Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical

dc.contributor.advisorGodoy Silva, Rubén Darío
dc.contributor.advisorRamos Murillo, Ana Isabel
dc.contributor.authorSanchez Castillo, Leslie Vanessa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2023-02-06T20:59:28Z
dc.date.available2023-02-06T20:59:28Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractUna célula estromal mesenquimal humana (hCEM) es una célula madre adulta caracterizada por su capacidad de autorrenovación y diferenciación. También presentan varias ventajas tales como propiedades inmunomoduladoras que las hacen promisoria fuente en medicina regenerativa. Por lo tanto, el uso de estas células como portadoras de genes ha sido uno de los principales focos de varios estudios. En los últimos años, los vectores no virales todavía presentan algunas limitaciones, siendo la m[as importante las bajas eficiencias de transfección en las CEM. Se ha teorizado que esta baja eficiencia es causada por múltiples factores relacionados con las propiedades de las nanopartículas, incluyendo el tamaño, la carga, la degradación, el escape endosomal y el transporte del cergo al núcleo. Además, se ha demostrado que el tipo de célula y la fase del ciclo celular son una incidencia importante en la entrega de genes. En resumen, la transfección depende directamente de la naturaleza química del material (vector) que cubre el gen y su interacción no específica con todas las vías dentro de la célula. Por lo tanto, en este estudio probamos la hipótesis de que la eficiencia de la transfección génica está limitada principalmente por una barrera física simple: baja concentración de genes (ADN) en la superficie de la célula. Empleamos la centrifugación durante el proceso de transfección como un medio para aumentar más la disponibilidad de ADN en las proximidades de la membrana celular, generando así mayores eficiencias de transfección con el vector dorado no viral: PEI 25kDa. Además, una comprensión más profunda del mecanismo de transfección con este tipo de vectores permitió la estandarización de un nuevo y sencillo protocolo de transfección en el que se evaluaron la relación de peso, diferentes concentraciones de complejo, pH y número de paso para obtener tasas de transfección superiores al 25-30% con un método no viral. Por otro lado, nuestros resultados muestran que el efecto combinado de la centrifugación y la transfección tiene un impacto importante en la actividad metabólica de las MSC y la proliferación celular. (Texto tomado de la fuente)spa
dc.description.abstractA human mesenchymal stromal cell (hMSC) is an adult stem cell characterized by its self-renoval and differentiation capacity. They also present several advantages such immunomodulatory properties which make them promissory for regenerative medicine. Thus, using these cells as gene carriers has been one of the main focuses of several studies. In recent years, non-viral carriers still exhibit some limitations, namely low transfection efficiencies in MSCs. It has been theorized that this low efficiency is caused by multiple factors regarding nanoparticle properties, including size, charge, degradation, endosomal escape, and transport to the nucleus. Moreover, the cell type and the phase cell cycle have been proven to be an important incidence in the gene delivery. In brief, transfection depends directly on the chemical nature of the material (vector) which covers the gene and its non-specific interaction with all the pathways within the cell. Therefore, in this study we tested the hypothesis that the efficiency of gene transfection is mainly limited by a simple physical barrier: low concentration of gene (DNA) on the surface of the cell. We employed centrifugation during the transfection process as a means to increase more the availability of DNA in the vicinity of the cell membrane, thus generating higher transfection efficiencies with non-viral golden vector: PEI 25kDa. Additionally, a deeper understanding of the transfection mechanism with these types of vectors enabled the standardization of a new and simple transfection protocol in which the weight ratio, different concentrations of complex, pH and passage number were evaluated to obtain transfection rates above 25-30% with a non-viral method. On the other hand, our results show that the combined effect of centrifugation and transfection has an important impact in MSCs metabolic activity and cell proliferation.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaIngeniería de Tejidosspa
dc.format.extentxv, 69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83338
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesE. W. Mien-Chie Hung, Leaf Huang, Nonviral Vectors for Gene Therapy, vol. 88. 2014.spa
dc.relation.referencesY. Xiang, N. N. L. Oo, J. P. Lee, Z. Li, and X. J. Loh, “Recent development of synthetic nonviral systems for sustained gene delivery,” Drug Discov. Today, vol. 22, no. 9, pp. 1318–1335, 2017.spa
dc.relation.referencesT. M. Martin and A. K. Pannier, “Chapter 4 Molecular Mechanisms of Nonviral Gene Delivery,” pp. 1–7.spa
dc.relation.referencesT. Gonzalez-Fernandez et al., “Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector,” Acta Biomater., vol. 55, pp. 226–238, 2017.spa
dc.relation.referencesA. Vats, R. C. Bielby, N. S. Tolley, R. Nerem, and J. M. Polak, “Stem cells,” Lancet, vol. 366, no. 9485. pp. 592–602, 2005.spa
dc.relation.referencesC. S. Potten, R. B. Clarke, and A. G. Renehan, Tissue Stem Cells, vol. 1, no. 3560. 2006.spa
dc.relation.referencesT. H. E. Basics and O. N. Stem, Stem Cells and the Future fo Regenerative Medicine. 2003.spa
dc.relation.referencesJ. A. T. John R. Masters, Bernhard O. Palsson, Embryonic Stem Cells, vol. 37, no. 1. 2007.spa
dc.relation.referencesK. Turksen, Mesenchymal Stromal Cells. Human Press- Springer Science + Business Media, 2013.spa
dc.relation.referencesG. Line, Stem Cells Handbook. 2001.spa
dc.relation.referencesJ. Itskovitz-Eldor et al., “Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers.,” Mol. Med., vol. 6, no. 2, pp. 88–95, 2000.spa
dc.relation.referencesM. Amit et al., “Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture,” Dev. Biol., vol. 227, no. 2, pp. 271–278, 2000.spa
dc.relation.referencesB. C. Heng, T. Cao, and E. H. Lee, “Directing Stem Cell Differentiation into the Chondrogenic Lineage In Vitro,” Stem Cells, vol. 22, no. 7, pp. 1152–1167, 2004.spa
dc.relation.referencesB. Mollon, R. Kandel, J. Chahal, and J. Theodoropoulos, “The clinical status of cartilage tissue regeneration in humans,” Osteoarthritis and Cartilage, vol. 21, no. 12. pp. 1824–1833, 2013.spa
dc.relation.referencesH. Zreiqat, C. Dunstan, and V. Rosen, A Tissue Regeneration Approach to Bone and Cartilage Repair. 2015.spa
dc.relation.referencesR. S. Tuan, G. Boland, and R. Tuli, “Adult mesenchymal stem cells and cell-based tissue engineering.,” Arthritis Res. Ther., vol. 5, no. 1, pp. 32–45, 2003spa
dc.relation.referencesR. A. Somoza, J. F. Welter, D. Correa, and A. I. Caplan, “Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations,” Tissue Eng. Part B Rev., vol. 20, no. 6, pp. 596–608, 2014.spa
dc.relation.referencesW. K. Aicher, H. Bühring, M. Hart, B. Rolauffs, A. Badke, and G. Klein, “Regeneration of cartilage and bone by de fi ned subsets of mesenchymal stromal cells — Potential and pitfalls ☆,” Adv. Drug Deliv. Rev., vol. 63, no. 4–5, pp. 342–351, 2011.spa
dc.relation.referencesS. G. Almalki and D. K. Agrawal, “Key transcription factors in the differentiation of mesenchymal stem cells,” Differentiation, vol. 92, no. 1–2. Elsevier, pp. 41–51, 2016.spa
dc.relation.referencesJ. S. Park, S. Suryaprakash, Y. H. Lao, and K. W. Leong, “Engineering mesenchymal stem cells for regenerative medicine and drug delivery,” Methods, vol. 84. Elsevier Inc., pp. 3–16, 2015.spa
dc.relation.referencesT. Nagamura-Inoue, “Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility,” World J. Stem Cells, vol. 6, no. 2, p. 195, 2014.spa
dc.relation.referencesS. Raisin, E. Belamie, and M. Morille, “Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage,” Biomaterials, vol. 104. Elsevier Ltd, pp. 223–237, 2016.spa
dc.relation.referencesB. Weyand, Mesenchymal Stem Cells - Basics and Clinical Application II, vol. 130. 2013.spa
dc.relation.referencesS. Viswanathan et al., “Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature,” Cytotherapy, vol. 21, no. 10, pp. 1019–1024, 2019.spa
dc.relation.referencesM. Dominici et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.spa
dc.relation.referencesC. J. Malemud and E. Alsberg, Mesenchymal Stem Cells and Immunomodulation. Cleveland, OH, USA: Human Press- Springer Nature, 2016.spa
dc.relation.referencesA. Hassouna, M. M. Abd Elgwad, and H. Fahmy, “Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications,” Stromal Cells - Struct. Funct. Ther. Implic., 2019.spa
dc.relation.referencesN. F. Symposium, Tissue Engineering of Cartilage and Bone, vol. 249. 2003.spa
dc.relation.referencesP. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008spa
dc.relation.referencesN. Watson et al., “Discarded Wharton jelly of the human umbilical cord: A viable source for mesenchymal stromal cells,” Cytotherapy, vol. 17, no. 1. Elsevier Inc, pp. 18–24, 2015.spa
dc.relation.referencesI. Kalaszczynska and K. Ferdyn, “Wharton’s jelly derived mesenchymal stem cells: Future of regenerative medicine? Recent findings and clinical significance,” BioMed Research International, vol. 2015. pp. 1–11, 2015.spa
dc.relation.referencesA. K. Batsali, M.-C. Kastrinaki, H. A. Papadaki, and C. Pontikoglou, “Mesenchymal Stem Cells Derived from Wharton's Jelly of the Umbilical Cord: Biological Properties and Emerging Clinical Applications,” Curr. Stem Cell Res. Ther., vol. 8, no. 2, pp. 144–155, 2013.spa
dc.relation.referencesD. Ding, Y. Chang, W. Shyu, and S. Lin, “Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy,” Cell Transplant., vol. 24, no. 3, pp. 339–347, 2015.spa
dc.relation.referencesA. I. Ramos-Murillo et al., “Efficient non-viral gene modification of mesenchymal stromal cells from umbilical cord wharton’s jelly with polyethylenimine,” Pharmaceutics, vol. 12, no. 9, pp. 1–19, 2020.spa
dc.relation.referencesA. Musiał-Wysocka, M. Kot, M. Sułkowski, B. Badyra, and M. Majka, “Molecular and functional verification of wharton’s jelly mesenchymal stem cells (WJ-MSCs) pluripotency,” Int. J. Mol. Sci., vol. 20, no. 8, pp. 1–14, 2019.spa
dc.relation.referencesJ. M. Hare et al., “Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial,” JAMA - J. Am. Med. Assoc., vol. 308, no. 22, pp. 2369–2379, 2012.spa
dc.relation.referencesK. Kim, W. C. W. Chen, Y. Heo, and Y. Wang, “Polycations and their biomedical applications,” Prog. Polym. Sci., vol. 60, pp. 18–50, 2016.spa
dc.relation.referencesC. Zhang, P. Yadava, and J. Hughes, “Polyethylenimine strategies for plasmid delivery to brain-derived cells,” Methods, vol. 33, no. 2, pp. 144–150, 2004.spa
dc.relation.referencesZ. Zhou et al., “Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration,” Adv. Drug Deliv. Rev., vol. 115, pp. 115–154, 2017.spa
dc.relation.referencesA. P. Pandey and K. K. Sawant, “Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery,” Mater. Sci. Eng. C, vol. 68, pp. 904–918, 2016.spa
dc.relation.referencesU. Lungwitz, M. Breunig, T. Blunk, and A. Göpferich, “Polyethylenimine-based non-viral gene delivery systems,” Eur. J. Pharm. Biopharm., vol. 60, no. 2, pp. 247–266, 2005.spa
dc.relation.referencesM. Morille, C. Passirani, A. Vonarbourg, A. Clavreul, and J. P. Benoit, “Progress in developing cationic vectors for non-viral systemic gene therapy against cancer,” Biomaterials, vol. 29, no. 24–25, pp. 3477–3496, 2008.spa
dc.relation.referencesA. A. Eltoukhy, M. C. V, J. Jn, R. Langer, and D. H. Koch, “Development of Polymer and Lipid Materials for Enhanced Delivery of Nucleic Acids and Proteins,” 2013.spa
dc.relation.referencesR. Narain, Polymers and Nanomaterials for Gene Therapy. 2016.spa
dc.relation.referencesY. Ju, H. Guo, M. Edman, and S. F. Hamm-Alvarez, “Application of advances in endocytosis and membrane trafficking to drug delivery,” Adv. Drug Deliv. Rev., vol. 157, pp. 118–141, 2020.spa
dc.relation.referencesJ. J. Rennick, A. P. R. Johnston, and R. G. Parton, “Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics,” Nat. Nanotechnol., vol. 16, no. 3, pp. 266–276, 2021.spa
dc.relation.referencesK. Takei and V. Haucke, “Clathrin-mediated endocytosis: Membrane factors pull the trigger,” Trends Cell Biol., vol. 11, no. 9, pp. 385–391, 2001.spa
dc.relation.referencesS. Xiang et al., “Uptake mechanisms of non-viral gene delivery,” J. Control. Release, vol. 158, no. 3, pp. 371–378, 2012.spa
dc.relation.referencesM. Thomas and A. M. Klibanov, “Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells,” Proc. Natl. Acad. Sci., vol. 99, no. 23, pp. 14640–14645, 2002.spa
dc.relation.referencesH. Hillaireau and P. Couvreur, “Nanocarriers’ entry into the cell: Relevance to drug delivery,” Cell. Mol. Life Sci., vol. 66, no. 17, pp. 2873–2896, 2009.spa
dc.relation.referencesD. Pezzoli, E. Giupponi, D. Mantovani, and G. Candiani, “Size matters for in vitro gene delivery: Investigating the relationships among complexation protocol, transfection medium, size and sedimentation,” Sci. Rep., vol. 7, no. March, pp. 1–11, 2017.spa
dc.relation.referencesM. A. Mintzer and E. E. Simanek, “Nonviral Vectors for Gene Delivery,” no. 979, pp. 259–302, 2009.spa
dc.relation.referencesW. F. Lai and W. T. Wong, “Design of Polymeric Gene Carriers for Effective Intracellular Delivery,” Trends Biotechnol., vol. 36, no. 7, pp. 713–728, 2018.spa
dc.relation.referencesS. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik, and E. Wagner, “Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus,” Gene Ther., vol. 7, no. 5, pp. 401–407, 2000.spa
dc.relation.referencesK. Kunath, A. Von Harpe, D. Fischer, and H. Petersen, “L ow-molecular-weight polyethylenimine as a non-viral vector for DNA delivery : comparison of physicochemical properties , transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine,” vol. 89, pp. 113–125, 2003.spa
dc.relation.referencesC. Y. Ming Hsu and H. Uluda Ğ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., vol. 7, no. 5, pp. 935–945, 2012spa
dc.relation.referencesG. Massimiliano, Mesenchymal Stem Cells Methods and Protocols, Second. UK: Human Press- Springer Science + Business Media, 2016.spa
dc.relation.referencesR. Namgung, J. Kim, K. Singha, C. H. Kim, and W. J. Kim, “Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: Study of physicochemical properties and in vitro gene transfection,” Mol. Pharm., vol. 6, no. 6, pp. 1826–1835, 2009.spa
dc.relation.referencesD. Luo and W. M. Saltzman, “Enhancement of transfection by physical concentration of DNA at the cell surface,” Nat. Biotechnol., vol. 18, no. 8, pp. 893–895, 2000.spa
dc.relation.referencesC. Y. Ming Hsu and H. Uluda Ğ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., vol. 7, no. 5, pp. 935–945, 2012.spa
dc.relation.referencesW. Wang et al., “Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients,” J. Cell. Mol. Med., vol. 15, no. 9, pp. 1989–1998, 2011.spa
dc.relation.referencesA. Kichler, C. Leborgne, E. Coeytaux, and O. Danos, “Polyethylenimine-mediated gene delivery: A mechanistic study,” J. Gene Med., vol. 3, no. 2, pp. 135–144, 2001spa
dc.relation.referencesO. Boussif et al., “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine,” Proc. Natl. Acad. Sci. U. S. A., vol. 92, no. 16, pp. 7297–7301, 1995.spa
dc.relation.referencesJ. H. Lai, E. & van Zanten, “Monitoring DNA/Poly-L-Lysine Polyplex Formation with Time-Resolved Multiangle Laser Light Scattering.” pp. 864–873, 2001.spa
dc.relation.referencesD. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, “Design and development of polymers for gene delivery,” Nat. Rev. Drug Discov., vol. 4, no. 7, pp. 581–593, 2005.spa
dc.relation.referencesI. I. Katkov and P. Mazur, “Factors affecting yield and survival of cells when suspensions are subjected to centrifugation: Influence of centrifugal acceleration, time of centrifugation, and length of the suspension column in quasi-homogeneous centrifugal fields,” Cell Biochem. Biophys., vol. 31, no. 3, pp. 231–245, 1999.spa
dc.relation.referencesB. Shi et al., “Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems,” Biomacromolecules, vol. 18, no. 8, pp. 2231–2246, 2017.spa
dc.relation.referencesU. Lächelt and E. Wagner, “Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond),” Chem. Rev., vol. 115, no. 19, pp. 11043–11078, 2015.spa
dc.relation.referencesT. F. Martens, K. Remaut, J. Demeester, S. C. De Smedt, and K. Braeckmans, “Intracellular delivery of nanomaterials: How to catch endosomal escape in the act,” Nano Today, vol. 9, no. 3, pp. 344–364, 2014.spa
dc.relation.referencesW. J. King, N. A. Kouris, S. Choi, B. M. Ogle, and W. L. Murphy, “Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications,” Cell Tissue Res., vol. 347, no. 3, pp. 689–699, 2012.spa
dc.relation.referencesS. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk, “A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy,” Mol. Ther., vol. 11, no. 6, pp. 990–995, 2005spa
dc.relation.referencesC. L. Gebhart and A. V. Kabanov, “Evaluation of polyplexes as gene transfer agents,” J. Control. Release, vol. 73, no. 2–3, pp. 401–416, 2001spa
dc.relation.referencesA. R. Klemm, D. Young, and J. B. Lloyd, “Effects of polyethyleneimine on endocytosis and lysosome stability,” Biochem. Pharmacol., vol. 56, no. 1, pp. 41–46, 1998.spa
dc.relation.referencesM. Hanzlíková et al., “Mechanisms of polyethylenimine-mediated DNA delivery: Free carrier helps to overcome the barrier of cell-surface glycosaminoglycans,” J. Gene Med., vol. 13, no. 7–8, pp. 402–409, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.decsRegenerative Medicinespa
dc.subject.decsMétodosspa
dc.subject.decsMethodseng
dc.subject.lembMedicina regenerativaspa
dc.subject.proposalCélula estromal mesenquimalspa
dc.subject.proposalTransfecciónspa
dc.subject.proposalTerapía génicaspa
dc.subject.proposalCentrifugaciónspa
dc.subject.proposalMesenchymal Stromal Celleng
dc.subject.proposalGene deliveryeng
dc.subject.proposalTransfectioneng
dc.subject.proposalCentrifugationeng
dc.titleEvaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilicalspa
dc.title.translatedThe effect of centrifugal force on the mechanism of Wharton’s Jelly Mesenchymal Stem Cells transfectioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015439363.2022.pdf
Tamaño:
3.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: