Prototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido

dc.contributor.advisorCamargo Mendoza, Jorge Eliécerspa
dc.contributor.advisorRosero Garcia, Javier Alveirospa
dc.contributor.authorBecerra Barajas, Leyla Rociospa
dc.contributor.cvlacBecerra, Leyla Rocíospa
dc.contributor.orcidBecerra Barajas, Leyla Rocío [0009-0006-9490-5821]spa
dc.contributor.researchgroupUNSecureLab Research groupspa
dc.date.accessioned2024-04-29T19:30:47Z
dc.date.available2024-04-29T19:30:47Z
dc.date.issued2024-04-24
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos sistemas de energía transactiva se han convertido en mecanismos que favorecen el aprovechamiento de las fuentes de energía renovables al permitir a los nuevos prosumidores comercializar los excedentes de energía dentro de su comunidad. Los sistemas de energía transactiva distribuidos ofrecen beneficios al habilitar el comercio entre pares. Algunos proyectos en curso han implementado este concepto mediante una aplicación particular de las tecnologías de registro distribuido específicamente Blockchain. Sin embargo, su adopción, especialmente en comunidades pequeñas, implica altos costos de implementación y de operación, largos tiempos de aprobación de transacciones, comisiones en cada transacción y alto consumo de energía. Por lo anterior, este trabajo propone explorar una alternativa tecnológica de registro distribuido que permita la implementación de un prototipo de sistema de energía transactiva distribuida más conveniente para su uso en comunidades locales. Para lograrlo, se identifican las principales características de las tecnologías de registro distribuido y se enumeran las TRD más relevantes. Luego, se describen los aspectos de diseño, implementación y pruebas del prototipo de Sistema de Energía Transactiva distribuido, proponiendo su implementación mediante contratos inteligentes y una aplicación descentralizada utilizando dos TRD: Ethereum e IoTA. Además, propone un mecanismo para evaluar y comparar el desempeño términos de latencia de las transacciones de escritura. La evaluación muestra que la latencia para transacciones de escritura en la implementación en IoTA es más baja que en la implementación realizada en la red de Ethereum. (Texto tomado de la fuente).spa
dc.description.abstractTransactive energy systems have become mechanisms that promote the utilization of renewable energy sources by allowing new prosumers to market energy surpluses within their community. Distributed transactive energy systems offer benefits by enabling peer-to-peer trading. Some ongoing projects have implemented this concept through a specific application of distributed ledger technologies, specifically Blockchain. However, their adoption, especially in small communities, entails high implementation and operation costs, delayed transaction approval times, fees for each transaction, and high energy consumption. Therefore, this work proposes to explore an alternative distributed ledger technology that allows the implementation of a more convenient distributed transactive energy system prototype for use in local communities. To achieve this, the main characteristics of distributed ledger technologies are identified, and the most relevant DLTs are listed. Then, the design, implementation, and testing aspects of the distributed Transactive Energy System prototype are described, proposing its implementation through smart contracts and a decentralized application using two DLT: Ethereum and IoTA. Additionally, a mechanism is proposed to evaluate and compare performance in terms of latency for write transactions. The evaluation shows that the latency for write transactions in the IoTA implementation is lower than in the implementation carried out on the Ethereum network.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicadaspa
dc.format.extentxviii, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85993
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAbdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An Architecture and Performance Evaluation of Blockchain-Based Peer-to-Peer Energy Trading. IEEE Transactions on Smart Grid, 12(4), 3364–3378. https://doi.org/10.1109/TSG.2021.3056147spa
dc.relation.referencesAli, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1–28. https://doi.org/10.3390/electronics9061030spa
dc.relation.referencesAndoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014spa
dc.relation.referencesAntal, C., Cioara, T., Anghel, I., Antal, M., & Salomie, I. (2021). Distributed ledger technology review and decentralized applications development guidelines. En Future Internet (Vol. 13, Número 3, pp. 1–32). MDPI AG. https://doi.org/10.3390/fi13030062spa
dc.relation.referencesBertone, F., Caragnano, G., Simonov, M., Goga, K., & Terzo, O. (2020). A Classification of Distributed Ledger Technology Usages in the Context of Transactive Energy Control Operations. Advances in Intelligent Systems and Computing, 993, 876–885. https://doi.org/10.1007/978-3-030-22354-0_81spa
dc.relation.referencesButerin, V. (2015). A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM.spa
dc.relation.referencesChen, X., Nakada, R., Nguyen, K., & Sekiya, H. (2021). A Comparison of Distributed Ledger Technologies in IoT: IOTA versus Ethereum. Proceedings of ISCIT 2021: 2021 20th International Symposium on Communications and Information Technologies: Quest for Quality of Life and Smart City, 182–187. https://doi.org/10.1109/ISCIT52804.2021.9590601spa
dc.relation.referencesCorDapp Design Language (CDL) overview - R3 Documentation. (s/f). Recuperado el 26 de enero de 2024, de https://docs.r3.com/en/tools/cdl/cdl-overview.htmlspa
dc.relation.referencesCullen, A., Ferraro, P., King, C., & Shorten, R. (2020). On the Resilience of DAG-Based Distributed Ledgers in IoT Applications. IEEE Internet of Things Journal, 7(8), 7112–7122. https://doi.org/10.1109/JIOT.2020.2983401spa
dc.relation.referencesDong, Z., Zheng, E., Choon, Y., & Zomaya, A. Y. (2019). DAGBENCH: A performance evaluation framework for DAG distributed ledgers. IEEE International Conference on Cloud Computing, CLOUD, 2019-July, 264–271. https://doi.org/10.1109/CLOUD.2019.00053spa
dc.relation.referencesDr, W., & Baliga, A. (2020). Understanding Blockchain Consensus Models.spa
dc.relation.referencesEnergy - United Nations Sustainable Development. (s/f). Recuperado el 15 de enero de 2022, de https://www.un.org/sustainabledevelopment/energy/spa
dc.relation.referencesEnergy Production and Consumption - Our World in Data. (s/f). Recuperado el 12 de junio de 2021, de https://ourworldindata.org/energy-production-consumptionspa
dc.relation.referencesENERGY TRANSITION TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs. (s/f). Recuperado el 16 de diciembre de 2021, de https://www.un.org/en/conferences/energy2021/aboutspa
dc.relation.referencesFactory Contract – Blockchain Patterns. (s/f). Recuperado el 27 de enero de 2024, de https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/factory-contract/spa
dc.relation.referencesFan, C., Ghaemi, S., Khazaei, H., & Musilek, P. (2020). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 8, 126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078spa
dc.relation.referencesGeun Song, J., seon Kang, E., Woo Shin, H., Wook Jang, J., Smart, J. A., & Blockchain, E. (2021). A Smart Contract-Based P2P Energy Trading System with Dynamic Pricing on Ethereum Blockchain Contract-Based P2P Energy Trading System with Dynamic Pricing on. https://doi.org/10.3390/s21061985spa
dc.relation.referencesGiotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28–38. https://doi.org/10.1016/j.techsoc.2015.02.002spa
dc.relation.referencesGórski, T., & Bednarski, J. (2020). Modeling of distributed ledger deployment view. International Journal of Electronics and Telecommunications, 66(4), 619–625. https://doi.org/10.24425-ijet.2020.134020/743spa
dc.relation.referencesHayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105419spa
dc.relation.referencesJabed Morshed Chowdhury, M., Ferdous, S., Biswas, K., Chowdhury, N., M Kayes, A. S., Alazab, M., & Watters, P. (s/f). A Comparative Analysis of Distributed Ledger Technology Platforms. https://doi.org/10.1109/ACCESS.2019.2953729spa
dc.relation.referencesJavaScript Environment Requirements – React. (s/f). Recuperado el 7 de diciembre de 2023, de https://legacy.reactjs.org/docs/javascript-environment-requirements.htmlspa
dc.relation.referencesKirpes, B., Mengelkamp, E., Schaal, G., & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. IT - Information Technology, 61(2–3), 87–99. https://doi.org/10.1515/ITIT-2019-0012/MACHINEREADABLECITATION/RISspa
dc.relation.referencesMarnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., & Von Appen, J. (2015). Microgrid evolution roadmap. Proceedings - 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 139–144. https://doi.org/10.1109/SEDST.2015.7315197spa
dc.relation.referencesMengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., & Weinhardt, C. (2018). Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Applied Energy, 210, 870–880. https://doi.org/10.1016/j.apenergy.2017.06.054spa
dc.relation.referencesMengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9spa
dc.relation.referencesMiglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418.spa
dc.relation.referencesMuhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT: The development of the energy internet of things in energy infrastructure. En eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. https://doi.org/10.1007/978-3-030-10427-6spa
dc.relation.referencesOpenZeppelin | Contracts. (s/f). Recuperado el 8 de diciembre de 2023, de https://www.openzeppelin.com/contractsspa
dc.relation.referencesPedro, J., & Lopes, A. (2023). Exploração de algoritmos de consenso no Quorum. https://recipp.ipp.pt/handle/10400.22/23439spa
dc.relation.referencesPervez, H., Muneeb, M., Irfan, M. U., & Ul Haq, I. (2019). A Comparative Analysis of DAG-Based Blockchain Architectures. ICOSST 2018 - 2018 International Conference on Open Source Systems and Technologies, Proceedings, 27–34. https://doi.org/10.1109/ICOSST.2018.8632193spa
dc.relation.referencesProof-of-stake (PoS) | ethereum.org. (s/f). Recuperado el 26 de enero de 2024, de https://ethereum.org/developers/docs/consensus-mechanisms/posspa
dc.relation.referencesSiano, P., De Marco, G., Rolan, A., & Loia, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172spa
dc.relation.referencesSkowronski, R. (2017). On the applicability of the GRIDNET protocol to Smart Grid environments. undefined, 2018-January, 200–206. https://doi.org/10.1109/SMARTGRIDCOMM.2017.8340700spa
dc.relation.referencesSousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036spa
dc.relation.referencesThe Architecture of a Web 3.0 application. (s/f). Recuperado el 29 de noviembre de 2022, de https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-applicationspa
dc.relation.referencesTransactive Energy Systems Research, Development and Deployment Roadmap Prepared by the GridWise ® Architecture Council. (2018). www.gridwiseac.orgspa
dc.relation.referencesVieira, G., & Zhang, J. (2021). Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110900spa
dc.relation.referencesWohrer, M., Zdun, U., & Rinderle-Ma, S. (2021). Architecture Design of Blockchain-Based Applications. 2021 3rd Conference on Blockchain Research and Applications for Innovative Networks and Services, BRAINS 2021, 173–180. https://doi.org/10.1109/BRAINS52497.2021.9569813spa
dc.relation.referencesXu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A Taxonomy of Blockchain-Based Systems for Architecture Design. https://doi.org/10.1109/ICSA.2017.33spa
dc.relation.referencesZhang, C., Wu, J., Long, C., & Cheng, M. (2017). Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia, 105, 2563–2568. https://doi.org/10.1016/J.EGYPRO.2017.03.737spa
dc.relation.referencesZheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85spa
dc.relation.referencesZia, M. F. M. F., Elbouchikhi, E., Benbouzid, M., & Guerrero, J. M. J. M. (2019). Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets. IECON Proceedings (Industrial Electronics Conference), 2019-Octob, 5795–5800. https://doi.org/10.1109/IECON.2019.8926947spa
dc.relation.referencesZia, M. F., Member, S., Benbouzid, M., Elbouchikhi, E., Member, S., Muyeen, S. M., Techato, K., & Guerrero, J. M. (s/f). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. https://doi.org/10.1109/ACCESS.2020.2968402spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalEnergía transactivaspa
dc.subject.proposalP2Peng
dc.subject.proposalBlockchaineng
dc.subject.proposalEthereumeng
dc.subject.proposalIoTAeng
dc.subject.proposalDappeng
dc.subject.proposalContratos inteligentesspa
dc.subject.proposalDistributed Ledger Technologieseng
dc.subject.proposalTransactive Energyeng
dc.subject.proposalenergy communitieseng
dc.subject.proposalsmart contractseng
dc.subject.proposalTecnologías de registro distribuidospa
dc.subject.proposalRecursos renovablesspa
dc.subject.proposalMicrorredesspa
dc.subject.proposalComunidades energéticasspa
dc.subject.proposalComercialización de energíaspa
dc.subject.proposalEnergy tradingeng
dc.subject.proposalRenewable resourceseng
dc.subject.proposalMicrogridspa
dc.subject.unescoMicrogrideng
dc.subject.wikidataComercialización de energía eléctricaspa
dc.subject.wikidataelectricity retailingeng
dc.subject.wikidataComercialización de energías renovablesspa
dc.subject.wikidatarenewable energy commercializationeng
dc.subject.wikidatamicrogrideng
dc.titlePrototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuidospa
dc.title.translatedPrototype of a transactive energy system for the use of distributed renewable energy resources using a distributed ledger technologyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52152542.2024.pdf
Tamaño:
4.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: