Modelo de riesgo de fuego para la ecorregión de los llanos colombo-venezolanos

dc.contributor.advisorArmenteras Pascual, Dolorsspa
dc.contributor.authorBarreto Rivera, Joan Sebastianspa
dc.contributor.researchgroupEcología del paisaje y modelación de ecosistemasspa
dc.date.accessioned2021-02-08T17:06:50Zspa
dc.date.available2021-02-08T17:06:50Zspa
dc.date.issued2020-10-29spa
dc.description.abstractSi bien el fuego ha sido parte de la historia natural de los ecosistemas, aquellos que se salen de control suelen representar importantes amenazas para la seguridad pública, la infraestructura, la biodiversidad y los recursos forestales (Martell, 2007), considerándose uno de los factores de disturbio más importante, especialmente en zonas tropicales y subtropicales (Van Der Werf et al., 2010). La ecorregión de los llanos colombo-venezolanos se caracteriza por una constante presencia de fuegos (Chacón et al., 2015) causados principalmente por acción humana, derivados de las prácticas de manejo y preparación del suelo que incluyen la tala y quema (Armenteras et al., 2005; Leal et al., 2019). Este trabajo evaluó el riesgo de fuego en la región de los llanos colombo-venezolanos, a partir de la probabilidad de ocurrencia (peligro) y la vulnerabilidad a nivel ecológico. Con el fin de modelar la probabilidad de ocurrencia se implementó el modelo de aprendizaje automático Random Forest, alimentado con variables asociadas a topografía, clima, vegetación y presencia humana. Para evaluar la vulnerabilidad ecológica se empleó información referente a biodiversidad, conservación y fragmentación en el área de estudio. Los resultados del modelo de probabilidad de ocurrencia indican que la variable más importante es el índice NDWI (Normalized Difference Water Index: índice diferencial de agua normalizado), índice que se ha demostrado ofrece mejores resultados para estimar el contenido de humedad del combustible vivo y predecir el riesgo de ocurrencia de fuegos en el caso de ecosistemas de sabana (Cheng et al., 2006; Verbesselt et al., 2006, 2007). Finalmente ambos subíndices se integraron en un índice de riesgo total con el fin de identificar aquellas áreas dónde es más probable la ocurrencia de este tipo de eventos y que derive en importantes afectaciones ecológicas. Los resultados muestran que la zonificación de probabilidad de ocurrencia alta y muy alta están representadas en 544498 y 499740 ha respectivamente, mientras que la zonificación de vulnerabilidad alta y muy alta tiene una extensión menor a 64500 y 2298 ha. Se encontró que, en algunas figuras de manejo especial, como en el caso del Parque Nacional El Tuparro (Colombia), el Distrito de Manejo integrado Cinaruco (Colombia) y el Parque Nacional Cinaruco-Capanaparo (Venezuela) predomina la zonificación de probabilidad de ocurrencia muy alta, que para estás áreas representan el 47.7%, el 56.9% y el 37.8% del área total de cada parque. Evaluar el riesgo de fuego es un proceso clave dentro del contexto del control y gestión de este tipo eventos y representa una importante herramienta para la planeación a escala regional. Esta evaluación, permite entre otras cosas evaluar la idoneidad de las medidas de protección del paisaje y de los diferentes tipos de coberturas (Costa et al., 2011), apoyar en la planificación y protección de áreas forestales, tomar medidas de vigilancia de zonas de alto riesgo, reorganizar prácticas de tala y quema y asignar estratégicamente los recursos para la atención de este tipo de desastres (You et al., 2017) (Texto tomado de la fuente).spa
dc.description.abstractWhile fire has been part of the natural history of ecosystems, those that go out of control often represent significant threats to public safety, infrastructure, biodiversity and forest resources (Martell, 2007), and are considered one of the most important disturbance factors, especially in tropical and subtropical areas (G. R. Van Der Werf et al., 2010). The ecoregion of the Colombian-Venezuelan plains is characterized by a constant presence of fires (Chacón et al., 2015) caused mainly by human action, derived from land management and preparation practices that include slashing and burning (Armenteras et al., 2005; Leal et al., 2019). This work evaluated fire risk in the region of the colombian-v.00enezuelan plains, based on the probability of occurrence (hazard) and vulnerability at the ecological level. In order to model the probability of occurrence, the automatic learning model Random Forest was implemented, fed with variables associated with topography, climate, vegetation and human presence. To evaluate ecological vulnerability, information regarding biodiversity, conservation and fragmentation in the study area was used. The results of the probability of occurrence model indicate that the most important variable is the NDWI (Normalized Difference Water Index), an index that has been shown to offer better results for estimating the moisture content of living fuel and predicting the risk of fire occurrence in the case of savannah ecosystems (Cheng et al., 2006; Verbesselt et al., 2006, 2007). Finally, both subindices were integrated into a total risk index in order to identify those areas where the occurrence of this type of event is most likely to result in significant ecological damage. The results show that the high and very high probability of occurrence zoning is represented by 544,498 and 499,740 ha respectively, while the high and very high vulnerability zoning is less than 64,500 and 2,298 ha. It was found that in some special management figures, such as El Tuparro National Park (Colombia), Cinaruco Integrated Management District (Colombia) and Cinaruco-Capanaparo National Park (Venezuela), very high probability zoning predominates, which for these areas represents 47.7%, 56.9% and 37.8% of the total area of each park. Evaluating fire risk is a key process within the context of controlling and managing this type of event and represents an important tool for planning on a regional scale. This evaluation allows, among other things, to assess the suitability of landscape protection measures and different types of coverage (Costa et al., 2011), to support planning and protection of forest areas, to take surveillance measures in high-risk areas, to reorganize slash-and-burn practices and to strategically allocate resources to deal with this type of disaster (You et al., 2017).eng
dc.description.additionalLínea de Investigación: Ecología.spa
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso electrónico (144 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBarreto Rivera, J. S. (2020). Modelo de riesgo de fuego para la ecorregión de los llanos colombo-venezolanos [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79128
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAdab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards, 65(3), 1723–1743. https://doi.org/10.1007/s11069-012-0450-8spa
dc.relation.referencesAdab, H., Kanniah, K. D., Solaimani, K., & Sallehuddin, R. (2015). Modelling static fire hazard in a semi-arid region using frequency analysis. International Journal of Wildland Fire, 24(6), 763–777. https://doi.org/10.1071/WF13113spa
dc.relation.referencesAkagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011spa
dc.relation.referencesAkinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open Journal of Statistics, 05(07), 754–767. https://doi.org/10.4236/ojs.2015.57075spa
dc.relation.referencesAldersley, A., Murray, S. J., & Cornell, S. (2011). Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2011.05.032spa
dc.relation.referencesAlmendros, G., Kgathi, D., Sekhwela, M., Zancada, M. C., Tinoco, P., & Pardo, M. T. (2003). Biogeochemical assessment of resilient humus formations from virgin and cultivated northern Botswana soils. Journal of Agricultural and Food Chemistry, 51(15), 4321–4330. https://doi.org/10.1021/jf034006uspa
dc.relation.referencesAlvarado, S. T., Fornazari, T., Cóstola, A., Morellato, L. P., & Silva, T. S. F. (2017). Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.02.037spa
dc.relation.referencesAndreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. https://doi.org/10.1029/2000GB001382spa
dc.relation.referencesArchibald, S., Roy, D. P., van Wilgen, B. W., & Scholes, R. J. (2009). What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology. https://doi.org/10.1111/j.1365-2486.2008.01754.xspa
dc.relation.referencesArmenteras, D., Barreto, J., Tabor, K., Molowny, R., & Retana, J. (2017). Changing patterns of fire occurrence in proximity to forest edges. Biogeosciences Discuss. Biogeosciences Discuss, 5194(10), 2016–2532. https://doi.org/10.5194/bg-2016-532spa
dc.relation.referencesArmenteras, D., Bernal, F., González, F., Morales, M., Pabón, J., Páramo, G., González Alonso, F., Morales, M., Pabón Caicedo, J., Páramo Rocha, G., & Parra Lara, Á. (2011). Incendios de la cobertura vegetal en Colombia (Á. Parra (ed.); Primera Ed). Universidad Autónoma de Occidente.spa
dc.relation.referencesArmenteras, D., Gibbes, C., Vivacqua, C., Espinosa, J., Duleba, W., Goncalves, F., & Castro, C. (2016). Interactions between climate, land use and vegetation fire occurrences in El Salvador. Atmosphere, 7(2), 0–14. https://doi.org/10.3390/atmos7020026spa
dc.relation.referencesArmenteras, D., Gonzalez, F., & Franco, C. (2009). Distribución geográfica y temporal de incendios en Colombia utilizando datos de anomalías térmicas. Caldasia, 31(2), 303–318.spa
dc.relation.referencesArmenteras, D., González, T., & Retana, J. (2013). Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biological Conservation. https://doi.org/10.1016/j.biocon.2012.10.026spa
dc.relation.referencesArmenteras, D., Retana, J., Molowny, R., Roman, R., Gonzalez, F., & Morales, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002spa
dc.relation.referencesArmenteras, D., Romero, M., & Galindo, G. (2005). Vegetation fire in the savannas of The Llanos Orientales of Colombia. World Resource Review, 17(4), 531–543.spa
dc.relation.referencesArpaci, A., Malowerschnig, B., Sass, O., & Vacik, H. (2014). Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53, 258–270. https://doi.org/10.1016/j.apgeog.2014.05.015spa
dc.relation.referencesAvila, D., Pompa, M., Antonio, X., Rodriguez, D. A., Vargas, E., & Santillan, J. (2010). Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chinese Geographical Science, 20(6), 491–497. https://doi.org/10.1007/s11769-010-0437-xspa
dc.relation.referencesAyanz, J. S., Gitas, I., Camia, A., & Oliveira, S. (2011). Advances in remote sensing and GIS applications in forest fire management: From local to global assessments. 8th International EARSeL FF-SIG Workshop, 20-21 October 2011, 288. https://www.researchgate.net/publication/233867629_Integration_of_image_processing_methods_for_fuel_mapping/file/79e4150c712bc778d0.pdf%5Cnpapers3://publication/uuid/09A9E0D1-A29E-402B-9AB1-B7B49ECEC951spa
dc.relation.referencesAybar, C., Wu, Q., Bautista, L., Yali, R., & Barja, A. (2020). An R package for interacting with Google Earth Engine. Journal of Open Source Software, 2020.spa
dc.relation.referencesBachmann, A., & Allgöwer, B. (2001). A consistent wildland fire risk terminology is needed! Fire Management Today, 61(28–33).spa
dc.relation.referencesBannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298spa
dc.relation.referencesBar Massada, A., Syphard, A. D., Stewart, S. I., & Radeloff, V. C. (2013). Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22(2), 174. https://doi.org/10.1071/WF11178spa
dc.relation.referencesBarreto, J., Gonzalez, T., & Armenteras, D. (2017). Dinámica espacio temporal de ocurrencia de incendios en zonas con diferentes tipos de manejo en el noroeste de la amazonia: ¿barrera efectiva? Revista Facultad de Ciencias Básicas, 13(1), 19–25. https://doi.org/10.18359/rfcb.2009spa
dc.relation.referencesBeall, F. C., & Eickner, H. W. (1970). Thermal degradation of wood components: A review of the literature. U.S.D.a. Forest Service Research Paper, May, 26.spa
dc.relation.referencesBevilacqua, M., Cárdenas, L., & Medina, D. (2006). Las Áreas Protegidas en Venezuela: Diagnóstico de su condición 1993/2004. ACOANA/UICN/FEP/CIVenezuela.spa
dc.relation.referencesBhabatosh, C. (2011). Digital Image Processing and Analysis. In P. L. P. Ltd (Ed.), Current Protocols in Essential Laboratory Techniques. PHI Learning Pvt. Ltd. https://doi.org/10.1002/9780470089941.eta03cs9spa
dc.relation.referencesBidwell, T. G., Masters, R. E., Weir, J. R., & Engle, D. M. (n.d.). Fire Effects in Native Plant Communities.spa
dc.relation.referencesBigler, C., Kulakowski, D., & Veblen, T. T. (2005). Multiple disturbance interactions and drought influence fire severity in rocky mountain subalpine forests. Ecology, 86(11), 3018–3029. https://doi.org/10.1890/05-0011spa
dc.relation.referencesBilbao, B. A., Leal, A. V, & Méndez, C. L. (2010). Indigenous Use of Fire and Forest Loss in Canaima National Park, Venezuela. Assessment of and Tools for Alternative Strategies of Fire Management in Pemón Indigenous Lands. Human Ecology, 38(5), 663–673. https://doi.org/10.1007/s10745-010-9344-0spa
dc.relation.referencesBisbal, F. (1988). Impacto humano sobre los habitat de Venezuela. In Interciencia (Vol. 13).spa
dc.relation.referencesBisquert, M., Caselles, E., Snchez, J. M., & Caselles, V. (2012). Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. International Journal of Wildland Fire, 21(8), 1025–1029. https://doi.org/10.1071/WF11105spa
dc.relation.referencesBisquert, M., Sánchez, J. M., & Caselles, V. (2011). Fire danger estimation from MODIS Enhanced Vegetation Index data: Application to Galicia region (north-west Spain). International Journal of Wildland Fire, 20(3), 465–473. https://doi.org/10.1071/WF10002spa
dc.relation.referencesBolstad, P. V., Swank, W., & Vose, J. (1998). Predicting Southern Appalachian overstory vegetation with digital terrain data. Landscape Ecology, 13(5), 271–283. https://doi.org/10.1023/A:1008060508762spa
dc.relation.referencesBond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The Global Distribtuion of Ecosystems in a world without Fire. New Phytologist, 165(2), 525–538. https://doi.org/10.1111/j.1469-8137.2004.01252.xspa
dc.relation.referencesBond, W., & Keane, R. (2017). Fires, Ecological Effects of. Encyclopedia of Biodiversity: Second Edition, February 2016, 435–442. https://doi.org/10.1016/B978-0-12-384719-5.00053-8spa
dc.relation.referencesBowman, D. M. J. S. (2007). Fire ecology. Progress in Physical Geography, 31(5), 523–532. https://doi.org/10.1177/0309133307083298spa
dc.relation.referencesBowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W., Carlson, J., Cochrane, M., D’Antonio, C., DeFries, R., Doyle, J., Harrison, S., Johnston, F., Keeley, J., Krawchuk, M., Kull, C., Marston, J., Moritz, M., Prentice, I., Roos, C., Scott, A. C., … Pyne, S. (2009). Fire in the earth system. Science, 324(5926), 481–484. https://doi.org/10.1126/science.1163886spa
dc.relation.referencesBowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M., D’Antonio, C. M., Defries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S., & Swetnam, T. W. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.xspa
dc.relation.referencesBreiman, L. (2001). Random Forests. Machine Learning, 45(5), 32. https://doi.org/10.1023/A:1010933404324spa
dc.relation.referencesBryant, R., Doerr, S. H., & Helbig, M. (2005). Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire, 14(4), 449–455. https://doi.org/10.1071/WF05035spa
dc.relation.referencesBurgess, R. (2011). Development of a spatial , dynamic , fuzzy fire risk model for Chitwan District , Nepal. University of Twente.spa
dc.relation.referencesCaccamo, G., Chisholm, L. A., Bradstock, R. A., Puotinen, M. L., & Pippen, B. G. (2012). Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data. International Journal of Wildland Fire, 21(3), 257–269. https://doi.org/10.1071/WF11024spa
dc.relation.referencesCalviño-Cancela, M., Chas-Amil, M. L., García-Martínez, E. D., & Touza, J. (2016). Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2016.04.002spa
dc.relation.referencesCalviño-Cancela, M., Chas-Amil, M. L., García-Martínez, E. D., & Touza, J. (2017). Interacting effects of topography, vegetation, human activities and wildland-urban interfaces on wildfire ignition risk. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2017.04.033spa
dc.relation.referencesCalviño-Cancela, M., & Rubido-Bará, M. (2013). Invasive potential of Eucalyptus globulus: Seed dispersal, seedling recruitment and survival in habitats surrounding plantations. Forest Ecology and Management, 305(November 2017), 129–137. https://doi.org/10.1016/j.foreco.2013.05.037spa
dc.relation.referencesCastro, R., & Chuvieco, E. (1998). Modeling forest fire danger from geographic information systems. Geocarto International, 13(1), 15–23. https://doi.org/10.1080/10106049809354624spa
dc.relation.referencesCatry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18(8), 921–931. https://doi.org/10.1071/WF07123spa
dc.relation.referencesCFS. (1992). Aspects sociaux, economiques et culturels des incendies de forêts en Italie. Seminar on Forest Fire Prevention, Land Use and People.spa
dc.relation.referencesChacón, E., Ulloa, A., Llambí, L., Acevedo, D., & Utrera, A. (2015). Paisajes Y Ecosistemas Llaneros : Ecología Y Conservación. In R. Lopez, J. Hétier, D. López, R. Schargel, & A. Zinck (Eds.), Tierras Llaneras de Venezuela …tierras de buena esperanza (pp. 195–240). Consejo de Publicaciones de la Universidad de Los Andes.spa
dc.relation.referencesChang, Y., Zhu, Z., Bu, R., Chen, H., Feng, Y., Li, Y., Hu, Y., & Wang, Z. (2013). Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10), 1989–2004. https://doi.org/10.1007/s10980-013-9935-4spa
dc.relation.referencesChen, K., Blong, R., & Jacobson, C. (2001). MCE-RISK: Integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environmental Modelling and Software, 16(4), 387–397. https://doi.org/10.1016/S1364-8152(01)00006-8spa
dc.relation.referencesChen, Y., Morton, D. C., Jin, Y., Gollatz, G. J., Kasibhatla, P. S., Van Der Werf, G. R., Defries, R. S., & Randerson, J. T. (2013). Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Management, 4(6), 617–638. https://doi.org/10.4155/cmt.13.61spa
dc.relation.referencesCheng, Y. Ben, Zarco-Tejada, P. J., Riaño, D., Rueda, C. A., & Ustin, S. L. (2006). Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes. Remote Sensing of Environment, 105(4), 354–366. https://doi.org/10.1016/j.rse.2006.07.005spa
dc.relation.referencesCho, E., Jacobs, J. M., Jia, X., & Kraatz, S. (2019). Identifying Subsurface Drainage using Satellite Big Data and Machine Learning via Google Earth Engine. Water Resources Research, 55(10), 8028–8045. https://doi.org/10.1029/2019WR024892spa
dc.relation.referencesChowdhury, E. H., & Hassan, Q. K. (2015). Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 224–236. https://doi.org/10.1016/j.isprsjprs.2014.03.011spa
dc.relation.referencesChuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., Vilar, L., Martínez, J., Martín, S., Ibarra, P., de la Riva, J., Baeza, J., Rodríguez, F., Molina, J. R., Herrera, M. A., & Zamora, R. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017spa
dc.relation.referencesChuvieco, E., Aguado, Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J., Hantson, S., De La Riva, J., Ibarra, P., Rodrigues, M., Echeverría, M., Azqueta, D., Román, M. V., Bastarrika, A., Martínez, S., Recondo, C., Zapico, E., Martínez-Vega, F. J., Aguado, I., … Martínez-Vega, F. J. (2012). Integrating geospatial information into fire risk assessment. International Journal of Wildland Fire, 23(5), 606–619. https://doi.org/10.1071/WF12052spa
dc.relation.referencesChuvieco, E., Allgöwer, B., & Salas, F. (2003). Integration of Physical and Human Factors in Fire Danger Assessment. Wildland Fire Danger Estimation and Mapping, 197–218. https://doi.org/doi:10.1142/9789812791177_0007spa
dc.relation.referencesChuvieco, E., Cocero, D., Riaño, D., Martin, P., Martínez-Vega, J., De La Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322–331. https://doi.org/10.1016/j.rse.2004.01.019spa
dc.relation.referencesChuvieco, E., Martínez, S., Román, M. V., Hantson, S., & Pettinari, M. L. (2014). Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Global Ecology and Biogeography, 23(2), 245–258. https://doi.org/10.1111/geb.12095spa
dc.relation.referencesClarke, R. (2005). Ecological requirements of birds specialising in mallee habitats.spa
dc.relation.referencesCochrane, M., & Laurance, W. (2008). Synergisms among Fire, Land Use, and Climate Change in the Amazon. AMBIO: A Journal of the Human Environment, 37(7), 522–527. https://doi.org/10.1579/0044-7447-37.7.522spa
dc.relation.referencesCochrane, M., & Ryan, K. (1978). Fire and fire ecology: Concepts and principles. Canadian Journal of Forest Research, 8, 220–227. https://doi.org/10.1007/978-3-540-77381-8_2spa
dc.relation.referencesCosta, P., Castellnou, M., Larrañaga, A., Miralles, M., & Kraus, D. (2011). Prevention of Large Wildfires using the Fire Types Concept (Issue July 2014). https://www.researchgate.net/publication/263923019_Prevention_of_Large_Wildfires_using_the_Fire_Types_Conceptspa
dc.relation.referencesCostafreda-Aumedes, S., Vega-Garcia, C., & Comas, C. (2018). Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. Journal of Environmental Management, 217, 90–99. https://doi.org/10.1016/j.jenvman.2018.03.080spa
dc.relation.referencesCountryman, C. M. (1977). The nature of heat. Forest Service. U.S. Department of Agriculture.spa
dc.relation.referencesCutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002spa
dc.relation.referencesCutter, S. L., Ismail-Zadeh, A., Alcántara-Ayala, I., Altan, O., Baker, D., Briceño, S., Gupta, H., Holloway, A., Johnston, D., McBean, G. A., Ogawa, Y., Paton, D., Porio, E., Silbereisen, R., Takeuchi, K., Valsecchi, G., Vogel, C., & Wu, G. (2015). Global risks: Pool knowledge to stem losses from disasters. Nature, 522(7556), 277–279. https://doi.org/10.1038/522277aspa
dc.relation.referencesda Silva, I., & Pontes, A. (2011). Elaboração de um Fator de Risco de Incêndios Florestais utilizando Lógica Fuzzy. 21, 113–128.spa
dc.relation.referencesDale, V., Joyce, L., McNulty, S., Neilson, R., Ayres, M., Flannigan, M. D., Hanson, P., Irland, L., Lugo, A., Peterson, C., Simberloff, D., Swanson, F., Stocks, B., & Wotton, M. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723. https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2spa
dc.relation.referencesde Vicente, F. (2012). Diseño De Un Modelo De Riesgo Integral De Incendios Forestales Mediante Técnicas Multicriterio Y Su Automatización En Sistemas De Información Geográfica. Una Aplicación En La Comunidad Valenciana. Escuela Técnica Superior de Ingeniería Montes de Madrid.spa
dc.relation.referencesDenil, M., Matheson, D., & De Freitas, N. (2014). Narrowing the Gap: Random Forests In Theory and In Practice. Proceedings of The 31st International Conference on Machine Learning, 1998, 665–673. http://jmlr.org/proceedings/papers/v32/denil14.htmlspa
dc.relation.referencesDennison, P. E., Roberts, D. A., Peterson, S. H., & Rechel, J. (2005). Use of Normalized Difference Water Index for monitoring live fuel moisture. International Journal of Remote Sensing, 26(5), 1035–1042.spa
dc.relation.referencesDias, F. P. M., Hübner, R., Nunes, F. de J., Leandro, W. M., & Xavier, F. A. da S. (2019). Effects of land-use change on chemical attributes of a Ferralsol in Brazilian Cerrado. Catena, 177(September 2018), 180–188. https://doi.org/10.1016/j.catena.2019.02.016spa
dc.relation.referencesDíaz-Martín, D., Yerena, E., Martinez, Z., & Trabucco, J. (2007). Semáforo Conservacionista de Parques Nacionales de Venezuela. Vitalis.spa
dc.relation.referencesDickson, B. G., Prather, J. W., Xu, Y., Hampton, H. M., Aumack, E. N., & Sisk, T. D. (2006). Mapping the probability of large fire occurrence in northern Arizona, USA. Landscape Ecology, 21(5), 747–761. https://doi.org/10.1007/s10980-005-5475-xspa
dc.relation.referencesDidan, K. (2015). MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13A1.006spa
dc.relation.referencesDillon, G. K., Holden, Z. A., Morgan, P., Crimmins, M. A., Heyerdahl, E. K., & Luce, C. H. (2011). Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere, 2(12), art130. https://doi.org/10.1890/ES11-00271.1spa
dc.relation.referencesDinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E., Jones, B., Barber, C., Hayes, R., Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience, 67(6), 534–545. https://doi.org/10.1093/biosci/bix014spa
dc.relation.referencesDong, X., Li-min, D., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research, 16(3), 169–174. https://doi.org/10.1007/BF02856809spa
dc.relation.referencesDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.xspa
dc.relation.referencesDuff, T. J., Keane, R. E., Penman, T. D., & Tolhurst, K. G. (2017). Revisiting wildland fire fuel quantification methods: The challenge of understanding a dynamic, biotic entity. In Forests. https://doi.org/10.3390/f8090351spa
dc.relation.referencesElizalde, G., Viloria, J., & Rosales, A. (2007). Geografía de suelos de Venezuela. In GeoVenezuela (Vol. 2).spa
dc.relation.referencesEnright, N. J., & Fontaine, J. B. (2014). Climate change and the management of fire-prone vegetation in southwest and southeast Australia. Geographical Research, 52(1), 34–44. https://doi.org/10.1111/1745-5871.12026spa
dc.relation.referencesErcanoglu, M., Weber, K., Langille, J., & Neves, R. (2006). Modeling Wildland Fire Susceptibility Using Fuzzy Systems. GIScience & Remote Sensing, 43(3), 268–282. https://doi.org/10.2747/1548-1603.43.3.268spa
dc.relation.referencesEskandari, S. (2017). A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran. In Forestry Paper (Vol. 10, Issue 8). Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-2976-2spa
dc.relation.referencesEskandari, S., & Chuvieco, E. (2015). Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 42, 57–64. https://doi.org/10.1016/j.jag.2015.05.006spa
dc.relation.referencesEugenio, F. C., dos Santos, A. R., Fiedler, N. C., Ribeiro, G. A., da Silva, A. G., dos Santos, Á. B., Paneto, G. G., & Schettino, V. R. (2016). Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.02.021spa
dc.relation.referencesFalk, D. A., Miller, C., McKenzie, D., & Black, A. E. (2007). Cross-Scale Analysis of Fire Regimes. Ecosystems, 10(5), 809–823. https://doi.org/10.1007/s10021-007-9070-7spa
dc.relation.referencesFan, L., Wigneron, J.-P., Xiao, Q., Al-Yaari, A., Wen, J., Martin-Stpaul, N., Dupuy, J.-L., Pimont, F., Al Bitar, A., Fernandez-Moran, R., & Kerr, Y. H. (2017). Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sensing of Environment, 205, 210–223. https://doi.org/10.1016/j.rse.2017.11.020spa
dc.relation.referencesFAO. (2006). Código de Manejo del Fuego. 48.spa
dc.relation.referencesFAO. (2007). Fire management - global assessment 2006. FAO Forestry Paper 151, 135 pp. http://www.fao.org/docrep/009/a0969e/a0969e00.htmspa
dc.relation.referencesFAO. (2010). Evacluación de los recursos forestales mundiales 2010: Términos y definiciones. https://www.researchgate.net/publication/263923019_Prevention_of_Large_Wildfires_using_the_Fire_Types_Conceptspa
dc.relation.referencesFAO, IIASA, ISRIC, ISS-CAS, & JRC. (2012). Harmonized World Soil Database (version 1.2) (p. 50). FAO.spa
dc.relation.referencesFarr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Palller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2005), 1–33. https://doi.org/10.1029/2005RG000183.1.INTRODUCTIONspa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFinney, M. A. (2005). The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management, 211(1–2), 97–108. https://doi.org/10.1016/j.foreco.2005.02.010spa
dc.relation.referencesFire and Rescue Service. (2013). Wildfire Operational Guidance. www.scotland.gov.uk.spa
dc.relation.referencesFlannigan, M. D., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., & Gowman, L. M. (2013). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54–61. https://doi.org/10.1016/j.foreco.2012.10.022spa
dc.relation.referencesFlannigan, M. D., Kochtubajda, B., & Logan, K. A. (2008). Forest fires and climate change in the Northwest Territories. Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience: Volume 1: Atmospheric Dynamics, 403–417. https://doi.org/10.1007/978-3-540-73936-4_23spa
dc.relation.referencesFlannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18(5), 483–507. https://doi.org/10.1071/WF08187spa
dc.relation.referencesGai, C., Weng, W., & Yuan, H. (2011). GIS-based forest fire risk assessment and mapping. Proceedings - 4th International Joint Conference on Computational Sciences and Optimization, CSO 2011, 1240–1244. https://doi.org/10.1109/CSO.2011.140spa
dc.relation.referencesGaither, C. J., Poudyal, N. C., Goodrick, S., Bowker, J. M., Malone, S., & Gan, J. (2011). Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach. Forest Policy and Economics, 13(1), 24–36. https://doi.org/10.1016/j.forpol.2010.07.009spa
dc.relation.referencesGanteaume, A., Jappiot, M., Lampin, C., Guijarro, M., & Hernando, C. (2013). Flammability of some ornamental species in wildland-urban interfaces in southeastern France: Laboratory assessment at particle level. Environmental Management, 52(2), 467–480. https://doi.org/10.1007/s00267-013-0067-zspa
dc.relation.referencesGao, B.-C. (1996). NDWI - A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sens. Environ, 58(April), 257–266.spa
dc.relation.referencesGarcía, M., Chuvieco, E., Nieto, H., & Aguado, I. (2008). Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sensing of Environment, 112(9), 3618–3627. https://doi.org/10.1016/j.rse.2008.05.002spa
dc.relation.referencesGBIF. (2020). Registros de ocurrencias [Dataset]. https://doi.org/10.15468/dl.xx7sq4spa
dc.relation.referencesGenuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225–2236. https://doi.org/10.1016/j.patrec.2010.03.014spa
dc.relation.referencesGiglio, L., Justice, C., Boschetti, L., & Roy, D. (2015). MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD64A1.006spa
dc.relation.referencesGitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9spa
dc.relation.referencesGomez, C., Mangeas, M., Curt, T., Ibanez, T., Munzinger, J., Dumas, P., Jérémy, A., Despinoy, M., & Hély, C. (2015). Wildfire risk for main vegetation units in a biodiversity hotspot: Modeling approach in New Caledonia, South Pacific. Ecology and Evolution, 5(2), 377–390. https://doi.org/10.1002/ece3.1317spa
dc.relation.referencesGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202(2016), 18–27. https://doi.org/10.1016/j.rse.2017.06.031spa
dc.relation.referencesGould, J. S., Lachlan McCaw, W., & Phillip Cheney, N. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262(3), 531–546. https://doi.org/10.1016/j.foreco.2011.04.022spa
dc.relation.referencesGuevara, L., Aguirre, L., & Maldonado, D. (2017). Zonificación del terriotrio del Parque Nacional Santos Luzardo. Novum Scientiarum, 2(6), 37–53.spa
dc.relation.referencesGuns, M., & Vanacker, V. (2012). Logistic regression applied to natural hazards: Rare event logistic regression with replications. Natural Hazards and Earth System Science, 12(6), 1937–1947. https://doi.org/10.5194/nhess-12-1937-2012spa
dc.relation.referencesGuo, F., Su, Z., Wang, G., Sun, L., Lin, F., & Liu, A. (2016). Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Applied Geography. https://doi.org/10.1016/j.apgeog.2015.11.014spa
dc.relation.referencesGuo, F., Su, Z., Wang, G., Sun, L., Tigabu, M., Yang, X., & Hu, H. (2017). Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Science of the Total Environment, 605, 411–425. https://doi.org/10.1016/j.scitotenv.2017.06.219spa
dc.relation.referencesGuo, F., Wang, G., Su, Z., Liang, H., Wang, W., Lin, F., & Liu, A. (2016). What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. International Journal of Wildland Fire, 25(5), 505–519. https://doi.org/10.1071/WF15121spa
dc.relation.referencesGuyon, I. (2003). AnIntroductionToVariableAndFeautureSelection.pdf. 3, 1157–1182. https://doi.org/10.1016/j.aca.2011.07.027spa
dc.relation.referencesHaas, J. R., Calkin, D. E., & Thompson, M. P. (2013). A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States. Landscape and Urban Planning, 119, 44–53. https://doi.org/10.1016/j.landurbplan.2013.06.011spa
dc.relation.referencesHadi, D. P. (2008). a Rs / Gis – Based Multi-Criteria Approaches To Assess Forest Fire Hazard in Indonesia a Rs / Gis – Based Multi-Criteria Approaches. East.spa
dc.relation.referencesHall, J. R., & Sekizawa, A. (1991). Fire risk analysis: General conceptual framework for describing models. Fire Technology, 27(1), 33–53. https://doi.org/10.1007/BF01039526spa
dc.relation.referencesHanley, J., & McNeil, B. (1982). The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1080/02634938208400381spa
dc.relation.referencesHardesty, J., Myers, R., & Fulks, W. (2005). Fire, ecosystems and people: a preliminary assessment of fire as a global conservation issue. Fire Management, 22(4), 78–87. https://doi.org/10.2307/43597968spa
dc.relation.referencesHarris, L., & Taylor, A. H. (2017). Previous burns and topography limit and reinforce fire severity in a large wildfire. Ecosphere, 8(11). https://doi.org/10.1002/ecs2.2019spa
dc.relation.referencesHartemink, A. E., & Huting, J. (2008). Land cover, extent, and properties of Arenosols in Southern Africa. Arid Land Research and Management, 22(2), 134–147. https://doi.org/10.1080/15324980801957689spa
dc.relation.referencesHernandez-Leal, P. A., Arbelo, M., & Gonzalez-Calvo, A. (2006). Fire risk assessment using satellite data. Advances in Space Research, 37(4), 741–746. https://doi.org/10.1016/j.asr.2004.12.053spa
dc.relation.referencesHilton, J. E., Miller, C., Sharples, J. J., & Sullivan, A. L. (2016). Curvature effects in the dynamic propagation of wildfires. International Journal of Wildland Fire, 25(12), 1238–1251. https://doi.org/10.1071/WF16070spa
dc.relation.referencesHong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.-X., & Xu, C. (2018). Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Science of the Total Environment, 630, 1044–1056. https://doi.org/10.1016/j.scitotenv.2018.02.278spa
dc.relation.referencesHosmer, D., Lemeshow, S., & Sturdivant, R. (2013). Applied Logistic Regression (John Wiley & Sons (ed.); 3er Editio). https://doi.org/10.1074/jbc.272.33.20373spa
dc.relation.referencesHu, T., & Zhou, G. (2014). Drivers of lightning- and human-caused fire regimes in the Great Xing’an Mountains. Forest Ecology and Management, 329, 49–58. https://doi.org/10.1016/j.foreco.2014.05.047spa
dc.relation.referencesHuang, J., Chen, D., & Cosh, M. H. (2009). Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites. International Journal of Remote Sensing, 30(8), 2075–2104. https://doi.org/10.1080/01431160802549245spa
dc.relation.referencesHuertas Herrera, A., Baptiste Ballera, B. L. G., Toro Manríquez, M., & Huertas Ramírez, H. (2018). Manejo De La Quema De Pastizales De Sabana Inundable: Una Mirada Del Pueblo Originario Sáliva En Colombia. Chungará (Arica), ahead, 0–0. https://doi.org/10.4067/s0717-73562018005002401spa
dc.relation.referencesHuesca, M., Litago, J., Palacios-Orueta, A., Montes, F., Sebastián-López, A., & Escribano, P. (2009). Assessment of forest fire seasonality using MODIS fire potential: A time series approach. Agricultural and Forest Meteorology, 149(11), 1946–1955. https://doi.org/10.1016/j.agrformet.2009.06.022spa
dc.relation.referencesHuete, A., Didan, K., Miura, T., Rodrigeuz, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(195), 213. https://doi.org/10.1080/0965156x.2013.836857spa
dc.relation.referencesHurwitz, J., & Kirsch, D. (2018). Machine Learning for dummies. John Wiley & Sons, Inc.spa
dc.relation.referencesHutto, R. L. (2008). The ecological importance of severe wildfires: Some like it hot. Ecological Applications, 18(8), 1827–1834. https://doi.org/10.1890/08-0895.1spa
dc.relation.referencesIDEAM. (2011). Protocolo para la realización de mapas de zonificación de riesgos a incendios de la cobertura vegetal - Escala 1:100.000.spa
dc.relation.referencesIUSS Working Group WRB. (2006). World reference base for soil resources 2006. In Encyclopedia of Soil Science, Third Edition. https://doi.org/10.1081/e-ess3-120053850spa
dc.relation.referencesJaafari, A., Gholami, D. M., & Zenner, E. K. (2017). A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics, 39, 32–44. https://doi.org/10.1016/j.ecoinf.2017.03.003spa
dc.relation.referencesJaafari, A., Zenner, E. K., & Pham, B. T. (2018). Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2017.12.006spa
dc.relation.referencesJain, P., Coogan, S. C. P., Subramanian, S. G., Crowley, M., Taylor, S., & Flannigan, M. D. (2020). A review of machine learning applications in wildfire science and management. http://arxiv.org/abs/2003.00646spa
dc.relation.referencesJaiswal, R. K., Krishnamurthy, J., & Mukherjee, S. (2005). Regional study for mapping the natural resources prospect & problem zones using remote sensing and GIS. Geocarto International, 20(3), 21–31. https://doi.org/10.1080/10106040508542352spa
dc.relation.referencesJaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4(1), 1–10. https://doi.org/10.1016/S0303-2434(02)00006-5spa
dc.relation.referencesJenness, J. S. (2000). The effects of fire on Mexican spotted owls in Arizona and New Me (Issue May). Northern Arizona University.spa
dc.relation.referencesJiang, M., Hu, Z., Ding, Y., Fang, D., Li, Y., Wei, L., Guo, M., & Zhang, S. (2012). Estimation of vegetation water content based on MODIS: Application on forest fire risk assessment. Proceedings - 2012 20th International Conference on Geoinformatics, Geoinformatics 2012, 2007, 2–5. https://doi.org/10.1109/Geoinformatics.2012.6270322spa
dc.relation.referencesJohnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, D. R. (2012). Estimated global 120:695–701., mortality attributable to smoke from landscape fires. Environ Health Perspect. 2012, 120(5), 695–702. https://doi.org/10.1289/ehp.1104422spa
dc.relation.referencesJurdao, S., Yebra, M., Guerschman, J. P., & Chuvieco, E. (2013). Regional estimation of woodland moisture content by inverting Radiative Transfer Models. Remote Sensing of Environment, 132, 59–70. https://doi.org/10.1016/j.rse.2013.01.004spa
dc.relation.referencesKantardzic, M. (2011). Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley & Sons Inc. http://ebookcentral.proquest.com/lib/cranfield/detail.action?docID=4708912.spa
dc.relation.referencesKasischke, E. S., French, N. H. F., O’Neill, K. P., Richter, D. D., Bourgeauchavez, L. L., & O’Harrell, P. A. (2000). Influence of Fire on Long-Term Patterns of Forest Succession in Alaskan Boreal Forests. Fire, Climate Change, and Carbon Cycling in the Boreal Forest, 214–234.spa
dc.relation.referencesKastamonu, O. K., & Kucuk, O. (2017). Effect of Phenolic Compounds on the Flammability in Forest Fires. May.spa
dc.relation.referencesKeane, R. E. (2015). Wildland fuel fundamentals and applications. http://public.eblib.com/choice/publicfullrecord.aspx?p=1965189spa
dc.relation.referencesKeane, R. E., Agee, J., Fule, P., Keeley, J. E., Key, C., Kitchen, S. G., Miller, R., & Schulte, L. (2008). Ecological Effects of Large Fires on North American Landscapes : Benefit or Catastrophe ? International Journal of Wildland Fire, 17, 696–712. https://doi.org/10.1071/WF07148spa
dc.relation.referencesKeeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126. https://doi.org/10.1071/WF07049spa
dc.relation.referencesKeith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28), 11635–11640. https://doi.org/10.1073/pnas.0901970106spa
dc.relation.referencesKelly, L., & Standish, R. (2019). Managing fire for plant and animal conservation: Putting fire to work for conservation requires local knowledge. Austral Ecology, 44(1), 173–180. https://doi.org/10.1111/aec.12604spa
dc.relation.referencesKelly, R. E. J., Drake, N. A., & Barr, S. L. (2004). Spatial Modelling of the Terrestrial Environment. Spatial Modelling of the Terrestrial Environment, 276. https://doi.org/10.1002/0470094001spa
dc.relation.referencesKennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. https://doi.org/10.1111/gcb.14549spa
dc.relation.referencesKirby, M., Naden, T., Burt, P., & Butcher, D. (1987). Computer Simulation in Physical Geography. In J. Wiley (Ed.), Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.3290140513spa
dc.relation.referencesKrebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M., & Conedera, M. (2010). Fire regime: History and definition of a key concept in disturbance ecology. Theory in Biosciences, 129(1), 53–69. https://doi.org/10.1007/s12064-010-0082-zspa
dc.relation.referencesKusangaya, S., & Sithole, V. B. (2015). Remote sensing-based fire frequency mapping in a savannah rangeland. South African Journal of Geomatics, 4(1), 36–49.spa
dc.relation.referencesLapon, L., Ooms, K., & De Maeyer, P. (2020). The influence of map projections on people’s global-scale cognitive map: A worldwide study. ISPRS International Journal of Geo-Information, 9(4), 1–19. https://doi.org/10.3390/ijgi9040196spa
dc.relation.referencesLasso, C. A., S, U. J., F, T., & A, R. (2010). El fuego como parte de la dinámica natural de las sabanas de Los Llanos Orientales de Colombia. In C. Lasso, J. Usma, F. Trujillo, & A. Rial (Eds.), Biodiversidad en la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad (pp. 408–415). I.A.v.H./WWF Colombia/Fundación Omacha/Fundación La Salle/ Universidad Nacional de Colombia/ Conservación Internacional Colombia. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referenceshttps://doi.org/10.1017/CBO9781107415324.004 Leal, A., Gassón, R., Behling, H., & Sánchez, F. (2019). Human-made fires and forest clearance as evidence for late Holocene landscape domestication in the Orinoco Llanos (Venezuela). Vegetation History and Archaeobotany, 28(5), 545–557. https://doi.org/10.1007/s00334-019-00713-wspa
dc.relation.referencesLeblon, B., Bourgeau-Chavez, L., & San-Miguel-Ayanz, J. (2015). Use of Remote Sensing in Wildfire Management. In B. Leblon & M. Alexander (Eds.), Current International Perspectives on Wildland Fires, Mankind and the Environment (p. 271). Science Publishers Inc. https://doi.org/http://dx.doi.org/10.5772/57353spa
dc.relation.referencesLee, D., & Quigñey, T. (2014). The final Phase in the Development of the National Cohesive Wildland Fire Managment Strategy.spa
dc.relation.referencesLehner, B., Verdin, K., & Jarvis, A. (2008). New global hydrography derived from spaceborne elevation data. Eos, Transactions, American Geophysical Union. Eos, Transactions American Geophysical Union, 89(10), 89, 93–94.spa
dc.relation.referencesLeuenberger, M., Parente, J., Tonini, M., Pereira, M. G., & Kanevski, M. (2018). Wildfire susceptibility mapping: Deterministic vs. stochastic approaches. Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2017.12.019spa
dc.relation.referencesLiaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(December), 18–22. https://doi.org/10.1177/154405910408300516spa
dc.relation.referencesLin, F. J. (2008). Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Quality and Quantity, 42(3), 417–426. https://doi.org/10.1007/s11135-006-9055-1spa
dc.relation.referencesLiu, Y., Goodrick, S., & Heilman, W. (2014). Wildland fire emissions, carbon, and climate: Wildfire-climate interactions. Forest Ecology and Management, 317, 80–96. https://doi.org/10.1016/j.foreco.2013.02.020spa
dc.relation.referencesMachado, L. N., Loss, A., Zilli Bacic, I. L., Dortzbach, D., & Lalane, H. D. C. (2017). Characterization and mapping of soil classes of the Lajeado Pessegueiro watershed in Santa Catarina, Brazil. Acta Agronomica, 67(2), 289–296. https://doi.org/10.15446/acag.v67n2.66131spa
dc.relation.referencesMaki, M., Ishiahra, M., & Tamura, M. (2004). Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sensing of Environment, 90(4), 441–450. https://doi.org/10.1016/j.rse.2004.02.002spa
dc.relation.referencesMalczewski, J. (1999). GIS and Multicriteria Decision Analysis. In GIS, Remote Sensing, & Cartography. https://doi.org/10.1353/geo.2002.0003spa
dc.relation.referencesMancini, L. D., Corona, P., & Salvati, L. (2018). Ranking the importance of Wildfires’ human drivers through a multi-model regression approach. Environmental Impact Assessment Review. https://doi.org/10.1016/j.eiar.2018.06.003spa
dc.relation.referencesMartell, D. (2007). Forest fire management, current practices and new challenges for operational researchers. In A. Weintraub, C. Romero, T. Bjorndal, & R. Epstein (Eds.), Handbook of operations research in natural resources, International Series in Operations Research & Management Science (Vol. 99, Issue 3, pp. 419–506). https://doi.org/10.1174/113564009787531226spa
dc.relation.referencesMartin, P. H., Canham, C. D., & Marks, P. L. (2009). Why forests appear resistant to exotic plant invasions: Intentional introductions, stand dynamics, and the role of shade tolerance. Frontiers in Ecology and the Environment, 7(3), 142–149. https://doi.org/10.1890/070096spa
dc.relation.referencesMartin, R. (1994). Assessing the flammability of domestic and wildland vegetation. 12th Conference on Fire and Forest Meteorology, At Jekyll Island, GA, USA, Volume: Pages 26-28, November, 26–28. https://doi.org/10.13140/RG.2.1.3999.3680spa
dc.relation.referencesMartinez, D. (2003). Protected Areas, Indigenous Peoples, and TheWestern Idea of Nature. Ecological Restoration, 21(4), 247–250. https://doi.org/10.3368/er.28.2.135spa
dc.relation.referencesMccune, B., & Grace, J. (2002). Analysis of ecological communities. MJM Software Design, Gleneden Beach, OR.spa
dc.relation.referencesMcKenzie, D., Gedalof, Z., Peterson, D., & Mote, P. (2004). Climatic Change, Wildfire, and Conservation. Conservation Biology, 18(1), 890–902.spa
dc.relation.referencesMedina, E., & Sarmiento, G. (1981). Ecosystèmes pâturés tropicaux du Venezuela; I: Etudes écophysiologiques dans les savanes à Trachypogon (Llanos du Centre). In Ecosystèmes pâturés tropicaux: Recherche sur les ressources naturelles (pp. 631–649). UNESCO, PNUD y FAO.spa
dc.relation.referencesMeijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A. M. (2018). Global patterns of current and future road infrastructure. Environmental Research Letters, 13(6). https://doi.org/10.1088/1748-9326/aabd42spa
dc.relation.referencesMell, W., Jenkins, M. A., Gould, J., & Cheney, P. (2007). A physics-based approach to modelling grassland fires. International Journal of Wildland Fire, 16(1), 1–22. https://doi.org/10.1071/WF06002spa
dc.relation.referencesMeyn, A., White, P. S., Buhk, C., & Jentsch, A. (2007). Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Progress in Physical Geography, 31(3), 287–312. https://doi.org/10.1177/0309133307079365spa
dc.relation.referencesMiller, C., & Ager, A. (2013). A review of recent advances in risk analysis for wildfire management. International Journal of Wildland Fire, 22(1), 1–14. https://doi.org/10.1071/WF11114spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2016). Concepto técnico “propuesta de creación del Distrito Nacional de Manejo Integrado (DNMI) Cinaruco.” In IOSR Journal of Economics and Finance (Vol. 1, Issue 1). https://doi.org/https://doi.org/10.3929/ethz-b-000238666spa
dc.relation.referencesMinisterio del Ambiente y de los Recursos Naturales Renovables. (1985). Proyecto Orinoco-Apure: Información Ambiental y Ecológica sobre los Llanos del Río Orinoco (M. Acevedo & J. Silva (eds.)).spa
dc.relation.referencesMishra, N., & Young, K. (2014). Savannas and Grasslands. In Encyclopedia of Natural Resources : Land Savannas and Grasslands (Issue October). Taylor and Francis. https://doi.org/10.1081/E-ENRL-120047446spa
dc.relation.referencesMontoya, E., Rull, V., Stansell, N. D., Abbott, M. B., Nogué, S., Bird, B. W., & Díaz, W. A. (2011). Forest-savanna-morichal dynamics in relation to fire and human occupation in the southern Gran Sabana (SE Venezuela) during the last millennia. Quaternary Research, 76(3), 335–344. https://doi.org/10.1016/j.yqres.2011.06.014spa
dc.relation.referencesMoore, I. D., & Grayson, R. B. (1991). Terrain‐based catchment partitioning and runoff prediction using vector elevation data. Water Resources Research, 27(6), 1177–1191. https://doi.org/10.1029/91WR00090spa
dc.relation.referencesMoritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. M., & Doyle, J. (2005). Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 17912–17917. https://doi.org/10.1073/pnas.0508985102spa
dc.relation.referencesMoritz, M. A., Parisien, M. A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J., & Hayhoe, K. (2012). Climate change and disruptions to global fire activity. Ecosphere, 3(6), art49. https://doi.org/10.1890/ES11-00345.1spa
dc.relation.referencesMukherjee, S., Mukherjee, S., Garg, R. D., Bhardwaj, A., & Raju, P. L. N. (2013). Evaluation of topographic index in relation to terrain roughness and DEM grid spacing. Journal of Earth System Science, 122(3), 869–886. https://doi.org/10.1007/s12040-013-0292-0spa
dc.relation.referencesMulder, C., Boit, A., Bonkowski, M., De Ruiter, P. C., Mancinelli, G., Van der Heijden, M. G. A., Van Wijnen, H. J., Vonk, J. A., & Rutgers, M. (2011). A Belowground Perspective on Dutch Agroecosystems: How Soil Organisms Interact to Support Ecosystem Services. In Advances in Ecological Research (1st ed., Vol. 44). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374794-5.00005-5spa
dc.relation.referencesMundo, I. A., Wiegand, T., Kanagaraj, R., & Kitzberger, T. (2013). Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2013.03.011spa
dc.relation.referencesMustafa, S. A., Ramlee, R., & Kassim, S. (2017). Economic forces and Islamic stock market: Empirical evidence from Malaysia. Asian Journal of Business and Accounting, 10(1), 45–85.spa
dc.relation.referencesMyneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). Interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486. https://doi.org/10.1109/36.377948spa
dc.relation.referencesNájera Díaz, A. (2013). El Fuego en la Naturaleza. La Colección Bordeando El Monte Es Una Publicación de La Secretaría de Medio Ambiente, 2, 12. http://www.sema.gob.mx/descargas/manuales/2_El fuego.pdfspa
dc.relation.referencesNami, M. H., Jaafari, A., Fallah, M., & Nabiuni, S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International Journal of Environmental Science and Technology, 15(2), 373–384. https://doi.org/10.1007/s13762-017-1371-6spa
dc.relation.referencesNeary, D. G. ., Ryan, K. C. ., & DeBano, L. F. (2005). Wildland Fire in Ecosystems, effects of fire on soil and water. USDA-FS General Technical Report, 4(September), 250. https://doi.org/http://dx.doi.org/10.1111/j.1467-7717.2009.01106.xspa
dc.relation.referencesNepstad, D. C., Stickler, C. M., Soares-Filho, B., & Merry, F. (2008). Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1737–1746. https://doi.org/10.1098/rstb.2007.0036spa
dc.relation.referencesNepstad, D., Lefebvre, P., Da Silva, U. L., Tomasella, J., Schlesinger, P., Solórzano, L., Moutinho, P., Ray, D., & Benito, J. G. (2004). Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Global Change Biology, 10(5), 704–717. https://doi.org/10.1111/j.1529-8817.2003.00772.xspa
dc.relation.referencesNgoc Thach, N., Bao-Toan Ngo, D., Xuan-Canh, P., Hong-Thi, N., Hang Thi, B., Nhat-Duc, H., & Tien Bui, D. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2018.05.009spa
dc.relation.referencesNieto, H., Aguado, I., García, M., & Chuvieco, E. (2012). Lightning-caused fires in Central Spain: development of a probability model of occurrence for two Spanish regions. Agricultural and Forest Meteorology, 35–43. https://doi.org/10.1016/j.agrformet.2012.04.002spa
dc.relation.referencesNunes, A., Lourenço, L., & Castro Meira, A. (2016). Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014). Science of the Total Environment, The, 573, 1190–1202. https://doi.org/10.1016/j.scitotenv.2016.03.121spa
dc.relation.referencesOlaya-Abril, A., Obregón-Romero, R., Parras-Alcántara, L., & Lozano-García, B. (2018). MURASOC, A Metaanalysis to Test the Effects of Independent Variables on Soil Organic Carbon: Application to Mediterranean Areas. In Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812128-3.00018-5spa
dc.relation.referencesOliveira, S., Félix, F., Nunes, A., Lourenço, L., Laneve, G., & Sebastián-López, A. (2018). Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. Journal of Environmental Management, 206, 158–169. https://doi.org/10.1016/j.jenvman.2017.10.003spa
dc.relation.referencesOliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. C. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003spa
dc.relation.referencesOliveira, S., Zêzere, J., Queirós, M., & Pereira, J. (2017). Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied Geography. https://doi.org/10.1016/j.apgeog.2017.09.004spa
dc.relation.referencesOliveira, U., Soares-Filho, B., Leitão, R. F. M. H., & Rodrigues, H. O. (2019). BioDinamica: A toolkit for analyses of biodiversity and biogeography on the Dinamica-EGO modelling platform. PeerJ, 2019(7). https://doi.org/10.7717/peerj.7213spa
dc.relation.referencesOlson, D., Dinerstein, E., Wikramanayake, E., Burgess, N., Powell, G., Underwood, E., D’amico, J., Itoua, I., Strand, H., Morrison, J., Loucks, C., Allnutt, T., Ricketts, T., Kura, Y., Lamoreux, J., Wettengel, W., Hedao, P., & Kassem, K. (2006). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience, 51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2spa
dc.relation.referencesPan, J., Wang, W., & Li, J. (2016). Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China. Natural Hazards, 81(3), 1879–1899. https://doi.org/10.1007/s11069-016-2160-0spa
dc.relation.referencesParisien, M. A., Miller, C., Parks, A., DeLanvey, E., Robinne, F., & Flannigan, M. D. (2016). impact and future change Australian fire regimes The spatially varying in fl uence of humans on fi re probability in North America. Environmental Research Letters, 11(7), 1–18. https://doi.org/10.1088/1748-9326/11/7/075005spa
dc.relation.referencesParisien, M. A., & Moritz, M. A. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79(1), 127–154. https://doi.org/10.1890/07-1289.1spa
dc.relation.referencesParisien, M. A., Snetsinger, S., Greenberg, J. A., Nelson, C. R., Schoennagel, T., Dobrowski, S. Z., & Moritz, M. A. (2012). Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21(4), 313–327. https://doi.org/10.1071/WF11044spa
dc.relation.referencesPekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584spa
dc.relation.referencesPereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J., & Cerda, A. (2012). Fire in Protected Areas - the Effect of Protection and Importance of Fire Management. Environmental Research, Engineering and Management, 59(1). https://doi.org/10.5755/j01.erem.59.1.856spa
dc.relation.referencesPérez, E., & Bulla, L. (n.d.). Northern South America -- in Colombia and Venezuela | Ecoregions | WWF. Retrieved April 29, 2019, from https://www.worldwildlife.org/ecoregions/nt0709spa
dc.relation.referencesPeterson, S. H., Roberts, D. A., & Dennison, P. E. (2008). Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2008.07.012spa
dc.relation.referencesPourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63(2), 965–996. https://doi.org/10.1007/s11069-012-0217-2spa
dc.relation.referencesPourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., & Semeraro, T. (2016). Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators, 64, 72–84. https://doi.org/10.1016/j.ecolind.2015.12.030spa
dc.relation.referencesPradhan, B., Suliman, M. D. H. Bin, & Awang, M. A. Bin. (2007). Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prevention and Management: An International Journal, 16(3), 344–352. https://doi.org/10.1108/09653560710758297spa
dc.relation.referencesQi, Y., Dennison, P. E., Spencer, J., & Riaño, D. (2012). Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecology, 8(3), 71–87. https://doi.org/10.4996/fireecology.0803071spa
dc.relation.referencesRíos-Pena, L., Kneib, T., Cadarso-Suárez, C., & Marey-Pérez, M. (2017). Predicting the occurrence of wildfires with binary structured additive regression models. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.11.044spa
dc.relation.referencesRippstein, G., Amézquita, E., Escobar, G., & Grollier, C. (2001). Condiciones Naturales de la Sabana. In G. Rippstein, G. Escobar, & F. Motta (Eds.), Agroecologia y biodiversidad en los Llanos Orientales de Colombia (p. 308). Centro Internacional de Agricultura Tropica.spa
dc.relation.referencesRippstein, G., Lascano, C., & Decaëns, T. (1967). La production fourragère dans les savannes d`Amérique du Sud intertropicale. Fourrages (France), (145):33-52spa
dc.relation.referencesRoberts, D. A., Dennison, P. E., Peterson, S., Sweeney, S., & Rechel, J. (2006). Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. Journal of Geophysical Research: Biogeosciences, 111(4), 1–16. https://doi.org/10.1029/2005JG000113spa
dc.relation.referencesRoberts, S. J. (1970). Forest fuel ignitibility. Progress in Physical Geography, 6(4), 312–319. https://doi.org/10.1007/BF02588932spa
dc.relation.referencesRoberts, S. J. (2001). Tropical fire ecology. Progress in Physical Geography, 25(2), 286–291. https://doi.org/10.1177/030913330102500209spa
dc.relation.referencesRodrigues, M., De La Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 48, 52–63. https://doi.org/10.1016/j.apgeog.2014.01.011spa
dc.relation.referencesRodríguez, I. (2007). Pemon perspectives of fire management in Canaima National Park, Southeastern Venezuela. Human Ecology, 35(3), 331–343. https://doi.org/10.1007/s10745-006-9064-7spa
dc.relation.referencesRomero-Ruiz, M., Flantua, S., Tansey, K., & Berrio, F. (2012). Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766–776.spa
dc.relation.referencesRomme, W. H., & Knight, D. H. (1981). Fire Frequency and Subalpine Forest Succession Along a Topographic Gradient in Wyoming. Source: Ecology, 62(2), 319–326.spa
dc.relation.referencesRothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service Research Paper INT USA, INT-115, 40. https://doi.org/http://www.snap.uaf.edu/webshared/JenNorthway/AKFireModelingWorkshop/AKFireModelingWkshp/FSPro Analysis Guide References/Rothermel 1972 INT-115.pdfspa
dc.relation.referencesRowlands, D., Frame, D., Ackerley, D., Aina, T., Booth, B., Christensen, C., Collins, M., Faull, N., Forest, C., Grandey, B., Gryspeerdt, E., Highwood, E., Ingram, W., Knight, S., Lopez, A., Massey, N., McNamara, F., Meinshausen, N., Piani, C., … Allen, M. (2012). Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geoscience, 5(4), 256–260. https://doi.org/10.1038/ngeo1430spa
dc.relation.referencesRunning, S. (1990). Estimating Terrestrial Primary Productivity by Combining Remote Sensing and Ecosystem Simulation. In R. J. Hobbs & H. A. Mooney (Eds.), Remote Sensing of Biosphere Functioning (pp. 65–86). Springer New York. https://doi.org/10.1007/978-1-4612-3302-2_4spa
dc.relation.referencesRunning, S., Mu, Q., & Zhao, M. (2015). MOD17A3H MODIS/Terra Net Primary Production Yearly L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org//10.5067/MODIS/MOD17A3H.006spa
dc.relation.referencesSakr, G. E., Elhajj, I. H., Mitri, G., & Wejinya, U. C. (2010). Artificial intelligence for forest fire prediction. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 1311–1316. https://doi.org/10.1109/AIM.2010.5695809spa
dc.relation.referencesSankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J., Cade, B. S., Gignoux, J., Higgins, S. I., Le Roux, X., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B., Diouf, A., Ekaya, W., Feral, C. J., … Zambatis, N. (2005). Determinants of woody cover in African savannas. Nature, 438(7069), 846–849. https://doi.org/10.1038/nature04070spa
dc.relation.referencesSantín, C., & Doerr, S. H. (2016). Fire effects on soils: The human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), 28–34. https://doi.org/10.1098/rstb.2015.0171spa
dc.relation.referencesSarmiento, G., & Cabido, M. (1996). Biodiversidad y funcionamiento de pastizales y sabanas en América Latina. CYTED y CIELAT. https://books.google.com.co/books?id=ShcWAAAACAAJspa
dc.relation.referencesSatir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2015.1084541spa
dc.relation.referencesSayad, Y., Mousannif, H., & Al Moatassime, H. (2019). Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Safety Journal, 104(September 2018), 130–146. https://doi.org/10.1016/j.firesaf.2019.01.006spa
dc.relation.referencesScott, A. C. (2000). The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 281–329. https://doi.org/10.1016/S0031-0182(00)00192-9spa
dc.relation.referencesScott, A. C., Bownman, D., Bond, W., Pyne, S., & Alexander, M. (2014). Fire on Earth: An Introduction. John Wiley and Sons Ltd.spa
dc.relation.referencesSecretariat of the Convention on Biological Diversity. (2001). Impacts of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes. In Impacts of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes (Vol. 5). https://doi.org/10.1016/j.ecss.2007.02.030spa
dc.relation.referencesShimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., & Lucas, R. (2014). New global forest/non-forest maps from ALOS PALSAR data (2007-2010). Remote Sensing of Environment, 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014spa
dc.relation.referencesSiegel, P., & Alwang, J. (2001). Paul B. Siegel Jeffrey Alwang, and Steen L. Jorgensen. 0115, 1–36.spa
dc.relation.referencesSilva, J. (2003). Sabanas. In M. Aguilera, A. Azócar, & E. González-Jiménez (Eds.), Biodiversidad de Venezuela (pp. 678–695). CONICIT & Fundación Polar.spa
dc.relation.referencesSimon, J., Rick, S., Dale, G., Luke, T., Angie, H., Michael, F., & Andrew, F. (2012). Effects of time since fire on birds: How informative are generalized fire response curves for conservation management? Ecological Applications, 22(2), 685–696. http://ejournals.ebsco.com/direct.asp?ArticleID=453BBA51D247DB94126Fspa
dc.relation.referencesSletto, B., & Rodriguez, I. (2013). Burning, fire prevention and landscape productions among the Pemon, Gran Sabana, Venezuela: Toward an intercultural approach to wildland fire management in Neotropical Savannas. Journal of Environmental Management, 115, 155–166. https://doi.org/10.1016/j.jenvman.2012.10.041spa
dc.relation.referencesSolomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), 1704–1709. https://doi.org/10.1073/pnas.0812721106spa
dc.relation.referencesSommers, W. T., Loehman, R. A., & Hardy, C. C. (2014). Forest Ecology and Management Wildland fire emissions , carbon , and climate : Science overview and knowledge needs. Forest Ecology and Management, 317, 1–8. https://doi.org/10.1016/j.foreco.2013.12.014spa
dc.relation.referencesSpracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. D., & Westerling, A. L. (2009). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. Journal of Geophysical Research Atmospheres, 114(20), 1–17. https://doi.org/10.1029/2008JDO10966spa
dc.relation.referencesSRA. (2015). Society of Risk Analysis Glossary. Society for Risk Analysis. Committee on Foundations of Risk Analysis, 1–16.spa
dc.relation.referencesStoof, C. (2011). Fire effects on soil and hydrology. Wageningen University.spa
dc.relation.referencesStow, D., & Niphadkar, M. (2007). Stability, normalization and accuracy of MODIS-derived estimates of live fuel moisture for southern California chaparral. International Journal of Remote Sensing, 28(22), 5175–5182. https://doi.org/10.1080/01431160701616129spa
dc.relation.referencesStow, D., Niphadkar, M., & Kaiser, J. (2005). MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. International Journal of Remote Sensing, 26(17), 3867–3873. https://doi.org/10.1080/01431160500185342spa
dc.relation.referencesStow, D., Niphadkar, M., & Kaiser, J. (2006). Time series of chaparral live fuel moisture maps derived from MODIS satellite data. International Journal of Wildland Fire, 15(3), 347–360. https://doi.org/10.1071/WF05060spa
dc.relation.referencesSugihara, N. G. N. G., van Wagtendonk, J. W., Fites-Kaufmann, J., Fites-Kaufman, J., Wagtendonk, J. W. Van, & Fites-Kaufmann, J. (2006). Fire as an ecological process. Fire in California’s Ecosystems, 1916, 58–74. https://doi.org/10.1525/california/9780520246058.003.0004spa
dc.relation.referencesSulla-Menashe, D., & Friedl, M. A. (2018). User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. Figure 1, 1–18. https://doi.org/10.5067/MODIS/MCD12Q1spa
dc.relation.referencesSullivan, A. L. (2017). Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour: Part 1: Combustion Chemistry and Heat Release. Current Forestry Reports, 3(2), 132–149. https://doi.org/10.1007/s40725-017-0057-0spa
dc.relation.referencesTabor, N. J., Montañez, I. P., Kelso, K. A., Currie, B., Shipman, T., & Colombi, C. (2006). A Late Triassic soil catena: Landscape and climate controls on paleosol morphology and chemistry across the Carnian-age Ischigualasto-Villa Union basin, northwestern Argentina. Special Paper of the Geological Society of America, 416(January), 17–41. https://doi.org/10.1130/2006.2416(02)spa
dc.relation.referencesTabor, N. J., Montanez, I. P., Zierenberg, R., & Currie, B. S. (2004). Mineralogical and geochemical evolution of a basalt-hosted fossil soil (Late Triassic, Ischigualasto Formation, northwest Argentina): Potential for paleoenvironmental reconstruction. Bulletin of the Geological Society of America, 116(9–10), 1280–1293. https://doi.org/10.1130/B25222.1spa
dc.relation.referencesTaubenböck, H., Post, J., Roth, A., Zosseder, K., Strunz, G., & Dech, S. (2008). A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Natural Hazards and Earth System Science, 8(3), 409–420. https://doi.org/10.5194/nhess-8-409-2008spa
dc.relation.referencesTaylor, S. W., & Alexander, M. E. (2006). Science, technology, and human factors in fire danger rating: The Canadian experience. International Journal of Wildland Fire, 15(1), 121–135. https://doi.org/10.1071/WF05021spa
dc.relation.referencesTeke, M. (2016). Satellite Image Processing Workflow for Rasat and. Journal of Aeronautics And Space Technologies, 9(1), 1–13.spa
dc.relation.referencesThomas, D., Butry, D., Gilbert, S., Webb, D., & Fung, J. (2017). The Costs and Losses of Wildfires: A Literature Review. NIST Special Publication 1215, 72. https://doi.org/10.6028/NIST.SP.1215spa
dc.relation.referencesThomas, S. G., Tabor, N. J., Yang, W., Myers, T. S., Yang, Y., & Wang, D. (2011). Palaeosol stratigraphy across the Permian-Triassic boundary, Bogda Mountains, NW China: Implications for palaeoenvironmental transition through earth’s largest mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2), 41–64. https://doi.org/10.1016/j.palaeo.2010.10.037spa
dc.relation.referencesThompson, M. P., & Calkin, D. E. (2011). Uncertainty and risk in wildland fire management: A review. Journal of Environmental Management, 92(8), 1895–1909. https://doi.org/10.1016/j.jenvman.2011.03.015spa
dc.relation.referencesThompson, M. P., Zimmerman, T., Mindar, D., & Taber, M. (2016). Risk Terminology Primer: Basic Principles and a Glossary for the Wildland Fire Management Community. General Technical Report RMRS-GTR-349, May, 13.spa
dc.relation.referencesTien Bui, D., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. https://doi.org/10.1016/j.agrformet.2016.11.002spa
dc.relation.referencesTien Bui, D., Hung Le, V., Hoang, N.-D., Dieu, T. B., & Hung, V. (2018). GIS-Based Spatial Prediction of Tropical Forest Fire Danger Using a New Hybrid Machine Learning Metho. https://doi.org/10.1016/j.ecoinf.2018.08.008spa
dc.relation.referencesTien Bui, D., Le, K. T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression. Remote Sensing, 8(4), 1–15. https://doi.org/10.3390/rs8040347spa
dc.relation.referencesTien Bui, D., Tuan, T., Hoang, N. D., Thanh, N. Q., Nguyen, D. B., Van Liem, N., & Pradhan, B. (2017). Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 14(2), 447–458. https://doi.org/10.1007/s10346-016-0711-9spa
dc.relation.referencesTien Bui, D., Tuan, T., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378. https://doi.org/10.1007/s10346-015-0557-6spa
dc.relation.referencesTonini, M., D’Andrea, M., Biondi, G., Degli Esposti, S., Trucchia, A., & Fiorucci, P. (2020). A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences, 10(3), 105. https://doi.org/10.3390/geosciences10030105spa
dc.relation.referencesUNISDR. (2015). Sendai Framework for Disaster Risk Reduction 2015 - 2030.spa
dc.relation.referencesUNISDR. (2017). Words into Action Guidelines: National Disaster Risk Assessment. Wildfire Hazard and Risk Assessment. 1–9.spa
dc.relation.referencesVadrevu, K., Eaturu, A., & Badarinath, K. V. S. (2010). Fire risk evaluation using multicriteria analysis-a case study. Environmental Monitoring and Assessment, 166(1–4), 223–239. https://doi.org/10.1007/s10661-009-0997-3spa
dc.relation.referencesVaillant, N. M., Kolden, C. A., & Smith, A. M. S. (2016). Assessing Landscape Vulnerability to Wildfire in the USA. Current Forestry Reports, 2(3), 201–213. https://doi.org/10.1007/s40725-016-0040-1spa
dc.relation.referencesValdez, M. C., Chang, K.-T., Chen, C.-F., Chiang, S.-H., & Santos, J. L. (2017). Modelling the spatial variability of wildfire susceptibility in Honduras using remote sensing and geographical information systems. Geomatics, Natural Hazards and Risk, 8(2), 876–892. https://doi.org/10.1080/19475705.2016.1278404spa
dc.relation.referencesVallejo-Villalta, I., Rodríguez-Navas, E., & Márquez-Pérez, J. (2019). Mapping forest fire risk at a local scale—A case study in Andalusia (Spain). Environments - MDPI, 6(3). https://doi.org/10.3390/environments6030030spa
dc.relation.referencesVan Der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., Defries, R. S., Jin, Y., & Van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. https://doi.org/10.5194/acp-10-11707-2010spa
dc.relation.referencesVan Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., & Dolman, A. J. (2008). Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 22(3), 1–13. https://doi.org/10.1029/2007GB003122spa
dc.relation.referencesVan Wagner, C. (2007). Age-class distribution and the forest fire cycle. Journal of Experimental Psychology: General, 136(1), 23–42.spa
dc.relation.referencesVélez, R. (2002). Causes of forest fires in the Mediterranean basin. EFI Proceedings, No.45, 35–42. http://www.efi.int/portal/virtual_library/publications/proceedings/spa
dc.relation.referencesVerbesselt, J., Jönsson, P., Lhermitte, S., Van Aardt, J., & Coppin, P. (2006). Evaluating satellite and climate data-derived indices as fire risk indicators in savanna ecosystems. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1622–1632. https://doi.org/10.1109/TGRS.2005.862262spa
dc.relation.referencesVerbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., & Coppin, P. (2007). Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment, 108(4), 357–368. https://doi.org/10.1016/j.rse.2006.11.019spa
dc.relation.referencesVogt, P., Riitters, K. H., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22(2), 171–177. https://doi.org/10.1007/s10980-006-9013-2spa
dc.relation.referencesVogt, P., Riitters, K. H., Iwanowski, M., Estreguil, C., Kozak, J., & Soille, P. (2007). Mapping landscape corridors. Ecological Indicators, 7(2), 481–488. https://doi.org/10.1016/j.ecolind.2006.11.001spa
dc.relation.referencesWang, L., Hunt, E. R., Qu, J. J., Hao, X., & Daughtry, C. S. T. (2013). Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices. Remote Sensing of Environment, 129, 103–110. https://doi.org/10.1016/j.rse.2012.10.027spa
dc.relation.referencesWebb, N. R. (1998). The traditional management of European heathlands. Journal of Applied Ecology, 35(6), 987–990. https://doi.org/10.1111/j.1365-2664.1998.tb00020.xspa
dc.relation.referencesWeinstein, D. A., & Woodbury, P. B. (2010). Review of methods for developing probabilistic risk assessments. part 1: modeling fire. Advances in Threat Assessment and Their Application to Forest and Rangeland Management, 2(1), 285–302. file:///C:/Users/jcronan.000/Documents/UW/JFSP_ASF/ASF_Info_LibraryPye_etal_2010_ThreatAssessment-1783596298/Pye_etal_2010_ThreatAssessment.pdf%5Cnhttp://0841764864590106624clipping.bmp%5Cn%3CGo to ISI%3E://BCI:BCI201100057494spa
dc.relation.referencesWhelan, R., Rodgerson, L., Dickman, C., & Sutherland, E. (2001). Critical life cycles of plants and animals: developing a process-based understanding of population changes in fire prone landscapes. In Flammable Australia: the fire regimes and biodiversity of a continent.spa
dc.relation.referencesWu, W., & Zhang, L. (2013). Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Applied Geography, 37(1), 52–62. https://doi.org/10.1016/j.apgeog.2012.10.012spa
dc.relation.referencesXin, J., & Huang, C. (2013). Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management. Fire Safety Journal, 62(PART A), 72–78. https://doi.org/10.1016/j.firesaf.2013.09.022spa
dc.relation.referencesYebra, M., Chuvieco, E., & Riaño, D. (2008). Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, 148(4), 523–536. https://doi.org/10.1016/j.agrformet.2007.12.005spa
dc.relation.referencesYehia, A., Elhifnawy, H., & Safy, M. (2019). Effect of Different Spatial Resolutions of Multi-temporal Satellite Images Change Detection Application. Proceedings of 2019 International Conference on Innovative Trends in Computer Engineering, ITCE 2019, November 2018, 41–46. https://doi.org/10.1109/ITCE.2019.8646510spa
dc.relation.referencesYou, W., Lin, L., Wu, L., Ji, Z., Yu, J., Zhu, J., Fan, Y., & He, D. (2017). Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.01.042spa
dc.relation.referencesZhang, J. H., Yao, F. M., Liu, C., Yang, L. M., & Boken, V. K. (2011). Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades-An overview. In International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph8083156spa
dc.relation.referencesZhang, X., Kondragunta, S., & Roy, D. (2014). Interannual variation in biomass burning and fire seasonality derived from geostationary satellite data across the contiguous United States from 1995 to 2011. Journal of Geophysical Research, 119, 1–13. https://doi.org/10.1002/2013JG002573.Receivedspa
dc.relation.referencesZizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/10.1111/2041-210X.13152spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalRandom Foresteng
dc.subject.proposalMachine learningeng
dc.subject.proposalRiesgospa
dc.subject.proposalPeligrospa
dc.subject.proposalRiskeng
dc.subject.proposalDangereng
dc.subject.proposalVulnerabilidadspa
dc.subject.proposalVulnerabilityeng
dc.titleModelo de riesgo de fuego para la ecorregión de los llanos colombo-venezolanosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031127953.2020.pdf.pdf
Tamaño:
4.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: