Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica

dc.contributor.advisorChejne, Farid
dc.contributor.advisorALEAN VALLE, JADER DARIO
dc.contributor.advisorGómez Gutiérrez , Carlos Andrés
dc.contributor.authorCordoba Ramirez, Marlon Fabian
dc.contributor.cvlacCORDOBA RAMIREZ, MARLON FABIANspa
dc.contributor.orcidCordoba Ramirez, Marlon [0000-0003-1242-9085]spa
dc.contributor.orcidALEAN VALLE, JADER DARIO [0000-0002-8759-5304]spa
dc.contributor.orcidGómez Gutiérrez, Carlos Andrés [0000-0003-1961-6289]spa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2023-05-19T14:20:31Z
dc.date.available2023-05-19T14:20:31Z
dc.date.issued2023-05-16
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn esta tesis se estudió el efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad y cambios estructurales orientados a la obtención de carbones activados a partir de un residuo lignocelulósico (cuesco de palma). Para tal fin, se llevó a cabo un análisis del efecto de la torrefacción a diferentes temperaturas como etapa de tratamiento previo, proponiendo una ruta torrefacción – pirólisis lenta – activación. A partir de esto, se encontraron cambios en la dinámica de desvolatilización y recomposición del material, hallando que la torrefacción previa favorece las reacciones de descarbonilación reflejadas en pérdidas de compuestos y grupos funcionales vía CO2, que no son evidentes a partir de la pirólisis directa del material. Adicionalmente, Se llevó a cabo una caracterización detallada del biochar obtenido a diferentes temperaturas de pirólisis (220, 250, 280, 350, 550 y 700°C) para tener una visión completa de cómo evoluciona la estructura porosa a medida que se avanza en el proceso de pirólisis lenta. También se evaluó el efecto de las condiciones de activación, tomando en cuenta distintos tiempos de proceso (2-6 horas) y el uso de diferentes atmósferas, como CO2 y vapor de agua. A partir de este análisis, se pudo determinar que la temperatura de pirólisis tiene un gran impacto en el desarrollo de una matriz porosa previa, que se aclara y se define mejor tras la activación. Finalmente, se analizó cómo estos cambios previamente mencionados afectan el desempeño del biochar y el carbón activado como materiales adsorbentes de CO2 y H2S, encontrando importantes diferencias en su comportamiento con cada uno de estos gases, relacionadas tanto con la estructura porosa como con la química superficial. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, the effect of torrefaction and slow pyrolysis on the development of porosity and structural changes aimed at obtaining activated carbons from a lignocellulosic residue (palm kernel shell) was studied. To this end, a detailed analysis of the effect of torrefaction at different temperatures as a pretreatment stage was carried out, proposing a torrefaction - slow pyrolysis - activation route; the biochar and activated carbon obtained from this route were compared with those obtained by direct pyrolysis. From this, changes in the dynamics of devolatilization and recomposition of the material were confirmed, finding as main finding that the previous torrefaction favors more decarbonylation reactions reflected in loss of compounds and functional groups via CO2 liberation, which are not evident from the direct pyrolysis of the material. Additionally, a detailed characterization of the biochar obtained at different temperatures (220, 250, 280, 350, 550 and 700°C) was carried out to have a complete view of how the porous structure evolves as the slow pyrolysis process progresses. The effect of activation conditions was also evaluated, considering different process times (2-6 hours) and the use of different atmospheres, such as CO2 and steam. From this analysis, it could be determined that the pyrolysis temperature has a great impact on the development of a porous pre-matrix, which becomes clearer and better defined after activation. Finally, it was analyzed how these previously mentioned changes affect the performance of biochar and activated carbon as CO2 and H2S adsorbent materials, finding important differences in their behavior with each of these gases, related to both the porous structure and the surface chemistry.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaSistemas energéticosspa
dc.description.sponsorshipConvocatoria 788 de ecosistemas científicos de Colciencias, contrato número FP44842-210-2018 y a la red “Alliance for Biomass and Sustainability Research (ABISURE), Universidad Nacional de Colombia", código Hermes 53024spa
dc.format.extentxviii, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83829
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesY. A. Vargas Corredor and L. I. Pérez Pérez, “Aprovechamiento De Residuos Agroindustriales En El Mejoramiento De La Calidad Del Ambiente,” Revista facultad de ciencias básicas, vol. 14, no. 1, pp. 59–72, 2018, doi: 10.18359/rfcb.3108.spa
dc.relation.referencesUPME, Atlas de potencial energetico de la biomasa residual en Colombia. 2010.spa
dc.relation.referencesJ. A. Ordoñez Loza, “Understanding bio-oil droplets microexplosions in oxyfuel combustion,” PhD Thesis, Universidad Nacional de Colombia, Medellin, 2021.spa
dc.relation.referencesF. Chejne, J. Montoya, C. Gomez, and E. Castillo, Pirólisis rápida de biomasa, 1st ed., no. December. Universidad Nacional de Colombia, Ecopetrol., 2013. [Online]. Available: https://www.researchgate.net/publication/281976634_Pirolisis_rapida_de_biomasaspa
dc.relation.referencesEuropean Biochar Foundation (EBC), “European Biochar Certificate - Guidelines for a sustainable production of biochar,” Arbaz, Switzerland, Jan. 2022. Accessed: Jan. 28, 2023. [Online]. Available: http://european-biochar.orgspa
dc.relation.referencesA. Tomczyk, Z. Sokołowska, and P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects,” Rev Environ Sci Biotechnol, vol. 19, no. 1, pp. 191–215, 2020, doi: 10.1007/s11157-020-09523-3.spa
dc.relation.referencesJ. Tang, W. Zhu, R. Kookana, and A. Katayama, “Characteristics of biochar and its application in remediation of contaminated soil,” J Biosci Bioeng, vol. xx, no. xx, pp. 1–7, 2013, doi: 10.1016/j.jbiosc.2013.05.035.spa
dc.relation.referencesZ. Dai et al., “Potential role of biochars in decreasing soil acidification - A critical review,” Science of the Total Environment, vol. 581–582, pp. 601–611, 2017, doi: 10.1016/j.scitotenv.2016.12.169.spa
dc.relation.referencesS. Sohi, E. Lopez-capel, E. Krull, and R. Bol, “Biochar , climate change and soil : A review to guide future research,” no. February, 2009.spa
dc.relation.referencesH. Muhammad et al., “Study of soil microorganisms modified wheat straw and biochar for reducing cadmium leaching potential and bioavailability,” Chemosphere, vol. 273, p. 129644, 2021, doi: 10.1016/j.chemosphere.2021.129644.spa
dc.relation.referencesM. Kamali, L. Appels, E. E. Kwon, T. M. Aminabhavi, and R. Dewil, “Biochar in water and wastewater treatment - a sustainability assessment,” Chemical Engineering Journal, vol. 420, no. P1, p. 129946, 2021, doi: 10.1016/j.cej.2021.129946.spa
dc.relation.referencesL. Li, M. Yang, Q. Lu, W. Zhu, H. Ma, and L. Dai, “Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control,” Bioresour Technol, vol. 294, no. July, p. 122142, 2019, doi: 10.1016/j.biortech.2019.122142.spa
dc.relation.referencesM. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen, “Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater,” Bioresour Technol, vol. 214, pp. 836–851, 2016, doi: 10.1016/j.biortech.2016.05.057.spa
dc.relation.referencesP. A. da S. Veiga et al., “Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment,” J Anal Appl Pyrolysis, vol. 148, no. February, p. 104823, 2020, doi: 10.1016/j.jaap.2020.104823.spa
dc.relation.referencesZ. Z. Chowdhury, S. M. Zain, and R. A. Khan, “Preparation , characterization and adsorption performance of the KOH-activated carbons derived from kenaf fiber for lead ( II ) removal from waste water,” vol. 6, no. 29, pp. 6185–6196, 2011, doi: 10.5897/SRE11.1436.spa
dc.relation.referencesS. Li, X. Yuan, S. Deng, L. Zhao, and K. B. Lee, “A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice,” Renewable and Sustainable Energy Reviews, vol. 152, p. 111708, 2021, doi: https://doi.org/10.1016/j.rser.2021.111708.spa
dc.relation.referencesB. R. Patra, A. Mukherjee, S. Nanda, and A. K. Dalai, “Biochar production, activation and adsorptive applications: a review,” Environ Chem Lett, vol. 19, no. 3, pp. 2237–2259, 2021, doi: 10.1007/s10311-020-01165-9.spa
dc.relation.referencesV. Gasquet, B. Kim, L. Sigot, and H. Benbelkacem, “H2S Adsorption from Biogas with Thermal Treatment Residues,” Waste Biomass Valorization, vol. 11, no. 10, pp. 5363–5373, Oct. 2020, doi: 10.1007/s12649-020-00998-3.spa
dc.relation.referencesX. J. Tong, J. Y. Li, J. H. Yuan, and R. K. Xu, “Adsorption of Cu(II) by biochars generated from three crop straws,” Chemical Engineering Journal, vol. 172, no. 2–3, pp. 828–834, 2011, doi: 10.1016/j.cej.2011.06.069.spa
dc.relation.referencesT. N. T. Izhar et al., “Adsorption of hydrogen sulfide (H2s) from municipal solid waste by using biochars,” Biointerface Res Appl Chem, vol. 12, no. 6, pp. 8057–8069, Dec. 2022, doi: 10.33263/BRIAC126.80578069.spa
dc.relation.referencesA. D. Granados Morales, “Studies of the Torrefaction of Sugarcane Bagasse and Poplar Wood Study of the Torrefaction of Sugarcane Bagasse and Poplar Wood,” PhD Dissertation, Universidad Nacional de Colombia, Medellin, 2017. Accessed: Nov. 29, 2021. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/60241spa
dc.relation.referencesA. Zheng et al., “Effect of torrefaction on structure and fast pyrolysis behavior of corncobs,” Bioresour Technol, vol. 128, pp. 370–377, 2013, doi: 10.1016/j.biortech.2012.10.067.spa
dc.relation.referencesD. Chen et al., “Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products,” Bioresour Technol, vol. 228, pp. 62–68, 2017, doi: 10.1016/j.biortech.2016.12.088.spa
dc.relation.referencesH. Chen, X. Chen, Y. Qin, J. Wei, and H. Liu, “Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity,” Bioresour Technol, vol. 228, pp. 241–249, 2017, doi: 10.1016/j.biortech.2016.12.074.spa
dc.relation.referencesJ. Park, J. Meng, K. H. Lim, O. J. Rojas, and S. Park, “Transformation of lignocellulosic biomass during torrefaction,” J Anal Appl Pyrolysis, vol. 100, pp. 199–206, 2013, doi: 10.1016/j.jaap.2012.12.024.spa
dc.relation.referencesM. R. Pelaez-Samaniego, V. Yadama, M. Garcia-Perez, E. Lowell, and A. G. McDonald, “Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates,” J Anal Appl Pyrolysis, vol. 109, pp. 222–233, 2014, doi: 10.1016/j.jaap.2014.06.008.spa
dc.relation.referencesN. T. Sibiya et al., “Effect of different pre-treatment methods on gasification properties of grass biomass,” Renew Energy, vol. 170, pp. 875–883, 2021, doi: 10.1016/j.renene.2021.01.147.spa
dc.relation.referencesQ. He, Q. Guo, L. Ding, J. Wei, and G. Yu, “CO2 gasification of char from raw and torrefied biomass: Reactivity, kinetics and mechanism analysis,” Bioresour Technol, vol. 293, no. August, 2019, doi: 10.1016/j.biortech.2019.122087.spa
dc.relation.referencesS. Zhang, B. Hu, L. Zhang, and Y. Xiong, “Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon,” J Anal Appl Pyrolysis, vol. 119, pp. 217–223, 2016, doi: 10.1016/j.jaap.2016.03.002.spa
dc.relation.referencesP. Wang, Y. Su, Y. Xie, S. Zhang, and Y. Xiong, “Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 00, no. 00, pp. 1–11, 2018, doi: 10.1080/15567036.2018.1555628.spa
dc.relation.referencesH. Yang, B. Huan, Y. Chen, Y. Gao, J. Li, and H. Chen, “Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism,” Energy and Fuels, vol. 30, no. 8, pp. 6430–6439, 2016, doi: 10.1021/acs.energyfuels.6b00732.spa
dc.relation.referencesZ. Ma et al., “Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures,” J Anal Appl Pyrolysis, vol. 127, pp. 350–359, Sep. 2017, doi: 10.1016/j.jaap.2017.07.015.spa
dc.relation.references. Li, K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia, “Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars,” Ind Crops Prod, vol. 28, no. 2, pp. 190–198, 2008, doi: 10.1016/j.indcrop.2008.02.012.spa
dc.relation.referencesT. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 126–1140, 2016, doi: 10.1016/j.rser.2015.12.185.spa
dc.relation.referencesS. Aninda Dhar, T. Us Sakib, and L. Naher Hilary, “Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process,” Biomass Convers Biorefin, vol. 12, pp. 2631–2647, 2022, doi: 10.1007/s13399-020-01116-y/Published.spa
dc.relation.referencesE. Scapin et al., “Activated carbon from rice husk biochar with high surface area,” Biointerface Res Appl Chem, vol. 11, no. 3, pp. 10265–10277, 2021, doi: 10.33263/BRIAC113.1026510277.spa
dc.relation.referencesM. Gayathiri, T. Pulingam, K. T. Lee, and K. Sudesh, “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism,” Chemosphere, vol. 294. Elsevier Ltd, May 01, 2022. doi: 10.1016/j.chemosphere.2022.133764.spa
dc.relation.referencesC. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, and J. P. Bellat, “Effects of pyrolysis conditions on the porous structure development of date pits activated carbon,” J Anal Appl Pyrolysis, vol. 94, pp. 215–222, 2012, doi: 10.1016/j.jaap.2011.12.014spa
dc.relation.referencesP. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renewable and Sustainable Energy Reviews, vol. 82, no. August 2017, pp. 1393–1414, 2018, doi: 10.1016/j.rser.2017.04.117.spa
dc.relation.referencesJ. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass Bioenergy, vol. 115, no. April, pp. 64–73, 2018, doi: 10.1016/j.biombioe.2018.04.015.spa
dc.relation.referencesX. Zhu, R. Zhang, S. Rong, L. Zhang, and C. Ma, “A systematic preparation mechanism for directional regulation of pore structure in activated carbon including specific surface area and pore hierarchy,” J Anal Appl Pyrolysis, vol. 158, Sep. 2021, doi: 10.1016/j.jaap.2021.105266.spa
dc.relation.referencesQ. Jia and A. C. Lua, “Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption,” J Anal Appl Pyrolysis, vol. 83, no. 2, pp. 175–179, 2008, doi: 10.1016/j.jaap.2008.08.001.spa
dc.relation.referencesS. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J Am Chem Soc, vol. 60, no. 2, pp. 309–319, 1938, doi: 10.1021/ja01269a023.spa
dc.relation.referencesN. Gil-Lalaguna et al., “CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?,” Science of the Total Environment, vol. 846, no. July, 2022, doi: 10.1016/j.scitotenv.2022.157395.spa
dc.relation.referencesQ. Ma, W. Chen, Z. Jin, L. Chen, Q. Zhou, and X. Jiang, “One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S,” Fuel, vol. 289, Apr. 2021, doi: 10.1016/j.fuel.2020.119932.spa
dc.relation.referencesA. Mukherjee, J. A. Okolie, C. Niu, and A. K. Dalai, “Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance,” ACS Omega, vol. 7, no. 1, pp. 638–653, Jan. 2022, doi: 10.1021/acsomega.1c05270.spa
dc.relation.referencesD. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, and Z. Ma, “Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin,” Energy Convers Manag, vol. 169, no. April, pp. 228–237, 2018, doi: 10.1016/j.enconman.2018.05.063.spa
dc.relation.referencesG. Dai, Q. Zou, S. Wang, Y. Zhao, L. Zhu, and Q. Huang, “Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin,” Energy and Fuels, vol. 32, no. 4, pp. 4160–4166, Apr. 2018, doi: 10.1021/acs.energyfuels.7b03038.spa
dc.relation.referencesR. Li et al., “Regulation of the elemental distribution in biomass by the torrefaction pretreatment using different atmospheres and its influence on the subsequent pyrolysis behaviors,” Fuel Processing Technology, vol. 222, Nov. 2021, doi: 10.1016/j.fuproc.2021.106983.spa
dc.relation.referencesZ. Ma, D. Chen, J. Gu, B. Bao, and Q. Zhang, “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods,” Energy Convers Manag, vol. 89, pp. 251–259, 2015, doi: https://doi.org/10.1016/j.enconman.2014.09.074.spa
dc.relation.referencesJ. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, “Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 99–105, 2011, doi: 10.1016/j.jaap.2011.04.010.spa
dc.relation.referencesL. Cao et al., “Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends,” Fuel, vol. 175, pp. 129–136, 2016, doi: 10.1016/j.fuel.2016.01.089.spa
dc.relation.referencesA. Zheng et al., “Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs,” Bioresour Technol, vol. 176, pp. 15–22, 2015, doi: 10.1016/j.biortech.2014.10.157.spa
dc.relation.referencesF. Barontini, E. Biagini, and L. Tognotti, “Influence of Torrefaction on Biomass Devolatilization,” ACS Omega, vol. 6, no. 31, pp. 20264–20278, Aug. 2021, doi: 10.1021/acsomega.1c02141.spa
dc.relation.referencesW. Suliman, J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Perez, “Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties,” Biomass Bioenergy, vol. 84, pp. 37–48, 2016, doi: 10.1016/j.biombioe.2015.11.010.spa
dc.relation.referencesL. Li et al., “Uncovering Structure-Reactivity Relationships in Pyrolysis and Gasification of Biomass with Varying Severity of Torrefaction,” ACS Sustain Chem Eng, vol. 6, no. 5, pp. 6008–6017, 2018, doi: 10.1021/acssuschemeng.7b04649.spa
dc.relation.referencesC. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, and J. P. Bellat, “Effects of pyrolysis conditions on the porous structure development of date pits activated carbon,” J Anal Appl Pyrolysis, vol. 94, pp. 215–222, 2012, doi: 10.1016/j.jaap.2011.12.014.spa
dc.relation.referencesZ. Ma et al., “Evolution of the chemical composition , functional group , pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under di ff erent temperatures,” J Anal Appl Pyrolysis, vol. 127, no. 38, pp. 350–359, 2017, doi: 10.1016/j.jaap.2017.07.015.spa
dc.relation.referencesZ. Ma, Q. Sun, J. Ye, Q. Yao, and C. Zhao, “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS,” J Anal Appl Pyrolysis, vol. 117, pp. 116–124, 2016, doi: https://doi.org/10.1016/j.jaap.2015.12.007.spa
dc.relation.referencesS. Kanwal, N. Chaudhry, S. Munir, and H. Sana, “Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse),” Waste Management, vol. 88, pp. 280–290, 2019, doi: 10.1016/j.wasman.2019.03.053.spa
dc.relation.referencesL. Shang et al., “Changes of chemical and mechanical behavior of torrefied wheat straw,” Biomass Bioenergy, vol. 40, pp. 63–70, 2012, doi: 10.1016/j.biombioe.2012.01.049.spa
dc.relation.referencesG. Dai, Q. Zou, S. Wang, Y. Zhao, L. Zhu, and Q. Huang, “Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin,” Energy and Fuels, vol. 32, no. 4, pp. 4160–4166, Apr. 2018, doi: 10.1021/acs.energyfuels.7b03038.spa
dc.relation.referencesM. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman, “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresour Technol, vol. 131, pp. 374–379, 2013, doi: 10.1016/j.biortech.2012.12.165.spa
dc.relation.referencesM. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” 2015. doi: 10.1515/pac-2014-1117.spa
dc.relation.referencesF. Chejne, J. C. Maya, R. Macías, and A. G. Carlos, “On the evolution of pore microstructure during coal char activation with steam / CO 2 mixtures,” Carbon N Y, vol. 158, 2020, doi: 10.1016/j.carbon.2019.11.088.spa
dc.relation.referencesE. Arenas and F. Chejne, “The effect of the activating agent and temperature on the porosity development of physically activated coal chars,” Carbon N Y, vol. 42, no. 12–13, pp. 2451–2455, 2004, doi: 10.1016/j.carbon.2004.04.041.spa
dc.relation.referencesK. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, and X. Duan, “Preparation of high surface area activated carbon from coconut shells using microwave heating,” Bioresour Technol, vol. 101, no. 15, pp. 6163–6169, 2010, doi: 10.1016/j.biortech.2010.03.001.spa
dc.relation.referencesF. Ahmad, W. M. A. W. Daud, M. A. Ahmad, R. Radzi, and A. A. Azmi, “The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao) - Shell based activated carbon,” J Environ Chem Eng, vol. 1, no. 3, pp. 378–388, Sep. 2013, doi: 10.1016/j.jece.2013.06.004.spa
dc.relation.referencesE. Orrego Restrepo, “Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta,” Universidad Nacional de Colombia, Medellin, 2021. Accessed: Oct. 16, 2022. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/79780spa
dc.relation.referencesN. Adilla Rashidi, A. Bokhari, and S. Yusup, “Evaluation of kinetics and mechanism properties of CO 2 adsorption onto the palm kernel shell activated carbon,” Environmental Science and Pollution Research, vol. 28, pp. 33967–33979, 2021, doi: 10.1007/s11356-020-08823-z/Published.spa
dc.relation.referencesC. Wang et al., “Adsorption of water on carbon materials: The formation of ‘water bridge’ and its effect on water adsorption,” Colloids Surf A Physicochem Eng Asp, vol. 631, Dec. 2021, doi: 10.1016/j.colsurfa.2021.127719.spa
dc.relation.referencesM. C. Castrillon et al., “CO2 and H2S Removal from CH4-Rich Streams by Adsorption on Activated Carbons Modified with K2CO3, NaOH, or Fe2O3,” Energy and Fuels, vol. 30, no. 11, pp. 9596–9604, Nov. 2016, doi: 10.1021/acs.energyfuels.6b01667.spa
dc.relation.referencesI. Majchrzak-Kucęba and M. Sołtysik, “The potential of biocarbon as CO2 adsorbent in VPSA unit,” J Therm Anal Calorim, vol. 142, no. 1, pp. 267–273, Oct. 2020, doi: 10.1007/s10973-020-09858-7.spa
dc.relation.referencesA. C. Fernandes et al., “Storage and delivery of H2S by microporous and mesoporous materials,” Microporous and Mesoporous Materials, vol. 320, Jun. 2021, doi: 10.1016/j.micromeso.2021.111093.spa
dc.relation.referencesF. Cheng and X. Li, “Preparation and application of biochar-based catalysts for biofuel production,” Catalysts, vol. 8, no. 9, pp. 1–35, 2018, doi: 10.3390/catal8090346.spa
dc.relation.referencesR. Ranguin et al., “Biochar and activated carbons preparation from invasive algae Sargassum spp. For Chlordecone availability reduction in contaminated soils,” J Environ Chem Eng, vol. 9, no. 4, p. 105280, 2021, doi: 10.1016/j.jece.2021.105280.spa
dc.relation.referencesS. Zhang, T. Chen, Y. Xiong, and Q. Dong, “Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk,” Energy Convers Manag, vol. 141, pp. 403–409, 2017, doi: 10.1016/j.enconman.2016.10.002.spa
dc.relation.referencesS. Sethupathi et al., “Biochars as potential adsorbers of CH4, CO2 and H2S,” Sustainability (Switzerland), vol. 9, no. 1, 2017, doi: 10.3390/su9010121.spa
dc.relation.referencesA. Sharma, J. Jindal, A. Mittal, K. Kumari, S. Maken, and N. Kumar, “Carbon materials as CO2 adsorbents: a review,” Environ Chem Lett, vol. 19, no. 2, pp. 875–910, 2021, doi: 10.1007/s10311-020-01153-z.spa
dc.relation.referencesJ. Y. Lai, L. H. Ngu, S. S. Hashim, J. J. Chew, and J. Sunarso, “Review of oil palm-derived activated carbon for CO2 capture,” Carbon Letters, vol. 31, no. 2. Springer, pp. 201–252, Apr. 01, 2021. doi: 10.1007/s42823-020-00206-1.spa
dc.relation.referencesB. Aghel, S. Behaein, and F. Alobiad, “CO2 capture from biogas by biomass-based adsorbents: A review,” Fuel, vol. 328. Elsevier Ltd, Nov. 15, 2022. doi: 10.1016/j.fuel.2022.125276.spa
dc.relation.referencesK. S. Ro et al., “Pilot-scale h2s and swine odor removal system using commercially available biochar,” Agronomy, vol. 11, no. 8, Aug. 2021, doi: 10.3390/agronomy11081611.spa
dc.relation.referencesN. Gil-Lalaguna et al., “CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?,” Science of the Total Environment, vol. 846, Nov. 2022, doi: 10.1016/j.scitotenv.2022.157395.spa
dc.relation.referencesM. M. Dubinin, “FUNDAMENTALS OF THE THEORY OF ADSORPTION IN MICROPORES OF CARBON ADSORBENTS: CHARACTERISTICS OF THEIR ADSORPTION PROPERTIES AND MICROPOROUS STRUCTURES,” 1989.spa
dc.relation.referencesN. S. Nasri, U. D. Hamza, S. N. Ismail, M. M. Ahmed, and R. Mohsin, “Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture,” in Journal of Cleaner Production, Elsevier Ltd, May 2014, pp. 148–157. doi: 10.1016/j.jclepro.2013.11.053.spa
dc.relation.referencesM. S. Khosrowshahi et al., “The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations,” Sci Rep, vol. 12, no. 1, pp. 1–19, Dec. 2022, doi: 10.1038/s41598-022-12596-5.spa
dc.relation.referencesC. Goel, S. Mohan, and P. Dinesha, “CO2 capture by adsorption on biomass-derived activated char: A review,” Science of the Total Environment, vol. 798. Elsevier B.V., Dec. 01, 2021. doi: 10.1016/j.scitotenv.2021.149296.spa
dc.relation.referencesJ. Chen et al., “Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons,” ACS Sustain Chem Eng, vol. 4, no. 3, pp. 1439–1445, Mar. 2016, doi: 10.1021/acssuschemeng.5b01425.spa
dc.relation.referencesS. Ding and Y. Liu, “Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars,” Fuel, vol. 260, Jan. 2020, doi: 10.1016/j.fuel.2019.116382.spa
dc.relation.referencesF. Sun et al., “Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S,” ACS Catal, vol. 3, no. 5, pp. 862–870, May 2013, doi: 10.1021/cs300791j.spa
dc.relation.referencesA. Bagreev and T. J. Bandosz, “On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents,” Ind Eng Chem Res, vol. 44, no. 3, pp. 530–538, Feb. 2005, doi: 10.1021/ie049277o.spa
dc.relation.referencesF. Sun, J. Gao, X. Liu, Y. Yang, and S. Wu, “Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption,” Chemical Engineering Journal, vol. 290, pp. 116–124, Apr. 2016, doi: 10.1016/j.cej.2015.12.044.spa
dc.relation.referencesN. Marquez Ruiz, “Evaluación del efecto de la aplicación de biochar en suelos agrícolas basado en la migración de nutrientes,” Master Thesis, Universidad Nacional de Colombia, Medellin, 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembCarbón activadospa
dc.subject.lembCarbon, activatedeng
dc.subject.lembPower resourceseng
dc.subject.lembRecursos energéticosspa
dc.subject.proposalTorrefacciónspa
dc.subject.proposalPirolisis lentaspa
dc.subject.proposalCarbon activadospa
dc.subject.proposalBiocharspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalDioxido de carbonospa
dc.subject.proposalSulfuro de Hidrogenospa
dc.subject.proposalArea Superficialspa
dc.subject.proposalBiomasaspa
dc.subject.proposalCuesco de palmaspa
dc.subject.proposalTorrefactioneng
dc.subject.proposalSlow Pyrolysiseng
dc.subject.proposalActivated Carboneng
dc.subject.proposalBiochareng
dc.subject.proposalAdsorptioneng
dc.subject.proposalCarbon dioxideeng
dc.subject.proposalHydrogen sulfureng
dc.subject.proposalSurface areaeng
dc.subject.proposalBiomasseng
dc.subject.proposalPalm kernel shelleng
dc.titleEvaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósicaspa
dc.title.translatedOn the evaluation of the effect of torrefaction and slow pyrolysis on the porosity development of special activated carbons obtained from lignocellulosic biomasseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstrategia de Transformación del Sector Energético Colombiano en el Horizonte 2030spa
oaire.fundernameMincienciasspa
oaire.fundernameUniversidad Nacional de Colombia - Sede Medellínspa
oaire.fundernameUniversidad de La Guajiraspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1118859846.2023.pdf
Tamaño:
5.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: