On the cluster complex and theta functions for cluster Poisson varieties
dc.contributor.advisor | Nájera Chávez, Alfredo | |
dc.contributor.advisor | Dorado Correa, Ivon Andrea | |
dc.contributor.author | Melo López, Astrid Carolina | |
dc.contributor.cvlac | Melo Lopez, Astrid Carolina | spa |
dc.contributor.orcid | https://orcid.org/0009-0006-9740-0386 | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Astrid-Carolina-Melo-Lopez | spa |
dc.date.accessioned | 2024-10-24T22:01:57Z | |
dc.date.available | 2024-10-24T22:01:57Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, gráficos | spa |
dc.description.abstract | In this thesis, we establish an explicit description of the cluster complex, denoted as ∆^+_s(X), associated to a skew-symmetrizable cluster Poisson variety X and a seed s. Our approach involves a detailed description of the cones of ∆^+_s(X) and their facets using c-vectors. Specifically, each c-matrix determines a polyhedral cone of ∆^+_s(X), and its columns (c-vectors) determine the equations of the supporting hyperplanes of the respective cone. Additionally, we can describe the dimension of these cones through the implicit equalities of the system of inequalities derived from the associated c-matrix. Furthermore, we give formulas for the theta functions parametrized by the integral points of ∆^+s(X) using F -polynomials. In the special case where X is skew-symmetric and the quiver Q associated to s is acyclic, we describe the normal vectors of the supporting hyperplanes of the cones of ∆^+_s(X) using g-vectors of (non-necessarily rigid) objects in Kb(proj kQ). We use this to provide classes of examples where the ray generators of the maximal cones of ∆^+_s(X) can be expressed in terms of c-vectors. Simultaneously, we investigate a description of perfect matchings of snake graphs using routes (certain families of non-intersecting lattice paths) in connected acyclic-directed graphs. With this description, we define the poset of k-routes and use the well-known relation between perfect matchings and F-polynomials to give an alternative approach to describe F-polynomials for surface type cluster algebras, both recursively and non-recursively, using k-routes. Furthermore, we identify some open problems and propose strategies to address them in future research projects, ensuring the continuity and expansion of this work. | eng |
dc.description.abstract | En esta tesis, establecemos una descripción explícita del complejo de conglomerado, denotado como ∆^+_s(X), para una variedad de conglomerado de Poisson antisimetrizable X y una semilla s. Nuestro enfoque proporciona una descripción detallada de los conos de ∆^+_s(X) y sus facetas usando c-vectores. Específicamente, cada c-matriz determina un cono de ∆^+_s(X), donde sus columnas (c-vectores) determinan las ecuaciones de los hiperplanos de soporte del cono respectivo. Adicionalmente, describimos la dimensión de estos conos a través de las igualdades implícitas del sistema de desigualdades derivado de la c-matriz asociada. Además, proporcionamos fórmulas para las funciones theta parametrizadas por los puntos enteros de ∆^+_s(X ) usando F-polinomios. En el caso especial donde X es antisimétrica y el carcaj Q asociado a s es acíclico, nuestros principales resultados consisten en describir los vectores normales de los hiperplanos de soporte de los conos de ∆^+_s(X) usando g-vectores de objetos (no necesariamente rígidos) en Kb(proj kQ). Esto permite proporcionar clases de ejemplos donde los generadores de los rayos de los conos maximales de ∆^+_s(X) pueden expresarse en términos de c-vectores. Simultáneamente, investigamos una descripción de los emparejamientos perfectos de grafos serpiente a través de rutas (ciertas familias de caminos reticulares que no se intersecan) en grafos dirigidos acíclicos conectados. Con esta descripción, definimos el poset de k-rutas y utilizamos la conocida relación entre emparejamientos perfectos y F -polinomios para dar un enfoque alternativo para describir esos F-polinomios para álgebras de conglomerado asociadas a una superficie, tanto de manera recursiva como no recursiva, a través de k-rutas. Además, profundizamos en la identificación de algunos problemas abiertos y proponemos estrategias para abordarlos en futuros proyectos de investigación, asegurando la continuidad y expansión de este trabajo. (Texto tomado de la fuente) | spa |
dc.description.curriculararea | Matemáticas.Sede Bogotá | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Matemáticas | spa |
dc.description.sponsorship | This work was partially supported by Universidad Nacional de Colombia “CENTRO DE EXCELENCIA EN COMPUTACIÓN CIENTÍFICA CENTER OF EXCELLENCE IN SCIENTIFIC COMPUTING: COE-SCICO” project QUIPU No. 400000035813, Dirección de Investigación y Extensión, Universidad Nacional de Colombia - Sede Bogotá 2022, and by Universidad Nacional Autónoma de México the PAPIIT project IA100122, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México 2022. | spa |
dc.format.extent | 129 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87050 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas | spa |
dc.relation.references | [1] T. Adachi, O. Iyama, and I. Reiten, “τ -tilting theory,” Compositio Mathematica, vol. 105, pp. 415–452, 03 2014. [Online]. Available: https://www.cambridge.org/core/journals/compositio-mathematica/article/tau-tilting-theory/A93966859BAAEC2B286AC46AB3839740 | spa |
dc.relation.references | [2] F. Ardila, Algebraic and Geometric Methods in Enumerative Combinatorics. Boca Raton, CRC Press: Handbook of enumerative combinatorics, 09 2015. | spa |
dc.relation.references | [3] I. Assem, D. Simson, and A. Skowrónski, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory. Cambridge University Press, Cambridge: London Mathematical Society Student Texts, 02 2006. | spa |
dc.relation.references | [4] A. Benjamin, N. Cameron, and J. Quinn, “Fibonacci determinants - a combinatorial approach,” The Fibonacci Quarterly, vol. 45, 12 2005. | spa |
dc.relation.references | [5] L. Bossinger, M.-W. Cheung, T. Magee, and A. Nájera-Chávez, “Newton-okounkov bodies and minimal models for cluster varieties,” arXiv:2305.04903 [math.AG], 2023. | spa |
dc.relation.references | [6] L. Bossinger, B. Frías-Medina, T. Magee, and A. Nájera-Chávez, “Toric degenerations of cluster varieties and cluster duality,” Compos. Math., vol. 156, pp. 2149–2206, 10 2020. | spa |
dc.relation.references | [7] L. M. Bregman, “Some properties of nonnegative matrices and their permanents,” Soviet Math. Dokl., vol. 211, pp. 27–30, 06 1973. | spa |
dc.relation.references | [8] P. Caldero, F. Chapoton, and R. Schiffler, “Quivers with relations arising from clusters (An case),” Transactions of the A.M.S., vol. 358, p. 1347–1364, 05 2005. | spa |
dc.relation.references | [9] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming. Springer Publishing Company, Incorporated, 10 2014. | spa |
dc.relation.references | [10] L. Demonet, O. Iyama, and G. Jasso, “τ -tilting finite algebras, bricks, and g-vectors,” International Mathematics Research Notices, pp. 852–892, 03 2019. | spa |
dc.relation.references | [11] H. Derksen, J. Weyman, and A. Zelevinsky, “Quivers with potentials and their representations ii: Applications to cluster algebras,” Journal of the American Mathematical Society, vol. 23(3), p. 749–790, 09 2010. | spa |
dc.relation.references | [12] G. Dupont, “An approach to non-simply laced cluster algebras,” Journal of Algebra, vol. 320, no. 4, pp. 1626–1661, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021869308001579 | spa |
dc.relation.references | [13] N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, “Alternating sign matrices and domino tilings,” Journal of Algebraic Combinatorics, vol. 1, pp. 111–132, 09 1992. | spa |
dc.relation.references | [14] S.-P. Eu and T.-S. Fu, “A simple proof of the aztec diamond theorem,” Electronic Journal of Combinatorics, vol. 12, p. 8 pp., 01 2005. | spa |
dc.relation.references | [15] A. Felikson, M. Shapiro, and P. Tumarkin, “Skew-symmetric cluster algebras of finite mutation type,” European Mathematical Society, issue 4, vol. 14, p. 1135–1180, 11 2014. | spa |
dc.relation.references | [16] M. Fisher and H. Temperley, “Dimer problem in statistical mechanics – an exact result,” Philosophical Magazine, vol. 68, p. 1061–1063, 6 1961. | spa |
dc.relation.references | [17] V. Fock and A. Goncharov, “Cluster ensembles, quantization and the dilogarithm,” Ann. Sci. Éc. Norm. Supér., vol. 6, p. 865–930, 2009. | spa |
dc.relation.references | [18] S. Fomin, M. Shapiro, and D. Thurston, “Cluster algebras and triangulated surfaces. part i: Cluster complexes,” Acta Math, vol. 201, pp. 83–146, 10 2008. | spa |
dc.relation.references | [19] S. Fomin and A. Zelevinsky, “Cluster algebras i: Foundations,” Journal of the American Mathematical Society, vol. 15, pp. 497–529, 05 2002. | spa |
dc.relation.references | [20] S. Fomin and A. Zelevinsky, “Cluster algebras ii: Finite type classification,” Invent. Math., vol. 154, pp. 63–121, 01 2003. | spa |
dc.relation.references | [21] S. Fomin and A. Zelevinsky, “Cluster algebras iv: Coefficients,” Compos. Math., vol. 143(1), pp. 112–164, 2007. | spa |
dc.relation.references | [22] N. Garnier and O. Ramaré, “Fibonacci numbers and trigonometric identities,” Fibonacci Quart., pp. 1–7, 02 2008. | spa |
dc.relation.references | [23] I. Gessel and X. Viennot, “Determinants, paths, and plane partitions,” Preprint, 1989. | spa |
dc.relation.references | [24] M. Gross, P. Hacking, and S. Keel, “Birational geometry of cluster algebras,” Algebr. Geom., vol. 2, p. 137–175, 2 2015. | spa |
dc.relation.references | [25] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, “Canonical bases for cluster algebras,” J. Amer. Math. Soc., vol. 31, p. 497–608, 2018. | spa |
dc.relation.references | [26] D. Happel, “On the derived category of a finite-dimensional algebra,” Comment. Math. Helv., vol. 62, p. 339–389, 3 1987. | spa |
dc.relation.references | [27] D. Happel, Triangulated Categories in the Representation of Finite Dimensional Algebras, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, 1988. | spa |
dc.relation.references | 28] P. W. Kasteleyn, “The statistics of dimers on a lattice i. the number of dimer arrangements on a quadratic lattice,” Physica, vol. 27, p. 1209–1225, 12 1961. | spa |
dc.relation.references | [29] M. Katz and C. Stenson, “Tiling a (2 × n)-board with squares and dominoes,” Journal of Integer Sequences, vol. 12, 01 2009. | spa |
dc.relation.references | [30] B. Keller, “Cluster algebras, quiver representations and triangulated categories,” Cambridge University Press, pp. 76–160, 07 2010. | spa |
dc.relation.references | [31] Y. Kodama and L. Williams, “Kp solitons, total positivity, and cluster algebras,” Proc. Natl. Acad. Sci., vol. 108(22), p. 8984–8989, 2011. | spa |
dc.relation.references | [32] K. Lee, L. Li, M. Rabideau, and R. Schiffler, “On the ordering of the markov numbers,” preprint arXiv Mathematics e-prints, p. 0, 10 2020. | spa |
dc.relation.references | [33] K. Lee and R. Schiffler, “Positivity for cluster algebras,” Ann. Math., vol. 182, pp. 73–125, (1) 2015. | spa |
dc.relation.references | [34] B. Lindström, “On the vector representations of induced matroids,” Bulletin of the London Mathematical Society, vol. 5, p. 85–90, 03 1973. | spa |
dc.relation.references | [35] C. Melo, Emparejamientos perfectos, álgebras de conglomerado y algunas de sus aplicaciones (Master’s thesis). Universidad Nacional de Colombia, Bogotá, Colombia, 2019. | spa |
dc.relation.references | [36] G. Musiker, R. Schiffler, and L. Williams, “Positivity for cluster algebras from surfaces,” Advances in Mathematics, vol. 227, no. 6, pp. 2241–2308, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0001870811001423 | spa |
dc.relation.references | [37] G. Musiker, R. Schiffler, and L. Williams, “Bases for cluster algebras from surfaces,” Compos. Math., vol. 149, no. 2, pp. 217–263, 2013. | spa |
dc.relation.references | [38] K. Nagao, “Donaldson-thomas theory and cluster algebras,” Duke Math. J., vol. 162, pp. 1313–1367, 7 2013. | spa |
dc.relation.references | [39] T. Nakanishi and S. Stella, “Diagrammatic description of c-vectors and d-vectors of cluster algebras of finite type,” Electron. J. Comb., vol. 21, p. 1, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:9371369 | spa |
dc.relation.references | [40] T. Nakanishi and A. Zelevinsky, “On tropical dualities in cluster algebras,” Contemp. Math., vol. 565, p. 217–226, 2012. | spa |
dc.relation.references | [41] A. Nájera-Chávez, “On the c-vectors of an acyclic cluster algebra.” International Mathematical Research Notices, vol. 2015, pp. 1590–1600, 6 2013. | spa |
dc.relation.references | [42] M. Rabideau and R. Schiffler, “Continued fractions and orderings of the markov numbers,” Advances in Mathematics, vol. 370, pp. 107–231, 08 2020. | spa |
dc.relation.references | [43] R. Schiffler, “A geometric model for cluster categories of type Dn,” Journal of Algebraic Combinatorics, vol. 27, p. 1–21, 08 2008. | spa |
dc.relation.references | [44] R. Schiffler, Quiver Representations. Canadian Mathematical Society-Department of Mathematics University of Connecticut, CMS Books in Mathematics, Springer International Publishing, 2014. | spa |
dc.relation.references | [45] R. Stanley, Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press: Cambridge, 1999. | spa |
dc.relation.references | [46] R. Stanley, Enumerative Combinatorics, Volume 1. Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press: Cambridge, 2012. | spa |
dc.relation.references | [47] R. Stanley, Catalan Numbers. Cambridge University Press, 2015. | spa |
dc.relation.references | [48] H. Treffinger, “On sign-coherence of c-vectors,” Journal of Pure and Applied Algebra, vol. 223, no. 6, pp. 2382–2400, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022404918302147 | spa |
dc.relation.references | [49] I. Çanakçi and R. Schiffler, “Snake graph calculus and cluster algebras from surfaces,” Journal of Algebra, vol. 382, pp. 240–281, 09 2013. | spa |
dc.relation.references | [50] I. Çanakçi and R. Schiffler, “Cluster algebras and continued fractions,” Compositio Mathematica, vol. 154, no. 3, p. 65–593, 08 2018. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.subject.ddc | 510 - Matemáticas::512 - Álgebra | spa |
dc.subject.ddc | 510 - Matemáticas::516 - Geometría | spa |
dc.subject.other | Teoría de conjuntos de conglomerados | spa |
dc.subject.proposal | Álgebra de conglomerado | spa |
dc.subject.proposal | complejo de conglomerado | spa |
dc.subject.proposal | cono poliedral | spa |
dc.subject.proposal | variedades de conglomerado | spa |
dc.subject.proposal | funciones theta | spa |
dc.subject.proposal | g-vectores | spa |
dc.subject.proposal | c-vectores | spa |
dc.subject.proposal | teoría de representaciones | spa |
dc.subject.proposal | combinatoria | spa |
dc.subject.proposal | emparejamientos perfectos | spa |
dc.subject.proposal | mosaicos | spa |
dc.subject.proposal | caminos reticulares | spa |
dc.subject.proposal | rutas | spa |
dc.subject.proposal | Cluster algebra | eng |
dc.subject.proposal | cluster complex | eng |
dc.subject.proposal | polyhedral cone | eng |
dc.subject.proposal | cluster varieties | eng |
dc.subject.proposal | theta functions | eng |
dc.subject.proposal | g-vectors | eng |
dc.subject.proposal | c-vectors | eng |
dc.subject.proposal | representation theory | eng |
dc.subject.proposal | combinatorics | eng |
dc.subject.proposal | perfect matchings | eng |
dc.subject.proposal | tilings | eng |
dc.subject.proposal | lattice paths | eng |
dc.subject.proposal | routes | eng |
dc.subject.unam | Álgebra vectorial | spa |
dc.subject.unam | Teoría de conjuntos | spa |
dc.subject.unam | Estructuras algebraicas ordenadas | spa |
dc.subject.unam | Ordered algebraic structures | eng |
dc.subject.wikidata | Hiperplano | spa |
dc.subject.wikidata | Hyperplane | eng |
dc.title | On the cluster complex and theta functions for cluster Poisson varieties | eng |
dc.title.translated | Sobre el complejo de conglomerado y funciones theta para variedades de conglomerado de Poisson | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020812512.2024.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Thesis to obtain the degree of Doctor of Science in Mathematics
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: