Efecto de las señales visuales y la calidad del néctar en la toma de decisiones económicas en Apis mellifera
dc.contributor.advisor | Amaya Márquez, Marisol | spa |
dc.contributor.advisor | García Mendoza, Jair | spa |
dc.contributor.author | Hernández Peña, Juan Carlos | spa |
dc.contributor.researchgroup | Laboratorio de Investigaciones en Abejas (LABUN) | spa |
dc.date.accessioned | 2020-03-09T20:50:57Z | spa |
dc.date.available | 2020-03-09T20:50:57Z | spa |
dc.date.issued | 2019-06-07 | spa |
dc.description.abstract | En la naturaleza los organismos se encuentran inmersos en situaciones donde múltiples factores actúan simultáneamente. La percepción de la complejidad ambiental impone tareas que requieren de habilidades en el manejo de la información para alcanzar respuestas de desempeño ecológico que maximicen la aptitud biológica. El color es una percepción causada por propiedades físicas y químicas de las flores en el espacio visual de las abejas y afecta su capacidad de discriminación perceptual. La disponibilidad y la calidad del néctar afectan la escogencia floral de los polinizadores. Este estudio evaluó simultáneamente el efecto de la distancia perceptual de color y la diferencia en la concentración del néctar en la escogencia floral de A. mellifera L. var. africanizada. Se utilizaron parches de flores artificiales en los que se controló la distancia entre flores, la forma floral, la densidad de cada tipo floral y el volumen de solución azucarada ofrecido. La aproximación experimental usó condicionamiento diferencial y visualización sucesiva de color en vuelo libre. Las abejas se vieron expuestas a parches florales con distinto grado de similitud perceptual de color. Se registraron las elecciones florales de las abejas durante su actividad de forrajeo en tres situaciones tratamiento donde se cambió la concentración de azúcares en la solución asociada al color floral. Las abejas presentaron respuestas conductuales mediadas por procesos de aprendizaje que afectaron su capacidad de optimización de recurso. La exactitud y velocidad de la escogencia correcta se vio afectada por la capacidad de las abejas de discriminar el color y la concentración del néctar asociado a los tipos florales. Las abejas generaron expectativa al color y ésta fue dependiente de la distancia perceptual del color y la diferencia de concentración del néctar asociado a cada tipo floral. Este fenómeno tuvo costos en la adaptación de la conducta de escogencia floral correcta cuando cambió la oferta de néctar (Texto tomado de la fuente). | spa |
dc.description.abstract | In nature, organisms are immersed in situations where multiple factors act simultaneously. The perception of environmental complexity imposes tasks that require skills in the management of information to achieve ecological performance responses that maximize biological fitness. Color is a perception caused by the physical and chemical properties of flowers in the visual space of bees and affects their capacity for perceptual discrimination. The availability and quality of nectar affect the floral choice of pollinators. This study simultaneously evaluated the effect of the perceptual distance of color and the difference in the concentration of the nectar in the floral selection of Apis mellifera L. var. Africanized Patches of artificial flowers were used in which the distance between flowers, the floral shape, the density of each floral type and the volume of sucrose solution were controlled. The experimental approach used differential conditioning and successive color visualization in free flying. The bees were exposed to floral patches with different degrees of perceptual color similarity. The floral choices of the bees were recorded during their foraging activity in three treatment situations where the concentration of the nectar associated with the floral color changed. The bees presented behavioral responses mediated by learning processes that affected their resource optimization capacity. The accuracy and speed of the correct choice was affected by the ability of the bees to discriminate the color and concentration of the nectar associated with the floral types. The bees generated expectation to the color and this was dependent on the perceptual distance of the color and the difference of concentration of the nectar associated with each floral type. This phenomenon had costs in adapting the correct floral choice behavior when the nectar supply changed. | eng |
dc.description.additional | Magíster en Ciencias - Biología. Línea de investigación: Ecología cognitiva. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 146 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/76017 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.relation.references | Aizen, M. A., & Harder, L. D. (2009). The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 19(11), 915-918. http://doi.org/10.1016/j.cub.2009.03.071 | spa |
dc.relation.references | Amaya-Márquez, M., Hill, P., Abramson, C., Wells, H. (2014). Honey Bee Location- and Time-Linked Memory Use in Novel Foraging Situations: Floral Color Dependency. Insects. 5(1):243-69. | spa |
dc.relation.references | Amaya-Márquez, M., & Wells, H. (2008). Social Complexity and Learning Foraging Tasks in bees / Complejidad social y aprendizaje de tareas de forrajeo en abejas. Caldasia. 30(2):469-77. | spa |
dc.relation.references | Amaya-Márquez, M. (2009a). Memory And Learning In Bees’ Floral Choices. Acta Biológica Colombiana.14(2):125–136. | spa |
dc.relation.references | Amaya-Márquez, M. (2009b). Floral constancy in bees: a revision of theories and a comparison with other pollinators. Revista Colombiana de Entomología, 35, 206-216. | spa |
dc.relation.references | Anselme, P. (2012). Modularity of mind and the role of incentive motivation in representing novelty. Animal Cognition, (4), 443. | spa |
dc.relation.references | Avarguès-Weber, A., Brito Sanchez, M. G., Giurfa, M., & Dyer, A. G. (2010a). Aversive Reinforcement Improves Visual Discrimination Learning in Free-Flying Honeybees. PLOS ONE, 5(10), e15370. https://doi.org/10.1371/journal.pone.0015370 | spa |
dc.relation.references | Avarguès-Weber, A., Portelli, G., Benard, J., Dyer, A., & Giurfa, M. (2010b). Configural processing enables discrimination and categorization of face-like stimuli in honeybees. The Journal of Experimental Biology, 213(4), 593. https://doi.org/10.1242/jeb.039263 | spa |
dc.relation.references | Avargues-Weber, A., Deisig, N., & Giurfa, M. (2011). Visual Cognition in Social Insects (Vol. 56). https://doi.org/10.1146/annurev-ento-120709-144855 | spa |
dc.relation.references | Avargues-Weber, A., & Giurfa, M. (2013). Conceptual learning by miniature brains (Vol. 280). https://doi.org/10.1098/rspb.2013.1907 | spa |
dc.relation.references | Backhaus, W. (1991). Color opponent coding in the visual system of the honeybee. Vision Research, 31(7), 1381-1397. https://doi.org/10.1016/0042-6989(91)90059-E | spa |
dc.relation.references | Backhaus, W., & Menzel, R. (1987). Color distance derived from a receptor model of color vision in the honeybee (Vol. 55). https://doi.org/10.1007/BF02281978 | spa |
dc.relation.references | Backhaus, W., Menzel, R., & Kreissl, S. (1987). Multidimensional scaling of color similarity in bees (Vol. 56). https://doi.org/10.1007/BF00319510 | spa |
dc.relation.references | Baddeley, A. D. (1986). Working Memory. Clarendon Press. Recuperado a partir de https://books.google.com.co/books?id=ZKWbdv__vRMC | spa |
dc.relation.references | Baker, H. G., & Baker, I. (1983). A brief historical review of the chemistry of floral nectar. Pp. 126-152. En B. Bentley & T. Elias (Eds.), The biology of nectaries. New York: Columbia University Press. | spa |
dc.relation.references | Banschbach, V. S. (1994). Colour association influences honey bee choice between sucrose concentrations. Journal of Comparative Physiology, 175(1), 107-114. https://doi.org/10.1007/BF00217441 | spa |
dc.relation.references | Bateson, M., Healy, S. D., & Hurly, T. A. (2002). Irrational choices in hummingbird foraging behaviour. Animal Behaviour, 63(3), 587-596. https://doi.org/10.1006/anbe.2001.1925 | spa |
dc.relation.references | Bateson, M., Healy, S. D., & Hurly, T. A. (2003). Context-Dependent Foraging Decisions in Rufous Hummingbirds. Proceedings: Biological Sciences, 270(1521), 1271-1276. | spa |
dc.relation.references | Bateson, M., & Kacelnik, A. (1998). Risk-Sensitive Foraging: Decision Making in Variable Environments. pp. 297–342. Dukas R. ed. 1998. Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. Chicago:Univ. Chicago Press. | spa |
dc.relation.references | Bateson, M., & Kalcelnik. (1995). Accuracy of memory for amount in the foraging starling,Sturnus vulgaris. Animal Behaviour, 50(2), 431-443. https://doi.org/10.1006/anbe.1995.0257 | spa |
dc.relation.references | Biesmeijer, J. C., & Slaa, E. J. (2004). Information flow and organization of stingless bee foraging. Apidologie, 35(2), 143-157. https://doi.org/10.1051/apido:2004003 | spa |
dc.relation.references | Bitterman, M. E., Menzel, R., Fietz, A., & Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera) (Vol. 97). https://doi.org/10.1037//0735-7036.97.2.107 | spa |
dc.relation.references | Bitterman, M. E. (1976). Incentive Contrast in Honey Bees. Science, 192(4237), 380-382. | spa |
dc.relation.references | Bitterman, M. E. (1996). Comparative analysis of learning in honeybees. Animal Learning & Behavior, 24(2), 123-141. https://doi.org/10.3758/BF03198961 | spa |
dc.relation.references | Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull, 114(1), 80-99. | spa |
dc.relation.references | Bouton, M. E., Nelson, J. B., & Rosas, J. M. (1999). Stimulus generalization, context change, and forgetting. Psychol Bull, 125(2), 171-186. doi: 10.1037/0033-2909.125.2.171 | spa |
dc.relation.references | Bouton, M. E. (2016). Learning and Behavior. Sinauer. Recuperado a partir de https://books.google.com.co/books?id=QBqPjgEACAAJ | spa |
dc.relation.references | Brito, R. (1998). Constraints on information processing and their effects on behavior. En Cognitive ecology: The evolutionary ecology of information processing and decision making. (pp. 89-127). Chicago, IL, US: University of Chicago Press. | spa |
dc.relation.references | Brito, V., Telles, F., & Lunau, K. (2014). Ecología cognitiva de la polinización. En Biología de la polinización. (pp. 417-438). Eds: A. Rech, K. Agostini, P. Oliveira, & I. Machado, eds. Rio de Janeiro. Projecto Cultural. | spa |
dc.relation.references | Brown, M. F., Mckeon, D., Curley, T., Weston, B., Lambert, C., & Lebowitz, B. (1998). Working memory for color in honeybees. Animal Learning & Behavior, 26(3), 264-271. https://doi.org/10.3758/BF03199220 | spa |
dc.relation.references | Brown, M. F., Moore, J. A., Brown, C. H., & Langheld, K. D. (1997). The existence and extent of spatial working memory ability in honeybees. Animal Learning & Behavior, 25(4), 473-484. https://doi.org/10.3758/BF03209853 | spa |
dc.relation.references | Buchanan, G. M., & Bitterman, M. E. (1989). Learning in honeybees as a function of amount of reward: Tests of the equal-asymptote assumption. Animal Learning & Behavior, 17(4), 475-480. https://doi.org/10.3758/BF03205229 | spa |
dc.relation.references | Bukovac, Z., Shrestha, M., Garcia, J. E., Burd, M., Dorin, A., & Dyer, A. G. (2017). Why background colour matters to bees and flowers. Journal of Comparative Physiology A, 203(5), 369-380. https://doi.org/10.1007/s00359-017-1175-7 | spa |
dc.relation.references | Burnham, K. P., & Anderson, D. R. (2007). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer New York. Recuperado de https://books.google.com.co/books?id=IWUKBwAAQBAJ | spa |
dc.relation.references | Burnham, K., & R. Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Vol. 67). https://doi.org/10.1007/b97636 | spa |
dc.relation.references | Burns, J., & Dyer, A. (2008). Diversity of speed-accuracy strategies benefits social insects (Vol. 18). https://doi.org/10.1016/j.cub.2008.08.028 | spa |
dc.relation.references | Çakmak, I. (1993). Honey Bee Forager Individual Constancy: Innate Or Learned? University of Tulsa. Recuperado de https://books.google.com.co/books?id=CrdENwAACAAJ | spa |
dc.relation.references | Campbell, D. R., & Motten, A. F. (1985). The Mechanism of Competition for Pollination between Two Forest Herbs. Ecology, 66(2), 554-563. https://doi.org/10.2307/1940404 | spa |
dc.relation.references | Chandra, S., & Smith, B. H. (1998). An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). Journal of Experimental Biology, 201(22), 3113. | spa |
dc.relation.references | Chapman, R. F. (1998). The Insects: Structure and Function. Cambridge University Press. Recuperado a partir de https://books.google.com.co/books?id=jHUCdbgW4MAC | spa |
dc.relation.references | Cartar, R. V., & Dill, L. M. (1990). Why are bumble bees risk-sensitive foragers? Behavioral Ecology and Sociobiology, 26(2), 121-127. https://doi.org/10.1007/BF00171581 | spa |
dc.relation.references | Charnov, E., & Orians, G. (1973). Optimal Foraging: Some Theoretical Explorations. | spa |
dc.relation.references | Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129-136. https://doi.org/10.1016/0040-5809(76)90040-X | spa |
dc.relation.references | Cheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Animal Cognition, 9(2), 141-150. https://doi.org/10.1007/s10071-005-0012-5 | spa |
dc.relation.references | Cheng, K. (2005). Context cues eliminate retroactive interference effects in honeybees <em>Apis mellifera</em>. Journal of Experimental Biology, 208(6), 1019. https://doi.org/10.1242/jeb.01499 | spa |
dc.relation.references | Chittka, L., Dyer, A. G., Bock, F., & Dornhaus, A. (2003). Bees trade off foraging speed for accuracy. Nature, 424, 388. | spa |
dc.relation.references | Chittka, L. (1997). Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded - Why? (Vol. 45). https://doi.org/10.1080/07929978.1997.10676678 | spa |
dc.relation.references | Chittka, L., & Menzel, R. (1992). The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. Journal of Comparative Physiology A, 171(2), 171-181. https://doi.org/10.1007/BF00188925 | spa |
dc.relation.references | Chittka, L., Dyer, A. G., Bock, F., & Dornhaus, A. (2003). Bees trade off foraging speed for accuracy. Nature, 424, 388. | spa |
dc.relation.references | Chittka, L., & Thomson, J. D. (1997). Sensori-Motor Learning and Its Relevance for Task Specialization in Bumble Bees. Behavioral Ecology and Sociobiology, 41(6), 385-398. | spa |
dc.relation.references | Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower Constancy, Insect Psychology, and Plant Evolution. Naturwissenschaften, 86(8), 361-377. https://doi.org/10.1007/s001140050636 | spa |
dc.relation.references | Chittka, L. 1992. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J. comp. Physiol. A, 170, 533–543. | spa |
dc.relation.references | Chittka, B. (1998). Sensorimotor learning in bumblebees: long-term retention and reversal training. The Journal of Experimental Biology, 201(4), 515. | spa |
dc.relation.references | Chittka L., & Dornhaus, A (1999) Comparisons in physiology and evolution, and why bees can do the things they do. Ciencia al Dia 2, 1-17 http://www.ciencia.cl/CienciaAlDia/volumen2/numero2/articulos/articulo5.html | spa |
dc.relation.references | Chittka, L., & Schurkens, S. (2001). Successful invasion of a floral market. Nature, 411(6838), 653-653. https://doi.org/10.1038/35079676 | spa |
dc.relation.references | Chittka, L., & Thomson, J. D. (Eds.). (2001). Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge ; New York: Cambridge University Press. | spa |
dc.relation.references | Chittka, L. (1996). Optimal Sets of Color Receptors and Color Opponent Systems for Coding of Natural Objects in Insect Vision. Journal of Theoretical Biology, 181(2), 179-196. https://doi.org/10.1006/jtbi.1996.0124 | spa |
dc.relation.references | Chittka, L., Shmida, A., Troje, N., & Menzel, R. (1994). Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. The Biology of Ultraviolet Reception, 34(11), 1489-1508. https://doi.org/10.1016/0042-6989(94)90151-1 | spa |
dc.relation.references | Cnaani, J., Thomson, J. D., & Papaj, D. R. (2006). Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology, 112(3), 278–285. | spa |
dc.relation.references | Cott, H. B. (1957). Adaptive coloration in animals. London: Methuen.Cakmak, i. & Wells, H. (1995). Honey bee forager individual constancy: innate or learned? Bee Science, 3, 165–173. | spa |
dc.relation.references | Collett, T. S., & Zeil, J. (1998). Places and landmarks: An arthropod perspective. En Spatial representation in animals. (pp. 18-53). New York, NY, US: Oxford University Press. | spa |
dc.relation.references | Couvillon, P. A., & Bitterman, M. E. (1993). Learning in honeybees as a function of amount of reward: Further experiments with color. Animal Learning & Behavior, 21(1), 23-28. https://doi.org/10.3758/BF03197971 | spa |
dc.relation.references | Crespi, L. P. (1942). Quantitative Variation of Incentive and Performance in the White Rat. The American Journal of Psychology, 55(4), 467-517. https://doi.org/10.2307/1417120 | spa |
dc.relation.references | Dafni, A. (1984). Mimicry and Deception in Pollination. Annual Review of Ecology and Systematics, 15(1), 259-278. https://doi.org/10.1146/annurev.es.15.110184.001355 | spa |
dc.relation.references | Darwin, C. (1876). The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511694202 | spa |
dc.relation.references | Deisig, N., Sandoz, J.-C., Lachnit, H., Melchers, K., & Giurfa, M. (2003). A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. | spa |
dc.relation.references | Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1245-1255. | spa |
dc.relation.references | Demas, G. E., & Brown, M. F. (1995). Honey bees are predisposed to win-shift but can learn to win-stay. Animal Behaviour, 50(4), 1041-1045. https://doi.org/10.1016/0003-3472(95)80104-9 | spa |
dc.relation.references | De Marco, R., & Farina, W. (2001). Changes in food source profitability affect the trophallactic and dance behavior of forager honeybees (Apis mellifera L.). Behavioral Ecology and Sociobiology, 50(5), 441-449. https://doi.org/10.1007/s002650100382 | spa |
dc.relation.references | De Marco, R. J., Gil, M., & Farina, W. M. (2005). Does an increase in reward affect the precision of the encoding of directional information in the honeybee waggle dance? Journal of Comparative Physiology A, 191(5), 413-419. https://doi.org/10.1007/s00359-005-0602-3 | spa |
dc.relation.references | Devenport, J. A., & Devenport, L. D. (1993). Time-dependent decisions in dogs (Canis familiaris). Journal of Comparative Psychology, 107(2), 169-173. https://doi.org/10.1037/0735-7036.107.2.169 | spa |
dc.relation.references | Devenport, L. D., & Devenport, J. A. (1994). Time-dependent averaging of foraging information in least chipmunks and golden-mantled ground squirrels. Animal Behaviour, 47(4), 787-802. https://doi.org/10.1006/anbe.1994.1111 | spa |
dc.relation.references | Domjan, M., Grau, J. W., & Krause, M. A. (2010). The principles of learning and behavior (6th ed). Australia ; Belmont, CA: Wadsworth Cenage Learning. | spa |
dc.relation.references | Drezner-Levy, T., & Shafir, S. (2007). Parameters of variable reward distributions that affect risk sensitivity of honey bees. Journal of Experimental Biology, 210(2), 269. https://doi.org/10.1242/jeb.02656 | spa |
dc.relation.references | Dukas, R., & Real, L. A. (1993). Effects of recent experience on foraging decisions by bumble bees. Oecologia, 94(2), 244-246. https://doi.org/10.1007/BF00341323 | spa |
dc.relation.references | Dukas, R. (1998). Evolutionary ecology of learning pp. 129–174. Dukas R. ed. 1998. Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. Chicago:Univ. Chicago Press | spa |
dc.relation.references | Dukas, R. (2002). Behavioural and ecological consequences of limited attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1427), 1539-1547. https://doi.org/10.1098/rstb.2002.1063 | spa |
dc.relation.references | Dukas, R. (2004). Evolutionary Biology of Animal Cognition. Annual Review of Ecology, Evolution, and Systematics, 35(1), 347-374. https://doi.org/10.1146/annurev.ecolsys.35.112202.130152 | spa |
dc.relation.references | Dukas, R. (1999). Costs of Memory: Ideas and Predictions. Journal of Theoretical Biology, 197(1), 41-50. https://doi.org/10.1006/jtbi.1998.0856 | spa |
dc.relation.references | Dukas, R., & M. Ratcliffe, J. (2009). Cognitive Ecology II (Vol. 177). https://doi.org/10.7208/chicago/9780226169378.001.0001 | spa |
dc.relation.references | Dyer, A. G., Dorin, A., Reinhardt, V., & Rosa, M. G. (2012). Colour reverse learning and animal personalities: the advantage of behavioural diversity assessed with agent-based simulations. Nature Precedings, 20. | spa |
dc.relation.references | Dyer, A.G., & Neumeyer, C. (2005). Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191(6),547–557. doi:10.1007/s00359-005-0622-z | spa |
dc.relation.references | Dyer, A. (2005). Discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae) (Vol. 28). | spa |
dc.relation.references | Dyer, A., Streinzer, M., & Garcia, J. (2016). Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm (Vol. 202). https://doi.org/10.1007/s00359-016-1107-y | spa |
dc.relation.references | Dyer, A. G., & Chittka, L. (2004a). Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 190(2), 105-114. doi: 10.1007/s00359-003-0475-2 | spa |
dc.relation.references | Dyer, A., & Chittka, L. (2004b). Fine colour discrimination requires differential conditioning in bumblebees (Vol. 91). https://doi.org/10.1007/s00114-004-0508-x | spa |
dc.relation.references | Dyer, A. G. (1998). The colour of flowers in spectrally variable illumination and insect pollinator vision. Journal of Comparative Physiology A, 183(2), 203-212. https://doi.org/10.1007/s003590050248 | spa |
dc.relation.references | Dyer, A. G. (1999). Broad spectral sensitivities in the honeybee’s photoreceptors limit colour constancy. Journal of Comparative Physiology A, 185(5), 445-453. https://doi.org/10.1007/s003590050405 | spa |
dc.relation.references | Dyer, A., Spaethe, J., & Prack, S. (2008). Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection (Vol. 194). https://doi.org/10.1007/s00359-008-0335-1 | spa |
dc.relation.references | Dyer, Adrian G., Whitney, H. M., Arnold, S. E. J., Glover, B. J., & Chittka, L. (2007). Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interactions, 1(1), 45-55. https://doi.org/10.1007/s11829-007-9002-7 | spa |
dc.relation.references | Dyer, A., & Chittka, L. (2004). Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks (Vol. 190). https://doi.org/10.1007/s00359-004-0547-y | spa |
dc.relation.references | Enquist & Arak. Neural Representation and the Evolution of Signal Form. In Cognitive Ecology. The evolutionary ecology of information processing and decision making. Ed Dukas,R. (1998). The University of Chicago Press Chicago and London. | spa |
dc.relation.references | Erber, J. (1975). The dynamics of learning in the honey bee (Apis mellifica carnica). Journal of comparative physiology, 99(3), 243-255. https://doi.org/10.1007/BF00613838 | spa |
dc.relation.references | Faraway, J. J. (2016). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition. CRC Press. Recuperado de https://books.google.com.co/books?id=XAzYCwAAQBAJ | spa |
dc.relation.references | Farmer, E. W., & Taylor, R. M. (1980). Visual search through color displays: Effects of target-background similarity and background uniformity. Perception & Psychophysics, 27(3), 267-272. https://doi.org/10.3758/BF03204265 | spa |
dc.relation.references | Feinsinger, P. (1987). Effects of plant species on each other’s pollination: Is community structure influenced? Trends in Ecology & Evolution, 2(5), 123-126. https://doi.org/10.1016/0169-5347(87)90052-8 | spa |
dc.relation.references | Ferguson, H. J., Cobey, S., & Smith, B. H. (2001). Sensitivity to a change in reward is heritable in the honeybee, Apis mellifera. Animal Behaviour, 61(3), 527-534. https://doi.org/10.1006/anbe.2000.1635 | spa |
dc.relation.references | Fox, J., & Weisberg, S. (2011). An R Companion to Applied Regression. SAGE Publications. Recuperado de https://books.google.com.co/books?id=YH6NotdvzF0C | spa |
dc.relation.references | Free, J. B. (1963). The Flower Constancy of Honeybees. Journal of Animal Ecology, 32(1), 119-131. https://doi.org/10.2307/2521 | spa |
dc.relation.references | Free JB. (1966) The foraging behavior of bees and its effect on the isolation and speciation of plants. In: Hawkes JG (ed) Reproductive biology and taxonomy of vascular plants. Pergamon, Oxford, pp 76–91 | spa |
dc.relation.references | Free, J. B., & Williams, I. H. (1983). Foraging Behaviour of Honeybees and Bumble Bees on Brussels Sprout Grown to Produce Hybrid Seed. Journal of Apicultural Research, 22(2), 94-97. https://doi.org/10.1080/00218839.1983.11100566 | spa |
dc.relation.references | Fülöp, A., & Menzel, R. (2000). Risk-indifferent foraging behaviour in honeybees. Animal Behaviour, 60(5), 657-666. https://doi.org/10.1006/anbe.2000.1492 | spa |
dc.relation.references | Fuster, J. M. (1997). Network memory. Trends in neurosciences, 20(10), 451–459. | spa |
dc.relation.references | Gallai, N., Salles, J.-M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810-821. https://doi.org/https://doi.org/10.1016/j.ecolecon.2008.06.014 | spa |
dc.relation.references | Garcia, J. E., Shrestha, M., & Dyer, A. G. (2018). Flower signal variability overwhelms receptor-noise and requires plastic color learning in bees. Behavioral Ecology, 29(6), 1286-1297. https://doi.org/10.1093/beheco/ary127 | spa |
dc.relation.references | Garcia, J. E., Spaethe, J., & Dyer, A. G. (2017). The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models. Journal of Comparative Physiology A, 203(12), 983-997. https://doi.org/10.1007/s00359-017-1208-2 | spa |
dc.relation.references | Gegear, R. J., & Laverty, T. M. (2001). The effect of variation among floral traits on the flower constancy of pollinators. En J. D. Thomson & L. Chittka (Eds.), Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution (pp. 1-20). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542268.002 | spa |
dc.relation.references | Gil, M., & De Marco, R. (2009). Honeybees learn the sign and magnitude of reward variations (Vol. 212). https://doi.org/10.1242/jeb.032623 | spa |
dc.relation.references | Gil, M., De Marco, R. J., & Menzel, R. (2007). Learning reward expectations in honeybees. Learning & memory (Cold Spring Harbor, N.Y.), 14(7), 491-496. https://doi.org/10.1101/lm.618907 | spa |
dc.relation.references | Giurfa, M., Núñez, J., & Backhaus, W. (1994). Odour and colour information in the foraging choice behaviour of the honeybee. Journal of Comparative Physiology A, 175(6), 773-779. https://doi.org/10.1007/BF00191849 | spa |
dc.relation.references | Giurfa, M., Núñez, J., Chittka, L., & Menzel, R. (1995). Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A, 177(3), 247-259. https://doi.org/10.1007/BF00192415 | spa |
dc.relation.references | Giurfa, M., Vorobyev, M., Kevan, P., & Menzel, R. (1996). Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A, 178(5), 699-709. https://doi.org/10.1007/BF00227381 | spa |
dc.relation.references | Giurfa, M. (2004). Conditioning procedure and color discrimination in the honeybee Apis mellifera (Vol. 91). https://doi.org/10.1007/s00114-004-0530-z | spa |
dc.relation.references | Giurfa, M., Hammer, M., Stach, S., Stollhoff, N., Deisig, N., & Myziricki, C. (1999). Pattern learning by honeybees: Conditioning procedure and recognition strategy (Vol. 57). https://doi.org/10.1006/anbe.1998.0957 | spa |
dc.relation.references | Giurfa, M., & Núñez, J. (1989). Colour signals and choice behaviour of the honeybee (Apis mellifera ligustica). Journal of Insect Physiology, 35(12), 907-910. https://doi.org/10.1016/0022-1910(89)90012-7 | spa |
dc.relation.references | Giurfa, M. (2007). Behavioral and neural analysis of associative learning in the honeybee: A taste from the magic well (Vol. 193). https://doi.org/10.1007/s00359-007-0235-9 | spa |
dc.relation.references | Giurfa, M., Zhang, S., Jenett, A., Menzel, R., & V. Srinivasan, M. (2001). The concepts of `sameness’ and `difference’ in an insect (Vol. 410). https://doi.org/10.1038/35073582 | spa |
dc.relation.references | Goldman-Rakic, P. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485. https://doi.org/10.1016/0896-6273(95)90304-6 | spa |
dc.relation.references | Gould, J. L. (1987). Honey bees store learned flower-landing behaviour according to time of day. Animal Behaviour, 35(5), 1579-1581. https://doi.org/10.1016/S0003-3472(87)80038-6 | spa |
dc.relation.references | Gould, J. L. (1993). Ethological and Comparative Perspectives on Honey Bee Learning. En D. R. Papaj & A. C. Lewis (Eds.), Insect Learning: Ecology and Evolutionary Perspectives (pp. 18-50). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-2814-2_2 | spa |
dc.relation.references | Gould, J. L. (1985). How Bees Remember Flower Shapes. Science, 227(4693), 1492. https://doi.org/10.1126/science.227.4693.1492 | spa |
dc.relation.references | Gould, J. L. (1986). Pattern learning by honey bees. Animal Behaviour, 34(4), 990-997. https://doi.org/10.1016/S0003-3472(86)80157-9 | spa |
dc.relation.references | Gould, J. L. (1988). Resolution of pattern learning by honey bees. Journal of Insect Behavior, 1(2), 225-233. https://doi.org/10.1007/BF01052240 | spa |
dc.relation.references | Grant, V. (1949). Pollination Systems as Isolating Mechanisms in Angiosperms. Evolution, 3(1), 82-97. https://doi.org/10.2307/2405454 | spa |
dc.relation.references | Grant, V. (1950). The Flower Constancy of Bees. Botanical Review, 16(7), 379-398. | spa |
dc.relation.references | Greggers, U., & Menzel, R. (1993). Memory Dynamics and Foraging Strategies of Honeybees. Behavioral Ecology and Sociobiology, 32(1), 17-29. | spa |
dc.relation.references | Greggers, U., & Mauelshagen, J. (1997). Matching behavior of honeybees in a multiple-choice situation: The differential effect of environmental stimuli on the choice process. Animal Learning & Behavior, 25(4), 458-472. https://doi.org/10.3758/BF03209852 | spa |
dc.relation.references | Grosclaude, F. E., & Núñez, J. A. (1998). Foraging pauses and their meaning as an economic strategy in the honeybee Apis mellifera L. Journal of Comparative Physiology A, 183(1), 61-68. https://doi.org/10.1007/s003590050234 | spa |
dc.relation.references | Grüter, C., Moore, H., Firmin, N., Helanterä, H., & Ratnieks, F. L. W. (2011). Flower constancy in honey bee workers Apis mellifera depends on ecologically realistic rewards. The Journal of Experimental Biology, 214(8), 1397. https://doi.org/10.1242/jeb.050583 | spa |
dc.relation.references | Grüter, I; Sanderson, C; Blocke; TD; Lisa, Pham L; Checotah, S; Norman, AA et al. (2009). Different solutions by bees to a foraging problem. Animal Behaviour. 77(5):1273-80. | spa |
dc.relation.references | Gumbert, A. (2000). Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36-43. https://doi.org/10.1007/s002650000213 | spa |
dc.relation.references | Harder, L. D., & Real, L. A. (1987). Why are Bumble Bees Risk Averse? Ecology, 68(4), 1104-1108. https://doi.org/10.2307/1938384 | spa |
dc.relation.references | Heinrich, B. (2004). Bumblebee Economics. Harvard University Press. Recuperado a partir de https://books.google.com.co/books?id=73yeOpls5qsC | spa |
dc.relation.references | Heinrich, B. (1975). Energetics of Pollination. Annual Review of Ecology and Systematics, 6(1), 139-170. https://doi.org/10.1146/annurev.es.06.110175.001035 | spa |
dc.relation.references | Hellstern, F., Wüstenberg, D., & Hammer, M. (1995). Contextual learning in honeybees under laboratory conditions. | spa |
dc.relation.references | Hill, P. S. ., Wells, P. H., & Wells, H. (1997). Spontaneous flower constancy and learning in honey bees as a function of colour. Animal Behaviour, 54(3), 615-627. https://doi.org/10.1006/anbe.1996.0467 | spa |
dc.relation.references | Hill, P. S. M., Hollis, J., & Wells, H. (2001). Foraging decisions in nectarivores: unexpected interactions between flower constancy and energetic rewards. Animal Behaviour, 62(4), 729-737. https://doi.org/10.1006/anbe.2001.1775 | spa |
dc.relation.references | Hodges, C. M., & Wolf, L. L. (1981). Optimal Foraging in Bumblebees: Why Is Nectar Left behind in Flowers? Behavioral Ecology and Sociobiology, 9(1), 41-44. | spa |
dc.relation.references | Holland, P., & J. Straub, J. (1979). Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian conditioning (Vol. 5). https://doi.org/10.1037/0097-7403.5.1.65 | spa |
dc.relation.references | Honig, W. K., Hulse, S. H., Fowler, H., & Honig, K. (1978). Studies of working memory in the pigeon. Studies of Working Memory in the Pigeon Cognitive Processes in Animal Behavior, 211-248. | spa |
dc.relation.references | Isnec, M. R., Couvillon, P. A., & Bitterman, M. E. (1997). Short-term spatial memory in honeybees. Animal Learning & Behavior, 25(2), 165-170. https://doi.org/10.3758/BF03199054 | spa |
dc.relation.references | Jacobs L.F. (2006). From Movement to Transitivity: The Role of Hippocampal Parallel Maps in Configural Learni. Reviews in the Neurosciences, 17(1-2), 99. https://doi.org/10.1515/revneuro.2006.17.1-2.99 | spa |
dc.relation.references | Jernigan, C. M., Roubik, D. W., Wcislo, W. T., & Riveros, A. J. (2014). Color-dependent learning in restrained Africanized honey bees. The Journal of Experimental Biology, 217(3), 337. https://doi.org/10.1242/jeb.091355 | spa |
dc.relation.references | Jones, C. E. (1978). Pollinator Constancy as a Pre-Pollination Isolating Mechanism Between Sympatric Species of Cercidium. Evolution, 32(1), 189-198. https://doi.org/10.2307/2407419 | spa |
dc.relation.references | Kacelnik, A., & Brito e Abreu, F. (1998). Risky Choice and Weber’s Law. Journal of Theoretical Biology, 194(2), 289-298. https://doi.org/10.1006/jtbi.1998.0763 | spa |
dc.relation.references | Kacelnik, A., & Bateson, M. (1996). Risky Theories: The Effects of Variance on Foraging Decisions. American Zoologist, 36(4), 402-434. | spa |
dc.relation.references | Kamil, A. C. (1983). Optimal Foraging Theory and the Psychology of Learning. American Zoologist, 23(2), 291-302. | spa |
dc.relation.references | Kamil, A. (1985). The Ecology of Foraging Behavior: Implications for Animal Learning and Memory (Vol. 36). https://doi.org/10.1146/annurev.psych.36.1.141 | spa |
dc.relation.references | Kearns, C., Inouye, D., & Waser, N. M. (1998). Endangered mutualism: The Conservation of Plant-Pollinator Interactions. Annual Review of Ecology and Systematics, 29(1), 83-112. Recuperado a partir de http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.29.1.83 | spa |
dc.relation.references | Kemp, D. J., Herberstein, M. E., Fleishman, L. J., Endler, J. A., Bennett, A. T. D., Dyer, A. G., … Whiting, M. J. (2015). An Integrative Framework for the Appraisal of Coloration in Nature. The American Naturalist, 185(6), 705-724. https://doi.org/10.1086/681021 | spa |
dc.relation.references | Kevan, P. G. (1978). Floral coloration, its calorimetric and significance in anthecology. In Richards, A. J. (Ed.), The pollination offlowers by insects (pp. 51-78). Linnean Society Symposium Series. | spa |
dc.relation.references | Kevan, P. G. (1979). Vegetation and floral colors revealed by ultra- violet light: Interpretational difficulties for functional significance. American Journal of Botany, 66, 749-75 | spa |
dc.relation.references | Kevan, P. G., Clark, E. A., & Thomas, V. G. (1990). Insect pollinators and sustainable agriculture. American Journal of Alternative Agriculture, 5(1), 13-22. https://doi.org/10.1017/S0889189300003179 | spa |
dc.relation.references | Kevan, P. G., & Menzel, R. (2012). The plight of pollination and the interface of neurobiology, ecology and food security. The Environmentalist, 32(3), 300-310. https://doi.org/10.1007/s10669-012-9394-5 | spa |
dc.relation.references | Kevan, P. G., & Viana, B. F. (2003). The global decline of pollination services. Biodiversity, 4(4), 3-8. https://doi.org/10.1080/14888386.2003.9712703 | spa |
dc.relation.references | Kevan, P. G., & Backhaus, W. G. (1998). Color vision: ecology and evolution in making the best of the photic environment. En W. Backhaus, R. Kliegl, & J. Werner (Eds.), Color Vision. Perspectives From Different Disciplines. De Gruyter. | spa |
dc.relation.references | Kevan, P. G., Chittka, L., & Dyer, A. G. (2001). Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology, 204(14), 2571. | spa |
dc.relation.references | Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303. https://doi.org/10.1098/rspb.2006.3721 | spa |
dc.relation.references | Komatsu, H., & Ideura, Y. (1993). Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey (Vol. 70). https://doi.org/10.1152/jn.1993.70.2.677 | spa |
dc.relation.references | Komischke, B., Sandoz, J.-C., Lachnit, H., & Giurfa, M. (2003). Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees. Behavioural Brain Research, 145(1), 135-143. https://doi.org/10.1016/S0166-4328(03)00105-0 | spa |
dc.relation.references | Kraemer, P. J., & Golding, J. M. (1997). Adaptive forgetting in animals. Psychonomic Bulletin & Review, 4(4), 480-491. https://doi.org/10.3758/BF03214337 | spa |
dc.relation.references | Krebs, J. R., & Inman, A. J. (1994). Learning and foraging: Individuals, groups, and populations. Chicago, IL, US: University of Chicago Press. | spa |
dc.relation.references | Krzywinski, M., Altman, N., & Blainey, P. (2014). Nested designs. Nature Methods, 11, 977. | spa |
dc.relation.references | Kunze, J., & Gumbert, A. (2001). The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behavioral Ecology, 12(4), 447-456. https://doi.org/10.1093/beheco/12.4.447 | spa |
dc.relation.references | Land, M. F. (1997). The resolution of insect compound eyes. Israel Journal of Plant Sciences, 45(2-3), 79-91. https://doi.org/10.1080/07929978.1997.10676675 | spa |
dc.relation.references | Laverty, T. M. (1994a). Costs to foraging bumble bees of switching plant species. Canadian Journal of Zoology, 72(1), 43-47. https://doi.org/10.1139/z94-007 | spa |
dc.relation.references | Laverty, T. M. (1994b). Bumble bee learning and flower morphology. Animal Behaviour, 47(3), 531-545. https://doi.org/10.1006/anbe.1994.1077 | spa |
dc.relation.references | Lehrer, M. (1999). Dorsoventral asymmetry of colour discrimination in bees. Journal of Comparative Physiology A, 184(2), 195-206. https://doi.org/10.1007/s003590050318 | spa |
dc.relation.references | Lehrer, M. (1993). Why do bees turn back and look? Journal of Comparative Physiology A, 172(5), 549-563. https://doi.org/10.1007/BF00213678 | spa |
dc.relation.references | Lehrer, M., & Bischof, S. (1995). Detection of model flowers by honeybees: The role of chromatic and achromatic contrast. Naturwissenschaften, 82(3), 145-147. https://doi.org/10.1007/BF01177278 | spa |
dc.relation.references | Leonard, A. S., Dornhaus, A., & Papaj, D. R. (2011). Why are floral signals complex? an outline of functional hypotheses. In The Systematics Association Special Volume 81: Evolution of Plant-Pollinator Relationships (pp. 279-300). Cambridge University Press. DOI: 10.1017/CBO9781139014113.010 | spa |
dc.relation.references | Levin, D. A. (1972). The Adaptedness of Corolla-Color Variants in Experimental and Natural Populations of Phlox drummondii. The American Naturalist, 106(947), 57-70. https://doi.org/10.1086/282751 | spa |
dc.relation.references | Levin, D. A., & Anderson, W. W. (1970). Competition for Pollinators between Simultaneously Flowering Species. The American Naturalist, 104(939), 455-467. | spa |
dc.relation.references | Lindauer, M. 1975. Evolutionary aspects of orientation and learning. In: Function and Evolution in Behaviour: Essays in Honour ofProfessor Niko Tinbergen, F.R.S. (Ed. by G. Baerends, C. Beer & A. Manning), pp. 228–242. Oxford: Clarendon Press | spa |
dc.relation.references | Linné, C & Berger, AM. (1756). Calendarium Florae. Uppsala: excud. L. M. Hojer, Reg. Acad. typogr.5:19. | spa |
dc.relation.references | Logan, F. A. (1968). Incentive Theory and Changes in Reward. En K. W. Spence & J. T. Spence (Eds.), Psychology of Learning and Motivation (Vol. 2, pp. 1-30). Academic Press. https://doi.org/10.1016/S0079-7421(08)60420-X | spa |
dc.relation.references | Loo, S. K., & Bitterman, M. E. (1992). Learning in honeybees (Apis mellifera) as a function of sucrose concentration. Journal of Comparative Psychology, 106(1), 29-36. https://doi.org/10.1037/0735-7036.106.1.29 | spa |
dc.relation.references | Lythgoe, J. N. (1979). The Ecology of Vision. Clarendon Press. Recuperado de https://books.google.com.co/books?id=bVIXAQAAIAAJ | spa |
dc.relation.references | Mangiafico, S. (2015). An R Companion for the Handbook of Biological Statistics. | spa |
dc.relation.references | Marden, J. H., & Waddington K. D. (1981). Floral choices by honeybees in relation to the relative distances to flowers. Physiological Entomology, 6(4), 431-435. https://doi.org/10.1111/j.1365-3032.1981.tb00658.x | spa |
dc.relation.references | Mayr, E. (1963). Animal species and evolution. Belknap Press of Harvard University Press. Recuperado a partir de https://books.google.com.co/books?id=GDwuAAAAMAAJ | spa |
dc.relation.references | Mazur, J. (1996). Past experience, recency, and spontaneous recovery in choice behavior (Vol. 24). https://doi.org/10.3758/BF03198948 | spa |
dc.relation.references | Menzel, R., & Giurfa, M. (2006). Dimensions of Cognition in an Insect, the Honeybee. Behavioral and Cognitive Neuroscience Reviews, 5(1), 24-40. https://doi.org/10.1177/1534582306289522 | spa |
dc.relation.references | Menzel, R. (2001). Searching for the memory trace in a mini-brain, the honeybee. Learning & Memory, 8(2), 53–62. | spa |
dc.relation.references | Menzel, R. (1979). Behavioural access to short-term memory in bees. Nature, 281(5730), 368-369. https://doi.org/10.1038/281368a0 | spa |
dc.relation.references | Menzel, R. (1999). Memory dynamics in the honeybee. Journal of Comparative Physiology A, 185(4), 323-340. https://doi.org/10.1007/s003590050392 | spa |
dc.relation.references | Menzel, R., Geiger, K., Chittka, L., Joerges, J., Kunze, J., & Müller, U. (1996). The knowledge base of bee navigation. The Journal of Experimental Biology, 199(1), 141. | spa |
dc.relation.references | Menzel, R., Greggers, U., & Hammer, M. (1993). Functional Organization of Appetitive Learning and Memory in a Generalist Pollinator, the Honey Bee. En D. R. Papaj & A. C. Lewis (Eds.), Insect Learning: Ecology and Evolutionary Perspectives (pp. 79-125). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-2814-2_4 | spa |
dc.relation.references | Menzel, R. (1993). Associative learning in honey bees. Apidologie, 24(3), 157-168. https://doi.org/10.1051/apido:19930301 | spa |
dc.relation.references | Menzel, R. (1990). Learning, memory, and «cognition» in honey bees. En R. P. Kesner & D. S. Olton (Eds.), Neurobiology of Comparative Cognition. Taylor & Francis. Recuperado a partir de https://books.google.com.co/books?id=GhTsAgAAQBAJ | spa |
dc.relation.references | Menzel, R., & Erber, J. (1978). Learning and Memory in Bees. Scientific American, 239(1), 102-111. | spa |
dc.relation.references | Menzel, R. (1985). Learning in honey bees in an ecological and behavioral context Experimental Behavioral Ecology and Sociobiology: in Memoriam Karl von Frisch 1886-1982. Holldobler B, Lindauer M, editors. Erlbaum Associates. Hillsdale, New Jersey. | spa |
dc.relation.references | Menzel, R., Greggers, U., Smith, A; Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., Watzl, S. (2005). Honey bees navigate according to a map-like spatial memory 102 (8) 3040-3045, doi:10.1073/pnas.0408550102 | spa |
dc.relation.references | Mota, T., & Giurfa, M. (2010). Multiple reversal olfactory learning in honeybees. Front Behav Neurosci, 4. doi: 10.3389/fnbeh.2010.00048 | spa |
dc.relation.references | Morawetz, L., Svoboda, A., neume, J., & Dyer, A. G. (2013). Blue colour preference in honeybees distracts visual attention for learning closed shapes. Journal of Comparative Physiology A, 199(10), 817-827. https://doi.org/10.1007/s00359-013-0843-5 | spa |
dc.relation.references | Myung, I., Forster, M., & W. Browne, M. (2000). Special issue on model selection (Vol. 44). https://doi.org/10.1006/jmps.2000.1325 | spa |
dc.relation.references | Nachev, V., & Winter, Y. (2012). The psychophysics of uneconomical choice: non-linear reward evaluation by a nectar feeder. Animal cognition, 15(3), 393-400. https://doi.org/10.1007/s10071-011-0465-7 | spa |
dc.relation.references | Nachev, V., Stich, K. P., Winter, C., Bond, A., Kamil, A., & Winter, Y. (2017). Cognition-mediated evolution of low-quality floral nectars. Science, 355(6320), 75. https://doi.org/10.1126/science.aah4219 | spa |
dc.relation.references | Najera, D., McCullough, E., & Jander, R. (2012). Interpatch foraging in honeybees-rational decision making at secondary hubs based upon time and motivation. Animal Cognition, 15(6), 1195. | spa |
dc.relation.references | Nates-Parra G. (ed.). 2016. Iniciativa Colombiana de Polinizadores - Abejas - icpa. Bogotá, D. C. Departamento de Biología, Universidad Nacional de Colombia. 364 pp. | spa |
dc.relation.references | Newhall, S., W. Burnham, R., & R. Clark, J. (1957). Comparison of Successive with Simultaneous Color Matching (Vol. 47). https://doi.org/10.1364/JOSA.47.000979 | spa |
dc.relation.references | Newell, K. M. (1991). Motor Skill Acquisition. Annual Review of Psychology, 42(1), 213-237. https://doi.org/10.1146/annurev.ps.42.020191.001241 | spa |
dc.relation.references | Núñez, J. (1977). Nectar flow by melliferous flora and gathering flow by Apis mellifera ligustica (Vol. 23). https://doi.org/10.1016/0022-1910(77)90041-5 | spa |
dc.relation.references | Núñez, J. (1970). The relationship between sugar flow and foraging and recruiting behaviour of honey bees (Apis mellifera L.). Animal Behaviour, 18, 527-538. https://doi.org/10.1016/0003-3472(70)90049-7 | spa |
dc.relation.references | O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95. | spa |
dc.relation.references | Ohyama, T., Couvillon, P. A., & Bitterman, M. E. (1994). Perseveration in the color choices of honeybees. Journal of Insect Behavior, 8(3), 409-415. https://doi.org/10.1007/BF01989368 | spa |
dc.relation.references | Oster, G. F., & Wilson, E. O. (1978). Caste and Ecology in the Social Insects. Princeton University Press. Recuperado a partir de https://books.google.com.co/books?id=RGE0MwY_NWIC | spa |
dc.relation.references | Page Jr, R. E., Erber, J., & Fondrk, M. K. (1998). The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 182(4), 489-500. https://doi.org/10.1007/s003590050196 | spa |
dc.relation.references | Papaj, D & Lewis, C. (1993). Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York https://doi.org/10.1007/978-1-4615-2814-2 | spa |
dc.relation.references | Papini, M. R. (2008). Comparative psychology: Evolution and development of behavior, 2nd ed. New York, NY, US: Psychology Press. | spa |
dc.relation.references | Papiorek, S., Rohde, K., & Lunau, K. (2013). Bees’ subtle colour preferences: How bees respond to small changes in pigment concentration (Vol. 100). https://doi.org/10.1007/s00114-013-1060-3 | spa |
dc.relation.references | Pearce, J. (1994). Similarity and Discrimination: a Selective Review and a Connectionist Model (Vol. 101). https://doi.org/10.1037/0033-295X.101.4.587 | spa |
dc.relation.references | Peitsch, D., Fietz, A., Hertel, H., de Souza, J., Ventura, D. F., & Menzel, R. (1992). The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A, 170(1), 23-40. https://doi.org/10.1007/BF00190398 | spa |
dc.relation.references | Perry, C. J., Barron, A. B., & Chittka, L. (2017). The frontiers of insect cognition. Comparative cognition, 16, 111-118. https://doi.org/10.1016/j.cobeha.2017.05.011 | spa |
dc.relation.references | Peterson, G. B., Wheeler, R. L., & Armstrong, G. D. (1978). Expectancies as mediators in the differential-reward conditional discrimination performance of pigeons. Animal Learning & Behavior, 6(3), 279-285. https://doi.org/10.3758/BF03209614 | spa |
dc.relation.references | Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics: a primer (Sixth edition). New York: Worth Publishers. | spa |
dc.relation.references | Pyke, G. H. (1984). Optimal Foraging Theory: A Critical Review. Annual Review of Ecology and Systematics, 15(1), 523-575. https://doi.org/10.1146/annurev.es.15.110184.002515 | spa |
dc.relation.references | Quené, H., & van den Bergh, H. (2008). Examples of mixed-effects modeling with crossed random effects and with binomial data. Special Issue: Emerging Data Analysis, 59(4), 413-425. https://doi.org/10.1016/j.jml.2008.02.002 | spa |
dc.relation.references | Rathcke, B., & Lacey, E. P. (1985). Phenological Patterns of Terrestrial Plants. Annual Review of Ecology and Systematics, 16(1), 179-214. https://doi.org/10.1146/annurev.es.16.110185.001143 | spa |
dc.relation.references | Real, L. A. (1981). Uncertainty and Pollinator-Plant Interactions: The Foraging Behavior of Bees and Wasps on Artificial Flowers. Ecology, 62(1), 20-26. https://doi.org/10.2307/1936663 | spa |
dc.relation.references | Real, L., & Rathcke, B. J. (1988). Patterns of Individual Variability in Floral Resources. Ecology, 69(3), 728-735. https://doi.org/10.2307/1941021 | spa |
dc.relation.references | Real, L. A. 1991. Animal choice behavior and the evolution of cognitive architecture. Science, 253,980-985. | spa |
dc.relation.references | Renner, S. (2017). The evolutionary biology of floral mimicry. https://doi.org/10.1111/evo.13303 | spa |
dc.relation.references | Ribbands, C. R. (1954). Communication between honeybees. I: the response of crop-attached bees to the scent of their crop. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 29(10‐12), 141-144. https://doi.org/10.1111/j.1365-3032.1954.tb01187.x | spa |
dc.relation.references | Richards, R. J. (1987). Darwinism and the Emergence of Evolutionary Theories of Mind and Behavior. Chicago and London, 2(5), 385-387. https://doi.org/10.1046/j.1420-9101.1989.2050385.x | spa |
dc.relation.references | Ribbands , C. R. 1953. The Behavior and Social Life of Honey Bees. London: Bee Research Association. | spa |
dc.relation.references | Richter, M. R., & Waddington, K. D. (1993). Past foraging experience influences honey bee dance behaviour. Animal Behaviour, 46(1), 123-128. https://doi.org/10.1006/anbe.1993.1167 | spa |
dc.relation.references | Roberts, W. A. (1998). Principles of animal cognition. Boston: McGraw-Hill. | spa |
dc.relation.references | Romero, J., Hita, E., & Jiménez Del Barco, L. (1986). A comparative study of successive and simultaneous methods in color discrimination (Vol. 26). https://doi.org/10.1016/0042-6989(86)90189-6 | spa |
dc.relation.references | Rössler, W., & Groh, C. (2012). Plasticity of Synaptic Microcircuits in the Mushroom-Body Calyx of the Honey Bee. https://doi.org/10.1007/978-94-007-2099-2_12 | spa |
dc.relation.references | Sale, D.G. (1991). Neural adaptation to strength training. In: Strength and Power in Sport (ed P.V. Komi), pp. 249–265. Blackwell Scientific Publications, Oxford | spa |
dc.relation.references | Sandoz, J.-C., & Menzel, R. (2001). Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides. Learning & Memory, 8(5), 286-294. https://doi.org/10.1101/lm.41401 | spa |
dc.relation.references | Sanderson, C., Cook, P., Hill, P., S Orozco, B., Abramson, C., & Wells, H. (2013). Nectar Quality Perception by Honey Bees (Apis mellifera ligustica) (Vol. 127). https://doi.org/10.1037/a0032613 | spa |
dc.relation.references | Sanderson, C; Orozco, B; Hill, P; Wells, H. (2006). Honeybee (Apis mellifera ligustica) Response to Differences in Handling Time, Rewards and Flower Colours. Ethology. 112(10):937-46. | spa |
dc.relation.references | Scheiner, S. M. (1993). Genetics and Evolution of Phenotypic Plasticity. Annual Review of Ecology and Systematics, 24(1), 35-68. https://doi.org/10.1146/annurev.es.24.110193.000343 | spa |
dc.relation.references | Scheiner, R., Erber, J., & Page Jr., R. E. (1999). Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 185(1), 1-10. https://doi.org/10.1007/s003590050360 | spa |
dc.relation.references | Schubert, M., Lachnit, H., Francucci, S., & Giurfa, M. (2002). Nonelemental visual learning in honeybees. Animal Behaviour, 64(2), 175-184. https://doi.org/10.1006/anbe.2002.3055 | spa |
dc.relation.references | Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199-207. | spa |
dc.relation.references | Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28(4), 277-290. https://doi.org/10.1007/BF00175101 | spa |
dc.relation.references | Seeley, T. D. (1986). Social Foraging by Honeybees: How Colonies Allocate Foragers among Patches of Flowers. Behavioral Ecology and Sociobiology, 19(5), 343-354. | spa |
dc.relation.references | Seeley, T. D. (1994). Honey Bee Foragers as Sensory Units of Their Colonies. Behavioral Ecology and Sociobiology, 34(1), 51-62. | spa |
dc.relation.references | Seeley, T. D. (1995). The Wisdom of the Hive. Harvard University Press. Recuperado de https://books.google.com.co/books?id=zjggAQAAMAAJ | spa |
dc.relation.references | Shafir, S. (1994). Intransitivity of preferences in honey bees: support for «comparative» evaluation of foraging options. Animal Behaviour, 48(1), 55-67. https://doi.org/10.1006/anbe.1994.1211 | spa |
dc.relation.references | Shafir, S., Bechar, A., & Weber, E. U. (2003). Cognition-mediated coevolution – context-dependent evaluations and sensitivity of pollinators to variability in nectar rewards. Plant Systematics and Evolution, 238(1), 195-209. https://doi.org/10.1007/s00606-003-0280-y | spa |
dc.relation.references | Shafir, S., Waite, T. A., & Smith, B. H. (2002). Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behavioral Ecology and Sociobiology, 51(2), 180-187. https://doi.org/10.1007/s00265-001-0420-8 | spa |
dc.relation.references | Shafir, S., Wiegmann, D. D., Smith, B. H., & Real, L. A. (1999). Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward. Animal Behaviour, 57(5), 1055-1061. https://doi.org/10.1006/anbe.1998.1078 | spa |
dc.relation.references | Shapiro, M., Couvillon, P., & E Bitterman, M. (2001). Quantitative tests of an associative theory of risk-sensitivity in honeybees (Vol. 204). | spa |
dc.relation.references | Skinner, B. F. (1956). A case history in scientific method. American Psychologist, 11(5), 221-233. https://doi.org/10.1037/h0047662 | spa |
dc.relation.references | Smith, B. H., & Burden, C. M. (2014). A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research. Journal of Visualized Experiments, (91). https://doi.org/10.3791/51057 | spa |
dc.relation.references | Spaethe, J., Streinzer, M., Eckert, J., May, S., & Dyer, A. G. (2014). Behavioural evidence of colour vision in free flying stingless bees. Journal of Comparative Physiology A, 200(6), 485-496. https://doi.org/10.1007/s00359-014-0886-2 | spa |
dc.relation.references | Spaethe, J., Tautz, J., & Chittka, L. (2001). Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences, 98(7), 3898. https://doi.org/10.1073/pnas.071053098 | spa |
dc.relation.references | Spaethe, J., & Chittka, L. (2003). Interindividual variation of eye optics and single object resolution in bumblebees (Vol. 206). https://doi.org/10.1242/jeb.00570 | spa |
dc.relation.references | Srinivasan, M. (2009). Honey Bees as a Model for Vision, Perception, and Cognition (Vol. 55). https://doi.org/10.1146/annurev.ento.010908.164537 | spa |
dc.relation.references | Staddon, J. E. R. (1983). Adaptive Behavior and Learning. Cambridge University Press. Recuperado a partir de https://books.google.com.co/books?id=9Po3AAAAIAAJ | spa |
dc.relation.references | Stamps, J. (1995). Motor Learning and the Value of Familiar Space. The American Naturalist, 146(1), 41-58. | spa |
dc.relation.references | Stephens, D; Krebs, J. (1986). Foraging Theory [Internet]. Vol. 1. New Jersey: Princenton University. 247 p. Disponible en: http://dx.doi.org/10.1046/j.1420-9101.1988.1010086.x | spa |
dc.relation.references | Théry, M., & Casas, J. (2002). Predator and prey views of spider camouflage. Nature, 415, 133. | spa |
dc.relation.references | Thomson, J. D. (1980). A Simulation of Optimal Foraging: The Nuts and Bolts Approach. The American Biology Teacher, 42(9), 528-533. https://doi.org/10.2307/4447089 | spa |
dc.relation.references | Tinbergen, N. (1951). The study of instinct. New York, NY, US: Clarendon Press/Oxford University Press. | spa |
dc.relation.references | Tolman, E. C. (1957). Principles of Purposive Behavior. Recuperado de https://books.google.com.co/books?id=DZAQAQAAIAAJ | spa |
dc.relation.references | Townsend-Mehler, J. M., & Dyer, F. C. (2012). An integrated look at decision-making in bees as they abandon a depleted food source. Behavioral Ecology and Sociobiology, 66(2), 275-286. https://doi.org/10.1007/s00265-011-1275-2 | spa |
dc.relation.references | van der Kooi, C. J., Dyer, A. G., Kevan, P. G., & Lunau, K. (2018). Functional significance of the optical properties of flowers for visual signalling. Annals of Botany, 123(2), 263-276. https://doi.org/10.1093/aob/mcy119 | spa |
dc.relation.references | van Hateren, J. H., Srinivasan, M. V., & Wait, P. B. (1990). Pattern recognition in bees: orientation discrimination. Journal of Comparative Physiology A, 167(5), 649-654. https://doi.org/10.1007/BF00192658 | spa |
dc.relation.references | Via, S. (1987). Genetic Constraints on the Evolution of Phenotypic Plasticity. En V. Loeschcke (Ed.), Genetic Constraints on Adaptive Evolution (pp. 47-71). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-72770-2_4 | spa |
dc.relation.references | Vogel, S. (1983). Ecophysiology of Zoophilic Pollination. En O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler (Eds.), Physiological Plant Ecology III: Responses to the Chemical and Biological Environment (pp. 559-624). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-68153-0_16 | spa |
dc.relation.references | von Frisch, K. (1969). The Dance Language and Orientation of Bees (Vol. 5). https://doi.org/10.2307/2785 | spa |
dc.relation.references | von Frisch, K. (1957). La vida de las abejas. (E. Rodríguez, Trad.). Labor. Recuperado de https://books.google.com.co/books?id=RDy7GQAACAAJ | spa |
dc.relation.references | Vorobyev, M., & Menzel, R. (1999). Flower advertisement for insects: Bees, a case study. En S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge, & S. Vallerga (Eds.), Adaptive Mechanisms in the Ecology of Vision (pp. 537-553). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-0619-3_18 | spa |
dc.relation.references | Vorobyev, M., & Brandt, R. (1997). How do insect pollinators discriminate colors? Israel Journal of Plant Sciences, 45(2-3), 103-113. https://doi.org/10.1080/07929978.1997.10676677 | spa |
dc.relation.references | Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B., & Menzel, R. (2001). Colour thresholds and receptor noise: behaviour and physiology compared. Vision Research, 41(5), 639-653. https://doi.org/10.1016/S0042-6989(00)00288-1 | spa |
dc.relation.references | Uchikawa, K., & Ikeda, M. (1981). Temporal deterioration of wavelength discrimination with successive comparison method. Vision Research, 21(4), 591-595. | spa |
dc.relation.references | Waddington, K. D. (2001). Subjective evaluation and choice behavior by nectar-and pollen-collecting bees. En J. D. Thomson & L. Chittka (Eds.), Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution (pp. 41-60). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542268.004 | spa |
dc.relation.references | Waddington, K. D., Allen, T., & Heinrich, B. (1981). Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Animal Behaviour, 29(3), 779-784. https://doi.org/10.1016/S0003-3472(81)80011-5 | spa |
dc.relation.references | Waddington, K. D., & Gottlieb, N. (1990). Actual vs perceived profitability: A study of floral choice of honey bees. Journal of Insect Behavior, 3(4), 429-441. https://doi.org/10.1007/BF01052010 | spa |
dc.relation.references | Waddington, K. D. (1987). Perception of Foraging Costs and Intakes, and Foraging Decisions. En R. Menzel & A. Mercer (Eds.), Neurobiology and Behavior of Honeybees (pp. 66-75). Springer Berlin Heidelberg. | spa |
dc.relation.references | Watanabe, M., Cromwell, H., Tremblay, L., R. Hollerman, J., Hikosaka, K., & Schultz, W. (2001). Behavioral reactions reflecting differential reward expectations in monkeys (Vol. 140). https://doi.org/10.1007/s002210100856 | spa |
dc.relation.references | Watson, J. B. (1914). Behavior: an introduction to comparative psychology. H. Holt and company. Recuperado de https://books.google.com.co/books?id=5HBawAEACAAJ | spa |
dc.relation.references | Waser, N. M. (1978). Interspecific pollen transfer and competition between co-occurring plant species. Oecologia, 36(2), 223-236. https://doi.org/10.1007/BF00349811 | spa |
dc.relation.references | Waser, N. M. (1986).Flower Constancy: Definition, Cause, and Measurement. The American Naturalist.127(5):593-603. | spa |
dc.relation.references | Weiss, P. A., & Buechner, H. K. (1971). Hierarchically organized systems in theory and practice. Hafner Pub. Co. Recuperado de https://books.google.com.co/books?id=m9XwuAEACAAJ | spa |
dc.relation.references | West-Eberhard, M. J. (1989). Phenotypic Plasticity and the Origins of Diversity. Annual Review of Ecology and Systematics, 20(1), 249-278. https://doi.org/10.1146/annurev.es.20.110189.001341 | spa |
dc.relation.references | Weber, E. H. (1934/1996). On the sensitivity of the tactile senses. In H. E. Ross, & D. J. Murray (Eds. and Trans.), E. H. Weber on the tactile senses (pp. 21–136). Hove, England: Erlbaum UK Taylor & Francis (Original work published in 1934). | spa |
dc.relation.references | Wiegmann, D. D., Wiegmann, D. A., & Waldron, F. A. (2003). Effects of a reward downshift on the consummatory behavior and flower choices of bumblebee foragers. Physiology & Behavior, 79(4), 561-566. https://doi.org/10.1016/S0031-9384(03)00122-7 | spa |
dc.relation.references | Wells, P. H., & Wells, H. (1985). Ethological Isolation of Plants 2. Odour Selection By Honeybees. Journal of Apicultural Research, 24(2), 86-92. https://doi.org/10.1080/00218839.1985.11100654 | spa |
dc.relation.references | Wells, H. & Wells, P. H. 1983. Honey bee foraging ecology: optimal diet, minimal uncertainty or individual constancy? Journal of Animal Ecology, 52, 829-836. | spa |
dc.relation.references | Wells, P. H. & Wells, H. 1984. Can honey bees change foraging patterns? Ecological Entomology, 9, 467-473 | spa |
dc.relation.references | Wells, H. & Wells, P. H. 1986. Optimal diet, minimal uncertainty and individual constancy in the foraging of honey bees, Apis mellifera.Journal of Animal Ecology, 55,375-384. | spa |
dc.relation.references | Wells, H., Hill, P. S. & Wells, P. H. 1992. Nectarivore foraging ecology: rewards diVering in sugar types. Ecol. Entomol., 17, 280–288. | spa |
dc.relation.references | Whitham, T. G. (1977). Coevolution of Foraging in Bombus and Nectar Dispensing in Chilopsis: A Last Dreg Theory. Science, 197(4303), 593-596. | spa |
dc.relation.references | Whitlow, J. W., & Wagner, A. R. (1972). Negative patterning in classical conditioning: Summation of response tendencies to isolable and configurai components. Psychonomic Science, 27(5), 299-301. https://doi.org/10.3758/BF03328970 | spa |
dc.relation.references | Winston, M. L. (1991). The Biology of the Honey Bee. Harvard University Press. Recuperado a partir de https://books.google.com.co/books?id=-5iobWHLtAQC | spa |
dc.relation.references | Worthey, J. A., & Brill, M. H. (1986). Heuristic analysis of von Kries color constancy. J. Opt. Soc. Am. A, 3(10), 1708–1712. https://doi.org/10.1364/JOSAA.3.001708 | spa |
dc.relation.references | Zentall, T. R. (1997). Animal Memory: The Role of “Instructions”. Learning and Motivation, 28(2), 280-308. https://doi.org/10.1006/lmot.1996.0968 | spa |
dc.relation.references | Zhang, S., Lehrer, M., & Srinivasan, M. (1998) Stimulus-conditioned sequence learning in honeybees. In: Elsner, N., & Wehner, R (eds) Proceedings of the 26th Göttingen Neurobiology Conference. Thieme, Stuttgart, p 519 | spa |
dc.relation.references | Zhang, S., Schwarz, S., Pahl, M., Zhu, H., & Tautz, J. (2006). Honeybee memory: a honeybee knows what to do and when. Journal of Experimental Biology, 209(22), 4420. https://doi.org/10.1242/jeb.02522 | spa |
dc.relation.references | Zhang, S. (2000). Maze Navigation by Honeybees: Learning Path Regularity (Vol. 7). https://doi.org/10.1101/lm.32900 | spa |
dc.relation.references | Zhang, S., Si, A., & Pahl, M. (2012). Visually Guided Decision Making in Foraging Honeybees (Vol. 6). https://doi.org/10.3389/fnins.2012.00088 | spa |
dc.relation.references | . Zhang, S., & Srinivasan, M. (1994). Prior experience enhances pattern discrimination in insect vision (Vol. 368). https://doi.org/10.1038/368330a0 | spa |
dc.relation.references | Zhang, S., Srinivasan, M. V., Zhu, H., & Wong, J. (2004). Grouping of visual objects by honeybees. Journal of Experimental Biology, 207(19), 3289. https://doi.org/10.1242/jeb.01155 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | Animales::Invertebrados | spa |
dc.subject.ddc | 500 - Ciencias naturales y matemáticas | spa |
dc.subject.proposal | Decision making | eng |
dc.subject.proposal | Toma de decisiones | spa |
dc.subject.proposal | Color floral | spa |
dc.subject.proposal | Color flower | eng |
dc.subject.proposal | Optimización | spa |
dc.subject.proposal | Optimization | eng |
dc.subject.proposal | Learning | eng |
dc.subject.proposal | Aprendizaje | spa |
dc.subject.proposal | Pollinators | eng |
dc.subject.proposal | Polinizadores | spa |
dc.subject.proposal | Environmental change | eng |
dc.subject.proposal | Cambio ambiental | spa |
dc.subject.proposal | Plasticidad comportamental | spa |
dc.subject.proposal | Behavioral plasticity | eng |
dc.title | Efecto de las señales visuales y la calidad del néctar en la toma de decisiones económicas en Apis mellifera | spa |
dc.title.alternative | Effect of visual cues and nectar quality in economic decision making in Apis mellifera | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022955844.2019.pdf
- Tamaño:
- 3.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: