On the cluster complex and theta functions for cluster Poisson varieties

dc.contributor.advisorNájera Chávez, Alfredo
dc.contributor.advisorDorado Correa, Ivon Andrea
dc.contributor.authorMelo López, Astrid Carolina
dc.contributor.cvlacMelo Lopez, Astrid Carolinaspa
dc.contributor.orcidhttps://orcid.org/0009-0006-9740-0386spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Astrid-Carolina-Melo-Lopezspa
dc.date.accessioned2024-10-24T22:01:57Z
dc.date.available2024-10-24T22:01:57Z
dc.date.issued2024
dc.descriptionilustraciones, gráficosspa
dc.description.abstractIn this thesis, we establish an explicit description of the cluster complex, denoted as ∆^+_s(X), associated to a skew-symmetrizable cluster Poisson variety X and a seed s. Our approach involves a detailed description of the cones of ∆^+_s(X) and their facets using c-vectors. Specifically, each c-matrix determines a polyhedral cone of ∆^+_s(X), and its columns (c-vectors) determine the equations of the supporting hyperplanes of the respective cone. Additionally, we can describe the dimension of these cones through the implicit equalities of the system of inequalities derived from the associated c-matrix. Furthermore, we give formulas for the theta functions parametrized by the integral points of ∆^+s(X) using F -polynomials. In the special case where X is skew-symmetric and the quiver Q associated to s is acyclic, we describe the normal vectors of the supporting hyperplanes of the cones of ∆^+_s(X) using g-vectors of (non-necessarily rigid) objects in Kb(proj kQ). We use this to provide classes of examples where the ray generators of the maximal cones of ∆^+_s(X) can be expressed in terms of c-vectors. Simultaneously, we investigate a description of perfect matchings of snake graphs using routes (certain families of non-intersecting lattice paths) in connected acyclic-directed graphs. With this description, we define the poset of k-routes and use the well-known relation between perfect matchings and F-polynomials to give an alternative approach to describe F-polynomials for surface type cluster algebras, both recursively and non-recursively, using k-routes. Furthermore, we identify some open problems and propose strategies to address them in future research projects, ensuring the continuity and expansion of this work.eng
dc.description.abstractEn esta tesis, establecemos una descripción explícita del complejo de conglomerado, denotado como ∆^+_s(X), para una variedad de conglomerado de Poisson antisimetrizable X y una semilla s. Nuestro enfoque proporciona una descripción detallada de los conos de ∆^+_s(X) y sus facetas usando c-vectores. Específicamente, cada c-matriz determina un cono de ∆^+_s(X), donde sus columnas (c-vectores) determinan las ecuaciones de los hiperplanos de soporte del cono respectivo. Adicionalmente, describimos la dimensión de estos conos a través de las igualdades implícitas del sistema de desigualdades derivado de la c-matriz asociada. Además, proporcionamos fórmulas para las funciones theta parametrizadas por los puntos enteros de ∆^+_s(X ) usando F-polinomios. En el caso especial donde X es antisimétrica y el carcaj Q asociado a s es acíclico, nuestros principales resultados consisten en describir los vectores normales de los hiperplanos de soporte de los conos de ∆^+_s(X) usando g-vectores de objetos (no necesariamente rígidos) en Kb(proj kQ). Esto permite proporcionar clases de ejemplos donde los generadores de los rayos de los conos maximales de ∆^+_s(X) pueden expresarse en términos de c-vectores. Simultáneamente, investigamos una descripción de los emparejamientos perfectos de grafos serpiente a través de rutas (ciertas familias de caminos reticulares que no se intersecan) en grafos dirigidos acíclicos conectados. Con esta descripción, definimos el poset de k-rutas y utilizamos la conocida relación entre emparejamientos perfectos y F -polinomios para dar un enfoque alternativo para describir esos F-polinomios para álgebras de conglomerado asociadas a una superficie, tanto de manera recursiva como no recursiva, a través de k-rutas. Además, profundizamos en la identificación de algunos problemas abiertos y proponemos estrategias para abordarlos en futuros proyectos de investigación, asegurando la continuidad y expansión de este trabajo. (Texto tomado de la fuente)spa
dc.description.curricularareaMatemáticas.Sede Bogotáspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.description.sponsorshipThis work was partially supported by Universidad Nacional de Colombia “CENTRO DE EXCELENCIA EN COMPUTACIÓN CIENTÍFICA CENTER OF EXCELLENCE IN SCIENTIFIC COMPUTING: COE-SCICO” project QUIPU No. 400000035813, Dirección de Investigación y Extensión, Universidad Nacional de Colombia - Sede Bogotá 2022, and by Universidad Nacional Autónoma de México the PAPIIT project IA100122, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México 2022.spa
dc.format.extent129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87050
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.references[1] T. Adachi, O. Iyama, and I. Reiten, “τ -tilting theory,” Compositio Mathematica, vol. 105, pp. 415–452, 03 2014. [Online]. Available: https://www.cambridge.org/core/journals/compositio-mathematica/article/tau-tilting-theory/A93966859BAAEC2B286AC46AB3839740spa
dc.relation.references[2] F. Ardila, Algebraic and Geometric Methods in Enumerative Combinatorics. Boca Raton, CRC Press: Handbook of enumerative combinatorics, 09 2015.spa
dc.relation.references[3] I. Assem, D. Simson, and A. Skowrónski, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory. Cambridge University Press, Cambridge: London Mathematical Society Student Texts, 02 2006.spa
dc.relation.references[4] A. Benjamin, N. Cameron, and J. Quinn, “Fibonacci determinants - a combinatorial approach,” The Fibonacci Quarterly, vol. 45, 12 2005.spa
dc.relation.references[5] L. Bossinger, M.-W. Cheung, T. Magee, and A. Nájera-Chávez, “Newton-okounkov bodies and minimal models for cluster varieties,” arXiv:2305.04903 [math.AG], 2023.spa
dc.relation.references[6] L. Bossinger, B. Frías-Medina, T. Magee, and A. Nájera-Chávez, “Toric degenerations of cluster varieties and cluster duality,” Compos. Math., vol. 156, pp. 2149–2206, 10 2020.spa
dc.relation.references[7] L. M. Bregman, “Some properties of nonnegative matrices and their permanents,” Soviet Math. Dokl., vol. 211, pp. 27–30, 06 1973.spa
dc.relation.references[8] P. Caldero, F. Chapoton, and R. Schiffler, “Quivers with relations arising from clusters (An case),” Transactions of the A.M.S., vol. 358, p. 1347–1364, 05 2005.spa
dc.relation.references[9] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming. Springer Publishing Company, Incorporated, 10 2014.spa
dc.relation.references[10] L. Demonet, O. Iyama, and G. Jasso, “τ -tilting finite algebras, bricks, and g-vectors,” International Mathematics Research Notices, pp. 852–892, 03 2019.spa
dc.relation.references[11] H. Derksen, J. Weyman, and A. Zelevinsky, “Quivers with potentials and their representations ii: Applications to cluster algebras,” Journal of the American Mathematical Society, vol. 23(3), p. 749–790, 09 2010.spa
dc.relation.references[12] G. Dupont, “An approach to non-simply laced cluster algebras,” Journal of Algebra, vol. 320, no. 4, pp. 1626–1661, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021869308001579spa
dc.relation.references[13] N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, “Alternating sign matrices and domino tilings,” Journal of Algebraic Combinatorics, vol. 1, pp. 111–132, 09 1992.spa
dc.relation.references[14] S.-P. Eu and T.-S. Fu, “A simple proof of the aztec diamond theorem,” Electronic Journal of Combinatorics, vol. 12, p. 8 pp., 01 2005.spa
dc.relation.references[15] A. Felikson, M. Shapiro, and P. Tumarkin, “Skew-symmetric cluster algebras of finite mutation type,” European Mathematical Society, issue 4, vol. 14, p. 1135–1180, 11 2014.spa
dc.relation.references[16] M. Fisher and H. Temperley, “Dimer problem in statistical mechanics – an exact result,” Philosophical Magazine, vol. 68, p. 1061–1063, 6 1961.spa
dc.relation.references[17] V. Fock and A. Goncharov, “Cluster ensembles, quantization and the dilogarithm,” Ann. Sci. Éc. Norm. Supér., vol. 6, p. 865–930, 2009.spa
dc.relation.references[18] S. Fomin, M. Shapiro, and D. Thurston, “Cluster algebras and triangulated surfaces. part i: Cluster complexes,” Acta Math, vol. 201, pp. 83–146, 10 2008.spa
dc.relation.references[19] S. Fomin and A. Zelevinsky, “Cluster algebras i: Foundations,” Journal of the American Mathematical Society, vol. 15, pp. 497–529, 05 2002.spa
dc.relation.references[20] S. Fomin and A. Zelevinsky, “Cluster algebras ii: Finite type classification,” Invent. Math., vol. 154, pp. 63–121, 01 2003.spa
dc.relation.references[21] S. Fomin and A. Zelevinsky, “Cluster algebras iv: Coefficients,” Compos. Math., vol. 143(1), pp. 112–164, 2007.spa
dc.relation.references[22] N. Garnier and O. Ramaré, “Fibonacci numbers and trigonometric identities,” Fibonacci Quart., pp. 1–7, 02 2008.spa
dc.relation.references[23] I. Gessel and X. Viennot, “Determinants, paths, and plane partitions,” Preprint, 1989.spa
dc.relation.references[24] M. Gross, P. Hacking, and S. Keel, “Birational geometry of cluster algebras,” Algebr. Geom., vol. 2, p. 137–175, 2 2015.spa
dc.relation.references[25] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, “Canonical bases for cluster algebras,” J. Amer. Math. Soc., vol. 31, p. 497–608, 2018.spa
dc.relation.references[26] D. Happel, “On the derived category of a finite-dimensional algebra,” Comment. Math. Helv., vol. 62, p. 339–389, 3 1987.spa
dc.relation.references[27] D. Happel, Triangulated Categories in the Representation of Finite Dimensional Algebras, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, 1988.spa
dc.relation.references28] P. W. Kasteleyn, “The statistics of dimers on a lattice i. the number of dimer arrangements on a quadratic lattice,” Physica, vol. 27, p. 1209–1225, 12 1961.spa
dc.relation.references[29] M. Katz and C. Stenson, “Tiling a (2 × n)-board with squares and dominoes,” Journal of Integer Sequences, vol. 12, 01 2009.spa
dc.relation.references[30] B. Keller, “Cluster algebras, quiver representations and triangulated categories,” Cambridge University Press, pp. 76–160, 07 2010.spa
dc.relation.references[31] Y. Kodama and L. Williams, “Kp solitons, total positivity, and cluster algebras,” Proc. Natl. Acad. Sci., vol. 108(22), p. 8984–8989, 2011.spa
dc.relation.references[32] K. Lee, L. Li, M. Rabideau, and R. Schiffler, “On the ordering of the markov numbers,” preprint arXiv Mathematics e-prints, p. 0, 10 2020.spa
dc.relation.references[33] K. Lee and R. Schiffler, “Positivity for cluster algebras,” Ann. Math., vol. 182, pp. 73–125, (1) 2015.spa
dc.relation.references[34] B. Lindström, “On the vector representations of induced matroids,” Bulletin of the London Mathematical Society, vol. 5, p. 85–90, 03 1973.spa
dc.relation.references[35] C. Melo, Emparejamientos perfectos, álgebras de conglomerado y algunas de sus aplicaciones (Master’s thesis). Universidad Nacional de Colombia, Bogotá, Colombia, 2019.spa
dc.relation.references[36] G. Musiker, R. Schiffler, and L. Williams, “Positivity for cluster algebras from surfaces,” Advances in Mathematics, vol. 227, no. 6, pp. 2241–2308, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0001870811001423spa
dc.relation.references[37] G. Musiker, R. Schiffler, and L. Williams, “Bases for cluster algebras from surfaces,” Compos. Math., vol. 149, no. 2, pp. 217–263, 2013.spa
dc.relation.references[38] K. Nagao, “Donaldson-thomas theory and cluster algebras,” Duke Math. J., vol. 162, pp. 1313–1367, 7 2013.spa
dc.relation.references[39] T. Nakanishi and S. Stella, “Diagrammatic description of c-vectors and d-vectors of cluster algebras of finite type,” Electron. J. Comb., vol. 21, p. 1, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:9371369spa
dc.relation.references[40] T. Nakanishi and A. Zelevinsky, “On tropical dualities in cluster algebras,” Contemp. Math., vol. 565, p. 217–226, 2012.spa
dc.relation.references[41] A. Nájera-Chávez, “On the c-vectors of an acyclic cluster algebra.” International Mathematical Research Notices, vol. 2015, pp. 1590–1600, 6 2013.spa
dc.relation.references[42] M. Rabideau and R. Schiffler, “Continued fractions and orderings of the markov numbers,” Advances in Mathematics, vol. 370, pp. 107–231, 08 2020.spa
dc.relation.references[43] R. Schiffler, “A geometric model for cluster categories of type Dn,” Journal of Algebraic Combinatorics, vol. 27, p. 1–21, 08 2008.spa
dc.relation.references[44] R. Schiffler, Quiver Representations. Canadian Mathematical Society-Department of Mathematics University of Connecticut, CMS Books in Mathematics, Springer International Publishing, 2014.spa
dc.relation.references[45] R. Stanley, Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press: Cambridge, 1999.spa
dc.relation.references[46] R. Stanley, Enumerative Combinatorics, Volume 1. Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press: Cambridge, 2012.spa
dc.relation.references[47] R. Stanley, Catalan Numbers. Cambridge University Press, 2015.spa
dc.relation.references[48] H. Treffinger, “On sign-coherence of c-vectors,” Journal of Pure and Applied Algebra, vol. 223, no. 6, pp. 2382–2400, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022404918302147spa
dc.relation.references[49] I. Çanakçi and R. Schiffler, “Snake graph calculus and cluster algebras from surfaces,” Journal of Algebra, vol. 382, pp. 240–281, 09 2013.spa
dc.relation.references[50] I. Çanakçi and R. Schiffler, “Cluster algebras and continued fractions,” Compositio Mathematica, vol. 154, no. 3, p. 65–593, 08 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.otherTeoría de conjuntos de conglomeradosspa
dc.subject.proposalÁlgebra de conglomeradospa
dc.subject.proposalcomplejo de conglomeradospa
dc.subject.proposalcono poliedralspa
dc.subject.proposalvariedades de conglomeradospa
dc.subject.proposalfunciones thetaspa
dc.subject.proposalg-vectoresspa
dc.subject.proposalc-vectoresspa
dc.subject.proposalteoría de representacionesspa
dc.subject.proposalcombinatoriaspa
dc.subject.proposalemparejamientos perfectosspa
dc.subject.proposalmosaicosspa
dc.subject.proposalcaminos reticularesspa
dc.subject.proposalrutasspa
dc.subject.proposalCluster algebraeng
dc.subject.proposalcluster complexeng
dc.subject.proposalpolyhedral coneeng
dc.subject.proposalcluster varietieseng
dc.subject.proposaltheta functionseng
dc.subject.proposalg-vectorseng
dc.subject.proposalc-vectorseng
dc.subject.proposalrepresentation theoryeng
dc.subject.proposalcombinatoricseng
dc.subject.proposalperfect matchingseng
dc.subject.proposaltilingseng
dc.subject.proposallattice pathseng
dc.subject.proposalrouteseng
dc.subject.unamÁlgebra vectorialspa
dc.subject.unamTeoría de conjuntosspa
dc.subject.unamEstructuras algebraicas ordenadasspa
dc.subject.unamOrdered algebraic structureseng
dc.subject.wikidataHiperplanospa
dc.subject.wikidataHyperplaneeng
dc.titleOn the cluster complex and theta functions for cluster Poisson varietieseng
dc.title.translatedSobre el complejo de conglomerado y funciones theta para variedades de conglomerado de Poissonspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020812512.2024.pdf
Tamaño:
1.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Thesis to obtain the degree of Doctor of Science in Mathematics

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: