Kokonendji, J. Hinde, and C. Demétrio. Extended poisson tweedie: Properties and regression models for count data. Statistical Modelling: An International Journal, 18, 08 2018.spa
dc.relation.references[14] K. Brannas. Explanatory variables in the ar (1) count data model. Umea Economic Studies, 381, 1995.spa
dc.relation.references[15] N. Breslow. Extra-Poisson Variation in Log-Linear Models. Appl.Statist., 31:38–44, 1984.spa
dc.relation.references[16] P. J. Brockwell, R. A. Davis, and S. E. Fienberg. Time series: theory and methods: theory and methods. Springer Science & Business Media, 1991.spa
dc.relation.references[17] R. J. Brooks, W. H. James, and E. Gray. Modelling sub-binomial variation in the frequency of sex combinations in litters of pigs. Biometrics, 47(2):403–417, 1991.spa
dc.relation.references[18] S. Brooks and A. Gelman. General methods for monitoring convergence of iterative simulations. J. Comput. Graphi. Stat., 7:434–455, 12 1998.spa
dc.relation.references[19] A. Cameron and P. Trivedi. Regression Analysis of Count Data, volume 53. Cambridge University Press, Cambridge, UK, 2013.spa
dc.relation.references[20] A. X. Carvalho and M. A. Tanner. Modelling nonlinear count time series with local mixtures of poisson autoregressions. Computational statistics & data analysis, 51(11):5266–5294, 2007.spa
dc.relation.references[21] E. Cepeda-Cuervo. Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. thesis, Mathematics Institute, Universidade Federal do Río de Janeiro, 2001.spa
dc.relation.references[22] E. Cepeda-Cuervo and M. V. Cifuentes-Amado. Double generalized beta-binomial and negative binomial regression models. Revista Colombiana de Estadística, 40:141, 01 2017.spa
dc.relation.references[23] E. Cepeda-Cuervo and M. V. Cifuentes-Amado. Tilted beta binomial linear regression model: A bayesian approach. 16(1):1–8, 2020.spa
dc.relation.references[24] E. Cepeda-Cuervo, M. V. Cifuentes-Amado, and M. Marin. NegBinBetaBinreg: Negative Binomial and Beta Binomial Bayesian Regression Models, 2016. R package version 1.0.spa
dc.relation.references[25] E. Cepeda-Cuervo and D. Gamerman. Bayesian methodology for modeling parameters in the two parameter exponential family. Revista Estadística, 57(168-169):93–105, 2005.spa
dc.relation.references[26] E. Cepeda-Cuervo, H. S. Migon, L. Garrido, and J. A. Achcar. Generalized linear models with random effects in the two-parameter exponential family. Journal of Statistical Computation and Simulation, 84(3):513–525, 2014spa
dc.relation.references[27] V. Christou and K. Fokianos. Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis, 35(1):55–78, 2014.spa
dc.relation.references[28] M. V. Cifuentes-Amado and E. Cepeda-Cuervo. Non-homogeneous poisson process to model seasonal events: Application to the health diseases. International Journal of Statistics in Medical Research, 4(4):337–346, 2015.spa
dc.relation.references[29] D. Collet. Modeling Binary Data. Chapman Hall, London, 1991.spa
dc.relation.references[30] P. Consul and F. Famoye. Generalized poisson regression model. Communications in Statistics - Theory and Methods, 21(1):89–109, 1992.spa
dc.relation.references[31] P. C. Consul and G. C. Jain. A generalization of the poisson distribution. Technometrics, 15(4):791– 799, 1973.spa
dc.relation.references[32] R. W. Conway and W. L. Maxwell. A queuing model with state dependent service rates. Journal of Industrial Engineering, 12(2):132–136, 1962.spa
dc.relation.references[33] D. R. Cox. Some statistical methods connected with series of events. Journal of the Royal Statistical Society: Series B (Methodological), 17(2):129–157, 1955.spa
dc.relation.references[34] D. R. Cox. The statistical analysis of series of events. Monographs on Applied Probability and Statistics, 1966.spa
dc.relation.references[35] D. R. Cox. Partial likelihood. Biometrika, 62(2):269–276, 1975.spa
dc.relation.references[36] D. R. Cox. Some remarks on overdispersion. Biometrika, 70(1):269–274, 1983.spa
dc.relation.references[37] D. R. Cox, G. Gudmundsson, G. Lindgren, L. Bondesson, E. Harsaae, P. Laake, K. Juselius, and S. L. Lauritzen. Statistical analysis of time series: Some recent developments [with discussion and reply]. Scandinavian Journal of Statistics, pages 93–115, 1981.spa
dc.relation.references[38] L. H. Crow. Tracking reliability growth. Technical report, ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY ABERDEEN PROVING GROUND MD, 1974.spa
dc.relation.references[39] M. J. Crowder. Beta-binomial anova for proportions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 27(1):34–37, 1978.spa
dc.relation.references[40] G. Darmois. Sur les lois de probabilités à estimation exhaustive. C. R. Acad. Sci. Paris (in French), (200):1265–1266, 1935.spa
dc.relation.references[41] R. A. Davis, W. T. Dunsmuir, and Y. Wang. On autocorrelation in a poisson regression model. Biometrika, 87(3):491–505, 2000.spa
dc.relation.references[42] J. del Castillo and M. Pérez-Casany. Weighted poisson distributions for overdispersion and underdispersion situations. Annals of the Institute of Statistical Mathematics, 50:567–585, 02 1998.spa
dc.relation.references[43] D. Dey, A. E. Gelfand, and F. Peng. Overdispersed generalized linear models. Journal of Statistical Planning and Inference, 64:93–107, 12 1994.spa
dc.relation.references[44] M. L. Diop, A. Diop, and A. Kâ. A negative binomial mixture integer-valued garch model. Afrika Statistika, 13(2):1645–1666, 2018.spa
dc.relation.references[45] E. Donoso, J. A. Carvajal, C. Vera, and J. A. Poblete. La edad de la mujer como factor de riesgo de mortalidad materna, fetal, neonatal e infantil. Revista médica de Chile, 142:168 – 174, 02 2014.spa
dc.relation.references[46] P. Doukhan, K. Fokianos, and J. Rynkiewicz. Mixtures of nonlinear poisson autoregressions. Journal of Time Series Analysis, 42(1):107–135, 2021.spa
dc.relation.references[47] N. R. Draper and H. Smith. Applied regression analysis, volume 326. John Wiley & Sons, 1998.spa
dc.relation.references[48] J. Duane. Learning curve approach to reliability monitoring. IEEE transactions on Aerospace, 2(2):563–566, 1964.spa
dc.relation.references[49] J. Durbin and S. J. Koopman. Monte carlo maximum likelihood estimation for non-gaussian state space models. Biometrika, 84(3):669–684, 1997.spa
dc.relation.references[50] J. Durbin and S. J. Koopman. Time series analysis of non-gaussian observations based on state space models from both classical and bayesian perspectives. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(1):3–56, 2000.spa
dc.relation.references[51] B. Efron. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association, 81(395):709–721, 1986.spa
dc.relation.references[52] A. H. El-Shaarawi, R. Zhu, and H. Joe. Modelling species abundance using the poisson–tweedie family. Environmetrics, 22(2):152–164, 2011.spa
dc.relation.references[53] L. J. Emrich and M. R. Piedmonte. A method for generating high-dimensional multivariate binary variates. The American Statistician, 45(4):302–304, 1991.spa
dc.relation.references[54] M. J. Faddy. Extended Poisson process modelling and analysis of count data. Biometrical Journal, 39:431 – 440, 01 1997.spa
dc.relation.references[55] L. Fahrmeir and H. Kaufmann. Regression models for non-stationary categorical time series. Journal of time series Analysis, 8(2):147–160, 1987.spa
dc.relation.references[56] W. Feller. Xii. In An introduction to probability theory and its applications, volume 1. Wiley, 1950.spa
dc.relation.references[57] R. Ferland, A. Latour, and D. Oraichi. Integer-valued garch process. Journal of Time Series Analysis, 27(6):923–942, 2006.spa
dc.relation.references[58] R. A. Fisher. The significance of deviations from expectation in a poisson series. Biometrics, 6(1):17– 24, 1950.spa
dc.relation.references[59] J. M. Flegal. Monte Carlo standard errors for Markov chain Monte Carlo. PhD thesis, 2008.spa
dc.relation.references[60] K. Fokianos. Truncated poisson regression for time series of counts. Scandinavian journal of statistics, 28(4):645–659, 2001.spa
dc.relation.references[61] K. Fokianos. Count time series models. In Handbook of statistics, volume 30, pages 315–347. Elsevier, 2012.spa
dc.relation.references[62] K. Fokianos and B. Kedem. Partial likelihood inference for time series following generalized linear models. Journal of Time Series Analysis, 25(2):173–197, 2004.spa
dc.relation.references[63] K. Fokianos, A. Rahbek, and D. Tjøstheim. Poisson autoregression. Journal of the American Statistical Association, 104(488):1430–1439, 2009.spa
dc.relation.references[64] K. Fokianos and D. Tjøstheim. Log-linear poisson autoregression. Journal of Multivariate Analysis, 102(3):563–578, 2011.spa
dc.relation.references[65] K. Fokianos and D. Tjøstheim. Nonlinear poisson autoregression. Annals of the Institute of Statistical Mathematics, 64(6):1205–1225, 2012.spa
dc.relation.references[66] G. A. Fox, G. A. Negrete-Yankelevich, and V. J. Sosa. Ecological Statistics: Contemporary Theory and Application. Oxford : Oxford University Press, 2015.spa
dc.relation.references[67] E. Frome and R. DuFrain. Maximum likelihood estimation for cytogenetic dose-response curves. Biometrics, pages 73–84, 1986.spa
dc.relation.references[68] E. L. Frome. The analysis of rates using poisson regression models. Biometrics, pages 665–674, 1983.spa
dc.relation.references[69] E. L. Frome, M. H. Kutner, and J. J. Beauchamp. Regression analysis of poisson-distributed data. Journal of the American Statistical Association, 68(344):935–940, 1973.spa
dc.relation.references[70] D. Gamerman. Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7(1):57–68, Mar 1997.spa
dc.relation.references[71] D. Gamerman, T. R. dos Santos, and G. C. Franco. A non-gaussian family of state-space models with exact marginal likelihood. Journal of Time Series Analysis, 34(6):625–645, 2013.spa
dc.relation.references[72] A. E. Gelfand and S. R. Dalal. A note on overdispersed exponential families. Biometrika, 77(1):55–64,1990.spa
dc.relation.references[73] J. Geweke. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In J. M. Bernardo, J. Berger, A. P. Dawid, and J. F. M. Smith, editors, Bayesian Statistics 4, pages 169–193. Oxford University Press, Oxford, 1992.spa
dc.relation.references[74] S. K. Ghosh, P. Mukhopadhyay, and J.-C. Lu. Bayesian analysis of zero-inflated regression models. Journal of Statistical Planning and Inference, 136(4):1360–1375, 2006spa
dc.relation.references[75] A. L. Goel. Software reliability modelling and estimation techniques. Technical report, SYRACUSE UNIV NY DEPT OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH, 1982.spa
dc.relation.references[76] M. Greenwood and G. U. Yule. An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal statistical society, 83(2):255–279, 1920.spa
dc.relation.references[77] S. Gurmu. Semiparametric estimation of hurdle regression models with an application to medicaid utilization. Journal of Applied Econometrics, 12:225–242, 05 1997.spa
dc.relation.references[78] S. Gurmu and P. K. Trivedi. Excess zeros in count models for recreational trips. Journal of Business & Economic Statistics, 14(4):469–477, 1996.spa
dc.relation.references[79] E. Hahn. Mixture densities for project management activity times: A robust approach to pert. European Journal of Operational Research, 188:450–459, 02 2008.spa
dc.relation.references[80] E. Hahn and M. López Martín. Robust project management with the tilted beta distribution. SORT, 39:253–272, 01 2015.spa
dc.relation.references[81] D. B. Hall. Zero-inflated poisson and binomial regression with random effects: A case study. Biometrics, 56(4):1030–1039, 2000.spa
dc.relation.references[82] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. 1970.spa
dc.relation.references[83] D. C. Heilbron. Generalized linear models for altered zero probabilities and overdispersion in count data. SIMS Technical Report 9, Department of Epidemiology and Biostatistics, University of California, San Francisco, 1989.spa
dc.relation.references[84] D. C. Heilbron. Zero-altered and other regression models for count data with added zeros. Biometrical Journal, 36(5):531–547, 1994.spa
dc.relation.references[85] J. Hinde and C. Demétrio. Overdispersion: Models and estimation. Computational Statistics & Data Analysis, 27:151–170, 02 1998.spa
dc.relation.references[86] P. Hougaard, M.-L. T. Lee, and G. Whitmore. Analysis of overdispersed count data by mixtures of poisson variables and poisson processes. Biometrics, pages 1225–1238, 1997.spa
dc.relation.references[87] Instituto Nacional de Estadísticas, Servicio de Registro Civil e Identificación, Departamento de Estadísticas e Información de Salud, Consultado el: 2019-04-10.spa
dc.relation.references[88] M. J. Crowder. Beta-binomial anova for proportions. Applied Statistics, 27:34, 01 1978.spa
dc.relation.references[89] P. A. Jacobs and P. A. Lewis. Discrete time series generated by mixtures. i: Correlational and runs properties. Journal of the Royal Statistical Society: Series B (Methodological), 40(1):94–105, 1978.spa
dc.relation.references[90] H. Joe and R. Zhu. Generalized poisson distribution: the property of mixture of poisson and comparison with negative binomial distribution. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 47(2):219–229, 2005spa
dc.relation.references[91] B. Jorgensen. Exponential dispersion models. Journal of the Royal Statistical Society. Series B (Methodological), 49(2):127–162, 1987.spa
dc.relation.references[92] B. Jorgensen. The theory of dispersion models. CRC Press, 1997.spa
dc.relation.references[93] B. Jørgensen and C. Kokonendji. Discrete dispersion models and their tweedie asymptotics. AStA Advances in Statistical Analysis, 100, 09 2014.spa
dc.relation.references[94] B. Kedem and K. Fokianos. Regression models for time series analysis, volume 488. John Wiley & Sons, 2005.spa
dc.relation.references[95] R. Kenett. ’the com-poisson model for count data: A survey of methods and applications’ by k. sellers, s. borle and g. shmueli. Applied Stochastic Models in Business and Industry, 28:117–121, 03 2012spa
dc.relation.references[96] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications.spa
dc.relation.references[97] C. C. Kokonendji. Over-and underdispersion models. Methods and applications of statistics in clinical Trials: Planning, analysis, and inferential methods, 2:506–526, 2014.spa
dc.relation.references[98] C. C. Kokonendji, C. G. Demétrio, and S. S. Zocchi. On hinde–demétrio regression models for overdispersed count data. Statistical Methodology, 4(3):277–291, 2007.spa
dc.relation.references[99] B. O. Koopman. On distributions admitting a sufficient statistic. Transactions of the American Mathematical Society, 39(3):399–409, 1936.spa
dc.relation.references[100] L. Kuo and T. Yang. Bayesian computation for nonhomogeneous poisson process in software reliability. Journal of the American Statistical Association, 91:763–773, 1996.spa
dc.relation.references[101] D. Lambert. Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics, 34:1–14, 02 1992.spa
dc.relation.references[102] A. Latour. Existence and stochastic structure of a non-negative integer-valued autoregressive process. Journal of Time Series Analysis, 19(4):439–455, 1998.spa
dc.relation.references[103] J. F. Lawless. Negative binomial and mixed poisson regression. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, pages 209–225, 1987.spa
dc.relation.references[104] B. Li, P. McCullagh, et al. Potential functions and conservative estimating functions. The Annals of Statistics, 22(1):340–356, 1994.spa
dc.relation.references[105] Q. Li, H. Lian, and F. Zhu. Robust closed-form estimators for the integer-valued garch (1, 1) model. Computational Statistics & Data Analysis, 101:209–225, 2016.spa
dc.relation.references[106] L. Lin. Quasi bayesian likelihood. Statistical Methodology, 3(4):444–455, 2006.spa
dc.relation.references[107] D. V. Lindley. Fiducial distributions and bayes’ theorem. Journal of the Royal Statistical Society. Series B (Methodological), pages 102–107, 1958.spa
dc.relation.references[108] J. Lindsey. Modelling Frequency and Count Data. Oxford University Press, Oxford, 1995.spa
dc.relation.references[109] D. Lord, S. D. Guikema, et al. The conway–maxwell–poisson model for analyzing crash data. Applied Stochastic Models in Business and Industry, 28(2):122–127, 2012.spa
dc.relation.references[110] I. L. MacDonald and W. Zucchini. Hidden Markov and other models for discrete-valued time series, volume 110. CRC Press, 1997.spa
dc.relation.references[111] H. Mao, F. Zhu, and Y. Cui. A generalized mixture integer-valued garch model. Statistical Methods & Applications, 29(3):527–552, 2020.spa
dc.relation.references[112] B. H. Margolin, N. Kaplan, and E. Zeiger. Statistical analysis of the ames salmonella/microsome test. Proceedings of the National Academy of Sciences, 78(6):3779–3783, 1981.spa
dc.relation.references[113] B. H. Margolin, N. Kaplan, and E. Zeiger. Statistical analysis of the ames salmonella/microsome test. Proceedings of the National Academy of Sciences, 78(6):3779–3783, 1981.spa
dc.relation.references[114] C. Mcalpine, J. R. Rhodes, M. E. Bowen, D. Lunney, J. G. Callaghan, D. Mitchell, and H. Possingham. Can multiscale models of species distribution be generalized from region to region? a case study of the koala. Journal of Applied Ecology, 45, 04 2008.spa
dc.relation.references[115] P. McCullagh. Quasi-likelihood functions. The Annals of Statistics, pages 59–67, 1983.spa
dc.relation.references[116] P. McCullagh and J. Nelder. Generalized Linear Models, Second Edition. Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series. Chapman & Hall, 1989.spa
dc.relation.references[117] E. McKenzie. Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Advances in Applied Probability, pages 679–705, 1986.spa
dc.relation.references[118] N. Metropolis and S. Ulam. The monte carlo method. Journal of the American statistical association, 44(247):335–341, 1949.spa
dc.relation.references[119] S.-P. Miaou. The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions. Accident Analysis & Prevention, 26(4):471–482, 1994.spa
dc.relation.references[120] J. Mullahy. Specification and testing of some modified count data models. Journal of Econometrics, 33(3):341 – 365, 1986.spa
dc.relation.references[121] J. Mullahy. Heterogeneity, excess zeros, and the structure of count data models. Journal of Applied Econometrics, 12:337–50, 05 1997.spa
dc.relation.references[122] J. D. Musa and K. Okumoto. A logarithmic poisson execution time model for software reliability measurement. In Proceedings of the 7th international conference on Software engineering, pages 230– 238. Citeseer, 1984.spa
dc.relation.references[123] S. Nakajima, K. Watanabe, and M. Sugiyama. Variational Bayesian learning theory. Cambridge University Press, 2019.spa
dc.relation.references[124] B. H. Neelon, A. J. O’Malley, and S.-L. T. Normand. A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use. Statistical Modelling, 10(4):421–439, 2010.spa
dc.relation.references[125] J. A. Nelder and D. Pregibon. An extended quasi-likelihood function. Biometrika, 74(2):221–232, 1987.spa
dc.relation.references[126] J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3):370–384, 1972.spa
dc.relation.references[127] A. Noack. A class of random variables with discrete distributions. Ann. Math. Statist., 21(1):127–132, 03 1950.spa
dc.relation.references[128] K. Okumoto and A. L. Goel. Optimum release time for software systems based on reliability and cost criteria. Journal of Systems and Software, 1:315–318, 1979.spa
dc.relation.references[129] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. Nist handbook of mathematical functions hardback and cd-rom. chapter 8, pages 173–192. Cambridge university press, 2010.spa
dc.relation.references[130] G. Patil. Certain properties of the generalized power series distribution. Annals Inst. Statist. Math., Tokyo, 14:179–182, 01 1962.spa
dc.relation.references[131] G. P. Patil. Maximum likelihood estimation for generalized power series distributions and its application to a truncated binomial distribution. Biometrika, 49(1/2):227–237, 1962.spa
dc.relation.references[132] K. Pearson. Tables of the incomplete beta function. Technical report, 1934.spa
dc.relation.references[133] R. Petterle, W. Bonat, C. Kokonendji, J. Seganfredo, A. Moraes, and M. Silva. Double poisson-tweedie regression models. The International Journal of Biostatistics, 15, 04 2019.spa
dc.relation.references[134] A. Pievatolo and F. Ruggeri. Bayesian reliability analysis of complex repairable systems. Applied Stochastic Models in Business and Industry, 20:253–264, 2004.spa
dc.relation.references[135] E. J. G. Pitman. Sufficient statistics and intrinsic accuracy. Mathematical Proceedings of the Cambridge Philosophical Society, 32(4):567–579, 1936.spa
dc.relation.references[136] J. M. Potts and J. Elith. Comparing species abundance models. Ecological Modelling, 199(2):153–163, 2006.spa
dc.relation.references[137] M. B. Priestley. Spectral analysis and time series: probability and mathematical statistics. Number 04; QA280, P7. 1981.spa
dc.relation.references[138] P. Puig and J. Valero. Count data distributions: some characterizations with applications. Journal of the American Statistical Association, 101(473):332–340, 2006.spa
dc.relation.references[139] M. Pujol, J.-F. Barquinero, P. Puig, R. Puig, M. R. Caballín, and L. Barrios. A new model of biodosimetry to integrate low and high doses. PLoS One, 9(12):e114137, 2014.spa
dc.relation.references[140] S. Quine et al. Achievement orientation of aboriginal and white australian adolescents. 1973.spa
dc.relation.references[141] A. Quintero-Sarmiento, E. Cepeda-Cuervo, and V. Núñez Antón. Estimating infant mortality in colombia: Some overdispersion modelling approaches. Journal of Applied Statistics, 39:1011–1036, 05 2012.spa
dc.relation.references[142] J. Ramirez-Cid and J. Achcar. Bayesian inference for non-homogeneous poisson process in software reliability models. Computational Statistics and Data Analysis, 32:147–159, 1999.spa
dc.relation.references[143] J. E. Ramírez-Cid and J. A. Achcar. Bayesian inference for nonhomogeneous poisson processes in software reliability models assuming nonmonotonic intensity functions. Computational statistics & data analysis, 32(2):147–159, 1999.spa
dc.relation.references[144] M. Ridout, C. Demétrio, and J. Hinle. Models for count data with many zeros. international biomeric conference. Cape Town, 13:1–13, 01 1998.spa
dc.relation.references[145] S. Ross, J. Kelly, K. M. R. Collection, R. Sullivan, W. Perry, D. Mercer, R. Davis, T. Washburn, V. Sager, J. Boyce, et al. Stochastic Processes. Number v. 1 in Probability and Statistics Series. Wiley, 1983.spa
dc.relation.references[146] A. Saei, J. Ward, and C. A McGilchrist. Threshold models in a methadone programme evaluation. Statistics in medicine, 15:2253–60, 10 1996.spa
dc.relation.references[147] M. Sankaran. 275. note: The discrete poisson-lindley distribution. Biometrics, 26(1):145–149, 1970.spa
dc.relation.references[148] G. Seber and C. Wild. Nonlinear Regression. Wiley Series in Probability and Statistics. Wiley, 2005.spa
dc.relation.references[149] G. Shmueli, T. Minka, J. Kadane, S. Borle, and P. Boatwright. A useful distribution for fitting discrete data: Revival of the conway-maxwell-poisson distribution. Journal of the Royal Statistical Society Series C, 54:127–142, 02 2005.spa
dc.relation.references[150] R. H. Shumway and D. S. Stoffer. Time series analysis and its applications. Studies In Informatics And Control, 9(4):375–376, 2000.spa
dc.relation.references[151] A. Singh and G. Roberts. State space modelling of cross-classified time series of counts. International Statistical Review/Revue Internationale de Statistique, pages 321–335, 1992.spa
dc.relation.references[152] D. Spiegelhalter, A. Thomas, N. Best, and D. Lunn. WinBUGS user manual. MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK, 2003spa
dc.relation.references[153] D. Spiegelhalter, A. Thomas, N. Best, D. Lunn, and K. Rice. OpenBUGS examples, volume i. 2014.spa
dc.relation.references[154] F. W. Steutel and K. van Harn. Discrete analogues of self-decomposability and stability. The Annals of Probability, pages 893–899, 1979.spa
dc.relation.references[155] M. A. Tanner and W. Hung Wong. The calculation of posterior distributions by data augmentation: Rejoinder. Journal of The American Statistical Association, 82:528–540, 06 1987.spa
dc.relation.references[156] N. M. Temme. Special functions: An introduction to the classical functions of mathematical physics. John Wiley & Sons, 2011.spa
dc.relation.references[157] Zero-Inflated Poisson Regression and R Data Analysis Examples @ONLINE, Consultado el: 2019-03-27.spa
dc.relation.references[158] L. von Bortkiewicz and V. I. Bortkevič. Das gesetz der kleinen zahlen. BG Teubner, 1898.spa
dc.relation.references[159] R. W. M. Wedderburn. Quasi-likelihood functions, generalized linear models, and the gauss-newton method. Biometrika, 61(3):439–447, 1974.spa
dc.relation.references[160] C. H.Weiß. The inarch (1) model for overdispersed time series of counts. Communications in Statistics- Simulation and Computation, 39(6):1269–1291, 2010.spa
dc.relation.references[161] C. H. Weiß. Integer-valued autoregressive models for counts showing underdispersion. Journal of Applied Statistics, 40(9):1931–1948, 2013.spa
dc.relation.references[162] A.Welsh, R. Cunningham, C. Donnelly, and D. Lindenmayer. Modelling the abundance of rare species: statistical models for counts with extra zeros. Ecological Modelling, 88(1):297–308, 1996.spa
dc.relation.references[163] M.West, P. J. Harrison, and H. S. Migon. Dynamic generalized linear models and bayesian forecasting. Journal of the American Statistical Association, 80(389):73–83, 1985.spa
dc.relation.references[164] D. Williams. Extra-binomial variation in logistic linear models. Appl.Statist., 2:144–188, 1982. [165] R. Winkelmann. Duration dependence and dispersion in count-data models. Journal of Business & Economic Statistics, 13(4):467–474, 1995.spa
dc.relation.references[166] E. Xekalaki. Under-and overdispersion. Wiley StatsRef: Statistics Reference Online, 2014.spa
dc.relation.references[167] M. Xie and G. Hong. Ch. 28. software reliability modeling, estimation and analysis. In Advances in Reliability, volume 20 of Handbook of Statistics, pages 707 – 731. Elsevier, 2001.spa
dc.relation.references[168] T. Y. Yang and L. Kuo. Bayesian computation for the superposition of nonhomogeneous poisson processes. Canadian Journal of Statistics, 27(3):547–556, 1999.spa
dc.relation.references[169] S. L. Zeger. A regression model for time series of counts. Biometrika, 75(4):621–629, 1988.spa
dc.relation.references[170] S. L. Zeger and B. Qaqish. Markov regression models for time series: a quasi-likelihood approach. Biometrics, pages 1019–1031, 1988.spa
dc.relation.references[171] F. Zhu. A negative binomial integer-valued garch model. Journal of Time Series Analysis, 32(1):54–67, 2011.spa
dc.relation.references[172] F. Zhu. Modeling overdispersed or underdispersed count data with generalized poisson integer-valued garch models. Journal of Mathematical Analysis and Applications, 389(1):58–71, 2012.spa
dc.relation.references[173] F. Zhu, Q. Li, and D. Wang. A mixture integer-valued arch model. Journal of Statistical Planning and inference, 140(7):2025–2036, 2010.spa
dc.relation.references[174] F. Zhu, L. Shi, and S. Liu. Influence diagnostics in log-linear integer-valued garch models. AStA Advances in Statistical Analysis, 99(3):311–335, 2015.spa
dc.relation.references[175] A. Zuur, E. Ieno, N. Walker, A. Saveliev, and G. Smith. Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health. Springer New York, 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembRegression analysiseng
dc.subject.lembAnálisis de regresiónspa
dc.subject.lembScattering (Mathematics)eng
dc.subject.lembDispersión (Matemáticas)spa
dc.subject.lembBayesian statistical decision theoryeng
dc.subject.lembTeoría bayesiana de decisiones estadísticassps
dc.subject.proposalDatos de conteospa
dc.subject.proposalRegresión bayesianaspa
dc.subject.proposalSubdispersiónspa
dc.subject.proposalModelos de regresión linealspa
dc.subject.proposalRegresión no linealspa
dc.subject.proposalModelos cero infladosspa
dc.subject.proposalSeries de conteospa
dc.subject.proposalProcesos de Poissonspa
dc.subject.proposalModelos autoregresivos para series de conteospa
dc.subject.proposalSobredispersiónspa
dc.subject.proposalCounting dataeng
dc.subject.proposalOverdispersioneng
dc.subject.proposalBayesian regressioneng
dc.subject.proposalUnderdispersioneng
dc.subject.proposalLinear regression modelseng
dc.subject.proposalNonlinear regressioneng
dc.subject.proposalZero-inflated modelseng
dc.subject.proposalCounting time serieseng
dc.subject.proposalPoisson processeseng
dc.subject.proposalAutorregresive modelseng
dc.titleProcesos de conteo, sobredispersión y extensionesspa
dc.title.translatedCounting processes, overdispersion and extensionseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013597805.2021.pdf
Tamaño:
4.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: