Efecto de las señales visuales y la calidad del néctar en la toma de decisiones económicas en Apis mellifera

dc.contributor.advisorAmaya Márquez, Marisolspa
dc.contributor.advisorGarcía Mendoza, Jairspa
dc.contributor.authorHernández Peña, Juan Carlosspa
dc.contributor.researchgroupLaboratorio de Investigaciones en Abejas (LABUN)spa
dc.date.accessioned2020-03-09T20:50:57Zspa
dc.date.available2020-03-09T20:50:57Zspa
dc.date.issued2019-06-07spa
dc.description.abstractEn la naturaleza los organismos se encuentran inmersos en situaciones donde múltiples factores actúan simultáneamente. La percepción de la complejidad ambiental impone tareas que requieren de habilidades en el manejo de la información para alcanzar respuestas de desempeño ecológico que maximicen la aptitud biológica. El color es una percepción causada por propiedades físicas y químicas de las flores en el espacio visual de las abejas y afecta su capacidad de discriminación perceptual. La disponibilidad y la calidad del néctar afectan la escogencia floral de los polinizadores. Este estudio evaluó simultáneamente el efecto de la distancia perceptual de color y la diferencia en la concentración del néctar en la escogencia floral de A. mellifera L. var. africanizada. Se utilizaron parches de flores artificiales en los que se controló la distancia entre flores, la forma floral, la densidad de cada tipo floral y el volumen de solución azucarada ofrecido. La aproximación experimental usó condicionamiento diferencial y visualización sucesiva de color en vuelo libre. Las abejas se vieron expuestas a parches florales con distinto grado de similitud perceptual de color. Se registraron las elecciones florales de las abejas durante su actividad de forrajeo en tres situaciones tratamiento donde se cambió la concentración de azúcares en la solución asociada al color floral. Las abejas presentaron respuestas conductuales mediadas por procesos de aprendizaje que afectaron su capacidad de optimización de recurso. La exactitud y velocidad de la escogencia correcta se vio afectada por la capacidad de las abejas de discriminar el color y la concentración del néctar asociado a los tipos florales. Las abejas generaron expectativa al color y ésta fue dependiente de la distancia perceptual del color y la diferencia de concentración del néctar asociado a cada tipo floral. Este fenómeno tuvo costos en la adaptación de la conducta de escogencia floral correcta cuando cambió la oferta de néctar (Texto tomado de la fuente).spa
dc.description.abstractIn nature, organisms are immersed in situations where multiple factors act simultaneously. The perception of environmental complexity imposes tasks that require skills in the management of information to achieve ecological performance responses that maximize biological fitness. Color is a perception caused by the physical and chemical properties of flowers in the visual space of bees and affects their capacity for perceptual discrimination. The availability and quality of nectar affect the floral choice of pollinators. This study simultaneously evaluated the effect of the perceptual distance of color and the difference in the concentration of the nectar in the floral selection of Apis mellifera L. var. Africanized Patches of artificial flowers were used in which the distance between flowers, the floral shape, the density of each floral type and the volume of sucrose solution were controlled. The experimental approach used differential conditioning and successive color visualization in free flying. The bees were exposed to floral patches with different degrees of perceptual color similarity. The floral choices of the bees were recorded during their foraging activity in three treatment situations where the concentration of the nectar associated with the floral color changed. The bees presented behavioral responses mediated by learning processes that affected their resource optimization capacity. The accuracy and speed of the correct choice was affected by the ability of the bees to discriminate the color and concentration of the nectar associated with the floral types. The bees generated expectation to the color and this was dependent on the perceptual distance of the color and the difference of concentration of the nectar associated with each floral type. This phenomenon had costs in adapting the correct floral choice behavior when the nectar supply changed.eng
dc.description.additionalMagíster en Ciencias - Biología. Línea de investigación: Ecología cognitiva.spa
dc.description.degreelevelMaestríaspa
dc.format.extent146spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76017
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesAizen, M. A., & Harder, L. D. (2009). The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 19(11), 915-918. http://doi.org/10.1016/j.cub.2009.03.071spa
dc.relation.referencesAmaya-Márquez, M., Hill, P., Abramson, C., Wells, H. (2014). Honey Bee Location- and Time-Linked Memory Use in Novel Foraging Situations: Floral Color Dependency. Insects. 5(1):243-69.spa
dc.relation.referencesAmaya-Márquez, M., & Wells, H. (2008). Social Complexity and Learning Foraging Tasks in bees / Complejidad social y aprendizaje de tareas de forrajeo en abejas. Caldasia. 30(2):469-77.spa
dc.relation.referencesAmaya-Márquez, M. (2009a). Memory And Learning In Bees’ Floral Choices. Acta Biológica Colombiana.14(2):125–136.spa
dc.relation.referencesAmaya-Márquez, M. (2009b). Floral constancy in bees: a revision of theories and a comparison with other pollinators. Revista Colombiana de Entomología, 35, 206-216.spa
dc.relation.referencesAnselme, P. (2012). Modularity of mind and the role of incentive motivation in representing novelty. Animal Cognition, (4), 443.spa
dc.relation.referencesAvarguès-Weber, A., Brito Sanchez, M. G., Giurfa, M., & Dyer, A. G. (2010a). Aversive Reinforcement Improves Visual Discrimination Learning in Free-Flying Honeybees. PLOS ONE, 5(10), e15370. https://doi.org/10.1371/journal.pone.0015370spa
dc.relation.referencesAvarguès-Weber, A., Portelli, G., Benard, J., Dyer, A., & Giurfa, M. (2010b). Configural processing enables discrimination and categorization of face-like stimuli in honeybees. The Journal of Experimental Biology, 213(4), 593. https://doi.org/10.1242/jeb.039263spa
dc.relation.referencesAvargues-Weber, A., Deisig, N., & Giurfa, M. (2011). Visual Cognition in Social Insects (Vol. 56). https://doi.org/10.1146/annurev-ento-120709-144855spa
dc.relation.referencesAvargues-Weber, A., & Giurfa, M. (2013). Conceptual learning by miniature brains (Vol. 280). https://doi.org/10.1098/rspb.2013.1907spa
dc.relation.referencesBackhaus, W. (1991). Color opponent coding in the visual system of the honeybee. Vision Research, 31(7), 1381-1397. https://doi.org/10.1016/0042-6989(91)90059-Espa
dc.relation.referencesBackhaus, W., & Menzel, R. (1987). Color distance derived from a receptor model of color vision in the honeybee (Vol. 55). https://doi.org/10.1007/BF02281978spa
dc.relation.referencesBackhaus, W., Menzel, R., & Kreissl, S. (1987). Multidimensional scaling of color similarity in bees (Vol. 56). https://doi.org/10.1007/BF00319510spa
dc.relation.referencesBaddeley, A. D. (1986). Working Memory. Clarendon Press. Recuperado a partir de https://books.google.com.co/books?id=ZKWbdv__vRMCspa
dc.relation.referencesBaker, H. G., & Baker, I. (1983). A brief historical review of the chemistry of floral nectar. Pp. 126-152. En B. Bentley & T. Elias (Eds.), The biology of nectaries. New York: Columbia University Press.spa
dc.relation.referencesBanschbach, V. S. (1994). Colour association influences honey bee choice between sucrose concentrations. Journal of Comparative Physiology, 175(1), 107-114. https://doi.org/10.1007/BF00217441spa
dc.relation.referencesBateson, M., Healy, S. D., & Hurly, T. A. (2002). Irrational choices in hummingbird foraging behaviour. Animal Behaviour, 63(3), 587-596. https://doi.org/10.1006/anbe.2001.1925spa
dc.relation.referencesBateson, M., Healy, S. D., & Hurly, T. A. (2003). Context-Dependent Foraging Decisions in Rufous Hummingbirds. Proceedings: Biological Sciences, 270(1521), 1271-1276.spa
dc.relation.referencesBateson, M., & Kacelnik, A. (1998). Risk-Sensitive Foraging: Decision Making in Variable Environments. pp. 297–342. Dukas R. ed. 1998. Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. Chicago:Univ. Chicago Press.spa
dc.relation.referencesBateson, M., & Kalcelnik. (1995). Accuracy of memory for amount in the foraging starling,Sturnus vulgaris. Animal Behaviour, 50(2), 431-443. https://doi.org/10.1006/anbe.1995.0257spa
dc.relation.referencesBiesmeijer, J. C., & Slaa, E. J. (2004). Information flow and organization of stingless bee foraging. Apidologie, 35(2), 143-157. https://doi.org/10.1051/apido:2004003spa
dc.relation.referencesBitterman, M. E., Menzel, R., Fietz, A., & Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera) (Vol. 97). https://doi.org/10.1037//0735-7036.97.2.107spa
dc.relation.referencesBitterman, M. E. (1976). Incentive Contrast in Honey Bees. Science, 192(4237), 380-382.spa
dc.relation.referencesBitterman, M. E. (1996). Comparative analysis of learning in honeybees. Animal Learning & Behavior, 24(2), 123-141. https://doi.org/10.3758/BF03198961spa
dc.relation.referencesBouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull, 114(1), 80-99.spa
dc.relation.referencesBouton, M. E., Nelson, J. B., & Rosas, J. M. (1999). Stimulus generalization, context change, and forgetting. Psychol Bull, 125(2), 171-186. doi: 10.1037/0033-2909.125.2.171spa
dc.relation.referencesBouton, M. E. (2016). Learning and Behavior. Sinauer. Recuperado a partir de https://books.google.com.co/books?id=QBqPjgEACAAJspa
dc.relation.referencesBrito, R. (1998). Constraints on information processing and their effects on behavior. En Cognitive ecology: The evolutionary ecology of information processing and decision making. (pp. 89-127). Chicago, IL, US: University of Chicago Press.spa
dc.relation.referencesBrito, V., Telles, F., & Lunau, K. (2014). Ecología cognitiva de la polinización. En Biología de la polinización. (pp. 417-438). Eds: A. Rech, K. Agostini, P. Oliveira, & I. Machado, eds. Rio de Janeiro. Projecto Cultural.spa
dc.relation.referencesBrown, M. F., Mckeon, D., Curley, T., Weston, B., Lambert, C., & Lebowitz, B. (1998). Working memory for color in honeybees. Animal Learning & Behavior, 26(3), 264-271. https://doi.org/10.3758/BF03199220spa
dc.relation.referencesBrown, M. F., Moore, J. A., Brown, C. H., & Langheld, K. D. (1997). The existence and extent of spatial working memory ability in honeybees. Animal Learning & Behavior, 25(4), 473-484. https://doi.org/10.3758/BF03209853spa
dc.relation.referencesBuchanan, G. M., & Bitterman, M. E. (1989). Learning in honeybees as a function of amount of reward: Tests of the equal-asymptote assumption. Animal Learning & Behavior, 17(4), 475-480. https://doi.org/10.3758/BF03205229spa
dc.relation.referencesBukovac, Z., Shrestha, M., Garcia, J. E., Burd, M., Dorin, A., & Dyer, A. G. (2017). Why background colour matters to bees and flowers. Journal of Comparative Physiology A, 203(5), 369-380. https://doi.org/10.1007/s00359-017-1175-7spa
dc.relation.referencesBurnham, K. P., & Anderson, D. R. (2007). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer New York. Recuperado de https://books.google.com.co/books?id=IWUKBwAAQBAJspa
dc.relation.referencesBurnham, K., & R. Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Vol. 67). https://doi.org/10.1007/b97636spa
dc.relation.referencesBurns, J., & Dyer, A. (2008). Diversity of speed-accuracy strategies benefits social insects (Vol. 18). https://doi.org/10.1016/j.cub.2008.08.028spa
dc.relation.referencesÇakmak, I. (1993). Honey Bee Forager Individual Constancy: Innate Or Learned? University of Tulsa. Recuperado de https://books.google.com.co/books?id=CrdENwAACAAJspa
dc.relation.referencesCampbell, D. R., & Motten, A. F. (1985). The Mechanism of Competition for Pollination between Two Forest Herbs. Ecology, 66(2), 554-563. https://doi.org/10.2307/1940404spa
dc.relation.referencesChandra, S., & Smith, B. H. (1998). An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). Journal of Experimental Biology, 201(22), 3113.spa
dc.relation.referencesChapman, R. F. (1998). The Insects: Structure and Function. Cambridge University Press. Recuperado a partir de https://books.google.com.co/books?id=jHUCdbgW4MACspa
dc.relation.referencesCartar, R. V., & Dill, L. M. (1990). Why are bumble bees risk-sensitive foragers? Behavioral Ecology and Sociobiology, 26(2), 121-127. https://doi.org/10.1007/BF00171581spa
dc.relation.referencesCharnov, E., & Orians, G. (1973). Optimal Foraging: Some Theoretical Explorations.spa
dc.relation.referencesCharnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129-136. https://doi.org/10.1016/0040-5809(76)90040-Xspa
dc.relation.referencesCheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Animal Cognition, 9(2), 141-150. https://doi.org/10.1007/s10071-005-0012-5spa
dc.relation.referencesCheng, K. (2005). Context cues eliminate retroactive interference effects in honeybees <em>Apis mellifera</em>. Journal of Experimental Biology, 208(6), 1019. https://doi.org/10.1242/jeb.01499spa
dc.relation.referencesChittka, L., Dyer, A. G., Bock, F., & Dornhaus, A. (2003). Bees trade off foraging speed for accuracy. Nature, 424, 388.spa
dc.relation.referencesChittka, L. (1997). Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded - Why? (Vol. 45). https://doi.org/10.1080/07929978.1997.10676678spa
dc.relation.referencesChittka, L., & Menzel, R. (1992). The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. Journal of Comparative Physiology A, 171(2), 171-181. https://doi.org/10.1007/BF00188925spa
dc.relation.referencesChittka, L., Dyer, A. G., Bock, F., & Dornhaus, A. (2003). Bees trade off foraging speed for accuracy. Nature, 424, 388.spa
dc.relation.referencesChittka, L., & Thomson, J. D. (1997). Sensori-Motor Learning and Its Relevance for Task Specialization in Bumble Bees. Behavioral Ecology and Sociobiology, 41(6), 385-398.spa
dc.relation.referencesChittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower Constancy, Insect Psychology, and Plant Evolution. Naturwissenschaften, 86(8), 361-377. https://doi.org/10.1007/s001140050636spa
dc.relation.referencesChittka, L. 1992. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J. comp. Physiol. A, 170, 533–543.spa
dc.relation.referencesChittka, B. (1998). Sensorimotor learning in bumblebees: long-term retention and reversal training. The Journal of Experimental Biology, 201(4), 515.spa
dc.relation.referencesChittka L., & Dornhaus, A (1999) Comparisons in physiology and evolution, and why bees can do the things they do. Ciencia al Dia 2, 1-17 http://www.ciencia.cl/CienciaAlDia/volumen2/numero2/articulos/articulo5.htmlspa
dc.relation.referencesChittka, L., & Schurkens, S. (2001). Successful invasion of a floral market. Nature, 411(6838), 653-653. https://doi.org/10.1038/35079676spa
dc.relation.referencesChittka, L., & Thomson, J. D. (Eds.). (2001). Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge ; New York: Cambridge University Press.spa
dc.relation.referencesChittka, L. (1996). Optimal Sets of Color Receptors and Color Opponent Systems for Coding of Natural Objects in Insect Vision. Journal of Theoretical Biology, 181(2), 179-196. https://doi.org/10.1006/jtbi.1996.0124spa
dc.relation.referencesChittka, L., Shmida, A., Troje, N., & Menzel, R. (1994). Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. The Biology of Ultraviolet Reception, 34(11), 1489-1508. https://doi.org/10.1016/0042-6989(94)90151-1spa
dc.relation.referencesCnaani, J., Thomson, J. D., & Papaj, D. R. (2006). Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology, 112(3), 278–285.spa
dc.relation.referencesCott, H. B. (1957). Adaptive coloration in animals. London: Methuen.Cakmak, i. & Wells, H. (1995). Honey bee forager individual constancy: innate or learned? Bee Science, 3, 165–173.spa
dc.relation.referencesCollett, T. S., & Zeil, J. (1998). Places and landmarks: An arthropod perspective. En Spatial representation in animals. (pp. 18-53). New York, NY, US: Oxford University Press.spa
dc.relation.referencesCouvillon, P. A., & Bitterman, M. E. (1993). Learning in honeybees as a function of amount of reward: Further experiments with color. Animal Learning & Behavior, 21(1), 23-28. https://doi.org/10.3758/BF03197971spa
dc.relation.referencesCrespi, L. P. (1942). Quantitative Variation of Incentive and Performance in the White Rat. The American Journal of Psychology, 55(4), 467-517. https://doi.org/10.2307/1417120spa
dc.relation.referencesDafni, A. (1984). Mimicry and Deception in Pollination. Annual Review of Ecology and Systematics, 15(1), 259-278. https://doi.org/10.1146/annurev.es.15.110184.001355spa
dc.relation.referencesDarwin, C. (1876). The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511694202spa
dc.relation.referencesDeisig, N., Sandoz, J.-C., Lachnit, H., Melchers, K., & Giurfa, M. (2003). A modified version of the unique cue theory accounts for olfactory compound processing in honeybees.spa
dc.relation.referencesDesimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1245-1255.spa
dc.relation.referencesDemas, G. E., & Brown, M. F. (1995). Honey bees are predisposed to win-shift but can learn to win-stay. Animal Behaviour, 50(4), 1041-1045. https://doi.org/10.1016/0003-3472(95)80104-9spa
dc.relation.referencesDe Marco, R., & Farina, W. (2001). Changes in food source profitability affect the trophallactic and dance behavior of forager honeybees (Apis mellifera L.). Behavioral Ecology and Sociobiology, 50(5), 441-449. https://doi.org/10.1007/s002650100382spa
dc.relation.referencesDe Marco, R. J., Gil, M., & Farina, W. M. (2005). Does an increase in reward affect the precision of the encoding of directional information in the honeybee waggle dance? Journal of Comparative Physiology A, 191(5), 413-419. https://doi.org/10.1007/s00359-005-0602-3spa
dc.relation.referencesDevenport, J. A., & Devenport, L. D. (1993). Time-dependent decisions in dogs (Canis familiaris). Journal of Comparative Psychology, 107(2), 169-173. https://doi.org/10.1037/0735-7036.107.2.169spa
dc.relation.referencesDevenport, L. D., & Devenport, J. A. (1994). Time-dependent averaging of foraging information in least chipmunks and golden-mantled ground squirrels. Animal Behaviour, 47(4), 787-802. https://doi.org/10.1006/anbe.1994.1111spa
dc.relation.referencesDomjan, M., Grau, J. W., & Krause, M. A. (2010). The principles of learning and behavior (6th ed). Australia ; Belmont, CA: Wadsworth Cenage Learning.spa
dc.relation.referencesDrezner-Levy, T., & Shafir, S. (2007). Parameters of variable reward distributions that affect risk sensitivity of honey bees. Journal of Experimental Biology, 210(2), 269. https://doi.org/10.1242/jeb.02656spa
dc.relation.referencesDukas, R., & Real, L. A. (1993). Effects of recent experience on foraging decisions by bumble bees. Oecologia, 94(2), 244-246. https://doi.org/10.1007/BF00341323spa
dc.relation.referencesDukas, R. (1998). Evolutionary ecology of learning pp. 129–174. Dukas R. ed. 1998. Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. Chicago:Univ. Chicago Pressspa
dc.relation.referencesDukas, R. (2002). Behavioural and ecological consequences of limited attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1427), 1539-1547. https://doi.org/10.1098/rstb.2002.1063spa
dc.relation.referencesDukas, R. (2004). Evolutionary Biology of Animal Cognition. Annual Review of Ecology, Evolution, and Systematics, 35(1), 347-374. https://doi.org/10.1146/annurev.ecolsys.35.112202.130152spa
dc.relation.referencesDukas, R. (1999). Costs of Memory: Ideas and Predictions. Journal of Theoretical Biology, 197(1), 41-50. https://doi.org/10.1006/jtbi.1998.0856spa
dc.relation.referencesDukas, R., & M. Ratcliffe, J. (2009). Cognitive Ecology II (Vol. 177). https://doi.org/10.7208/chicago/9780226169378.001.0001spa
dc.relation.referencesDyer, A. G., Dorin, A., Reinhardt, V., & Rosa, M. G. (2012). Colour reverse learning and animal personalities: the advantage of behavioural diversity assessed with agent-based simulations. Nature Precedings, 20.spa
dc.relation.referencesDyer, A.G., & Neumeyer, C. (2005). Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191(6),547–557. doi:10.1007/s00359-005-0622-zspa
dc.relation.referencesDyer, A. (2005). Discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae) (Vol. 28).spa
dc.relation.referencesDyer, A., Streinzer, M., & Garcia, J. (2016). Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm (Vol. 202). https://doi.org/10.1007/s00359-016-1107-yspa
dc.relation.referencesDyer, A. G., & Chittka, L. (2004a). Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 190(2), 105-114. doi: 10.1007/s00359-003-0475-2spa
dc.relation.referencesDyer, A., & Chittka, L. (2004b). Fine colour discrimination requires differential conditioning in bumblebees (Vol. 91). https://doi.org/10.1007/s00114-004-0508-xspa
dc.relation.referencesDyer, A. G. (1998). The colour of flowers in spectrally variable illumination and insect pollinator vision. Journal of Comparative Physiology A, 183(2), 203-212. https://doi.org/10.1007/s003590050248spa
dc.relation.referencesDyer, A. G. (1999). Broad spectral sensitivities in the honeybee’s photoreceptors limit colour constancy. Journal of Comparative Physiology A, 185(5), 445-453. https://doi.org/10.1007/s003590050405spa
dc.relation.referencesDyer, A., Spaethe, J., & Prack, S. (2008). Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection (Vol. 194). https://doi.org/10.1007/s00359-008-0335-1spa
dc.relation.referencesDyer, Adrian G., Whitney, H. M., Arnold, S. E. J., Glover, B. J., & Chittka, L. (2007). Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interactions, 1(1), 45-55. https://doi.org/10.1007/s11829-007-9002-7spa
dc.relation.referencesDyer, A., & Chittka, L. (2004). Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks (Vol. 190). https://doi.org/10.1007/s00359-004-0547-yspa
dc.relation.referencesEnquist & Arak. Neural Representation and the Evolution of Signal Form. In Cognitive Ecology. The evolutionary ecology of information processing and decision making. Ed Dukas,R. (1998). The University of Chicago Press Chicago and London.spa
dc.relation.referencesErber, J. (1975). The dynamics of learning in the honey bee (Apis mellifica carnica). Journal of comparative physiology, 99(3), 243-255. https://doi.org/10.1007/BF00613838spa
dc.relation.referencesFaraway, J. J. (2016). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition. CRC Press. Recuperado de https://books.google.com.co/books?id=XAzYCwAAQBAJspa
dc.relation.referencesFarmer, E. W., & Taylor, R. M. (1980). Visual search through color displays: Effects of target-background similarity and background uniformity. Perception & Psychophysics, 27(3), 267-272. https://doi.org/10.3758/BF03204265spa
dc.relation.referencesFeinsinger, P. (1987). Effects of plant species on each other’s pollination: Is community structure influenced? Trends in Ecology & Evolution, 2(5), 123-126. https://doi.org/10.1016/0169-5347(87)90052-8spa
dc.relation.referencesFerguson, H. J., Cobey, S., & Smith, B. H. (2001). Sensitivity to a change in reward is heritable in the honeybee, Apis mellifera. Animal Behaviour, 61(3), 527-534. https://doi.org/10.1006/anbe.2000.1635spa
dc.relation.referencesFox, J., & Weisberg, S. (2011). An R Companion to Applied Regression. SAGE Publications. Recuperado de https://books.google.com.co/books?id=YH6NotdvzF0Cspa
dc.relation.referencesFree, J. B. (1963). The Flower Constancy of Honeybees. Journal of Animal Ecology, 32(1), 119-131. https://doi.org/10.2307/2521spa
dc.relation.referencesFree JB. (1966) The foraging behavior of bees and its effect on the isolation and speciation of plants. In: Hawkes JG (ed) Reproductive biology and taxonomy of vascular plants. Pergamon, Oxford, pp 76–91spa
dc.relation.referencesFree, J. B., & Williams, I. H. (1983). Foraging Behaviour of Honeybees and Bumble Bees on Brussels Sprout Grown to Produce Hybrid Seed. Journal of Apicultural Research, 22(2), 94-97. https://doi.org/10.1080/00218839.1983.11100566spa
dc.relation.referencesFülöp, A., & Menzel, R. (2000). Risk-indifferent foraging behaviour in honeybees. Animal Behaviour, 60(5), 657-666. https://doi.org/10.1006/anbe.2000.1492spa
dc.relation.referencesFuster, J. M. (1997). Network memory. Trends in neurosciences, 20(10), 451–459.spa
dc.relation.referencesGallai, N., Salles, J.-M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810-821. https://doi.org/https://doi.org/10.1016/j.ecolecon.2008.06.014spa
dc.relation.referencesGarcia, J. E., Shrestha, M., & Dyer, A. G. (2018). Flower signal variability overwhelms receptor-noise and requires plastic color learning in bees. Behavioral Ecology, 29(6), 1286-1297. https://doi.org/10.1093/beheco/ary127spa
dc.relation.referencesGarcia, J. E., Spaethe, J., & Dyer, A. G. (2017). The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models. Journal of Comparative Physiology A, 203(12), 983-997. https://doi.org/10.1007/s00359-017-1208-2spa
dc.relation.referencesGegear, R. J., & Laverty, T. M. (2001). The effect of variation among floral traits on the flower constancy of pollinators. En J. D. Thomson & L. Chittka (Eds.), Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution (pp. 1-20). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542268.002spa
dc.relation.referencesGil, M., & De Marco, R. (2009). Honeybees learn the sign and magnitude of reward variations (Vol. 212). https://doi.org/10.1242/jeb.032623spa
dc.relation.referencesGil, M., De Marco, R. J., & Menzel, R. (2007). Learning reward expectations in honeybees. Learning & memory (Cold Spring Harbor, N.Y.), 14(7), 491-496. https://doi.org/10.1101/lm.618907spa
dc.relation.referencesGiurfa, M., Núñez, J., & Backhaus, W. (1994). Odour and colour information in the foraging choice behaviour of the honeybee. Journal of Comparative Physiology A, 175(6), 773-779. https://doi.org/10.1007/BF00191849spa
dc.relation.referencesGiurfa, M., Núñez, J., Chittka, L., & Menzel, R. (1995). Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A, 177(3), 247-259. https://doi.org/10.1007/BF00192415spa
dc.relation.referencesGiurfa, M., Vorobyev, M., Kevan, P., & Menzel, R. (1996). Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A, 178(5), 699-709. https://doi.org/10.1007/BF00227381spa
dc.relation.referencesGiurfa, M. (2004). Conditioning procedure and color discrimination in the honeybee Apis mellifera (Vol. 91). https://doi.org/10.1007/s00114-004-0530-zspa
dc.relation.referencesGiurfa, M., Hammer, M., Stach, S., Stollhoff, N., Deisig, N., & Myziricki, C. (1999). Pattern learning by honeybees: Conditioning procedure and recognition strategy (Vol. 57). https://doi.org/10.1006/anbe.1998.0957spa
dc.relation.referencesGiurfa, M., & Núñez, J. (1989). Colour signals and choice behaviour of the honeybee (Apis mellifera ligustica). Journal of Insect Physiology, 35(12), 907-910. https://doi.org/10.1016/0022-1910(89)90012-7spa
dc.relation.referencesGiurfa, M. (2007). Behavioral and neural analysis of associative learning in the honeybee: A taste from the magic well (Vol. 193). https://doi.org/10.1007/s00359-007-0235-9spa
dc.relation.referencesGiurfa, M., Zhang, S., Jenett, A., Menzel, R., & V. Srinivasan, M. (2001). The concepts of `sameness’ and `difference’ in an insect (Vol. 410). https://doi.org/10.1038/35073582spa
dc.relation.referencesGoldman-Rakic, P. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485. https://doi.org/10.1016/0896-6273(95)90304-6spa
dc.relation.referencesGould, J. L. (1987). Honey bees store learned flower-landing behaviour according to time of day. Animal Behaviour, 35(5), 1579-1581. https://doi.org/10.1016/S0003-3472(87)80038-6spa
dc.relation.referencesGould, J. L. (1993). Ethological and Comparative Perspectives on Honey Bee Learning. En D. R. Papaj & A. C. Lewis (Eds.), Insect Learning: Ecology and Evolutionary Perspectives (pp. 18-50). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-2814-2_2spa
dc.relation.referencesGould, J. L. (1985). How Bees Remember Flower Shapes. Science, 227(4693), 1492. https://doi.org/10.1126/science.227.4693.1492spa
dc.relation.referencesGould, J. L. (1986). Pattern learning by honey bees. Animal Behaviour, 34(4), 990-997. https://doi.org/10.1016/S0003-3472(86)80157-9spa
dc.relation.referencesGould, J. L. (1988). Resolution of pattern learning by honey bees. Journal of Insect Behavior, 1(2), 225-233. https://doi.org/10.1007/BF01052240spa
dc.relation.referencesGrant, V. (1949). Pollination Systems as Isolating Mechanisms in Angiosperms. Evolution, 3(1), 82-97. https://doi.org/10.2307/2405454spa
dc.relation.referencesGrant, V. (1950). The Flower Constancy of Bees. Botanical Review, 16(7), 379-398.spa
dc.relation.referencesGreggers, U., & Menzel, R. (1993). Memory Dynamics and Foraging Strategies of Honeybees. Behavioral Ecology and Sociobiology, 32(1), 17-29.spa
dc.relation.referencesGreggers, U., & Mauelshagen, J. (1997). Matching behavior of honeybees in a multiple-choice situation: The differential effect of environmental stimuli on the choice process. Animal Learning & Behavior, 25(4), 458-472. https://doi.org/10.3758/BF03209852spa
dc.relation.referencesGrosclaude, F. E., & Núñez, J. A. (1998). Foraging pauses and their meaning as an economic strategy in the honeybee Apis mellifera L. Journal of Comparative Physiology A, 183(1), 61-68. https://doi.org/10.1007/s003590050234spa
dc.relation.referencesGrüter, C., Moore, H., Firmin, N., Helanterä, H., & Ratnieks, F. L. W. (2011). Flower constancy in honey bee workers Apis mellifera depends on ecologically realistic rewards. The Journal of Experimental Biology, 214(8), 1397. https://doi.org/10.1242/jeb.050583spa
dc.relation.referencesGrüter, I; Sanderson, C; Blocke; TD; Lisa, Pham L; Checotah, S; Norman, AA et al. (2009). Different solutions by bees to a foraging problem. Animal Behaviour. 77(5):1273-80.spa
dc.relation.referencesGumbert, A. (2000). Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36-43. https://doi.org/10.1007/s002650000213spa
dc.relation.referencesHarder, L. D., & Real, L. A. (1987). Why are Bumble Bees Risk Averse? Ecology, 68(4), 1104-1108. https://doi.org/10.2307/1938384spa
dc.relation.referencesHeinrich, B. (2004). Bumblebee Economics. Harvard University Press. Recuperado a partir de https://books.google.com.co/books?id=73yeOpls5qsCspa
dc.relation.referencesHeinrich, B. (1975). Energetics of Pollination. Annual Review of Ecology and Systematics, 6(1), 139-170. https://doi.org/10.1146/annurev.es.06.110175.001035spa
dc.relation.referencesHellstern, F., Wüstenberg, D., & Hammer, M. (1995). Contextual learning in honeybees under laboratory conditions.spa
dc.relation.referencesHill, P. S. ., Wells, P. H., & Wells, H. (1997). Spontaneous flower constancy and learning in honey bees as a function of colour. Animal Behaviour, 54(3), 615-627. https://doi.org/10.1006/anbe.1996.0467spa
dc.relation.referencesHill, P. S. M., Hollis, J., & Wells, H. (2001). Foraging decisions in nectarivores: unexpected interactions between flower constancy and energetic rewards. Animal Behaviour, 62(4), 729-737. https://doi.org/10.1006/anbe.2001.1775spa
dc.relation.referencesHodges, C. M., & Wolf, L. L. (1981). Optimal Foraging in Bumblebees: Why Is Nectar Left behind in Flowers? Behavioral Ecology and Sociobiology, 9(1), 41-44.spa
dc.relation.referencesHolland, P., & J. Straub, J. (1979). Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian conditioning (Vol. 5). https://doi.org/10.1037/0097-7403.5.1.65spa
dc.relation.referencesHonig, W. K., Hulse, S. H., Fowler, H., & Honig, K. (1978). Studies of working memory in the pigeon. Studies of Working Memory in the Pigeon Cognitive Processes in Animal Behavior, 211-248.spa
dc.relation.referencesIsnec, M. R., Couvillon, P. A., & Bitterman, M. E. (1997). Short-term spatial memory in honeybees. Animal Learning & Behavior, 25(2), 165-170. https://doi.org/10.3758/BF03199054spa
dc.relation.referencesJacobs L.F. (2006). From Movement to Transitivity: The Role of Hippocampal Parallel Maps in Configural Learni. Reviews in the Neurosciences, 17(1-2), 99. https://doi.org/10.1515/revneuro.2006.17.1-2.99spa
dc.relation.referencesJernigan, C. M., Roubik, D. W., Wcislo, W. T., & Riveros, A. J. (2014). Color-dependent learning in restrained Africanized honey bees. The Journal of Experimental Biology, 217(3), 337. https://doi.org/10.1242/jeb.091355spa
dc.relation.referencesJones, C. E. (1978). Pollinator Constancy as a Pre-Pollination Isolating Mechanism Between Sympatric Species of Cercidium. Evolution, 32(1), 189-198. https://doi.org/10.2307/2407419spa
dc.relation.referencesKacelnik, A., & Brito e Abreu, F. (1998). Risky Choice and Weber’s Law. Journal of Theoretical Biology, 194(2), 289-298. https://doi.org/10.1006/jtbi.1998.0763spa
dc.relation.referencesKacelnik, A., & Bateson, M. (1996). Risky Theories: The Effects of Variance on Foraging Decisions. American Zoologist, 36(4), 402-434.spa
dc.relation.referencesKamil, A. C. (1983). Optimal Foraging Theory and the Psychology of Learning. American Zoologist, 23(2), 291-302.spa
dc.relation.referencesKamil, A. (1985). The Ecology of Foraging Behavior: Implications for Animal Learning and Memory (Vol. 36). https://doi.org/10.1146/annurev.psych.36.1.141spa
dc.relation.referencesKearns, C., Inouye, D., & Waser, N. M. (1998). Endangered mutualism: The Conservation of Plant-Pollinator Interactions. Annual Review of Ecology and Systematics, 29(1), 83-112. Recuperado a partir de http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.29.1.83spa
dc.relation.referencesKemp, D. J., Herberstein, M. E., Fleishman, L. J., Endler, J. A., Bennett, A. T. D., Dyer, A. G., … Whiting, M. J. (2015). An Integrative Framework for the Appraisal of Coloration in Nature. The American Naturalist, 185(6), 705-724. https://doi.org/10.1086/681021spa
dc.relation.referencesKevan, P. G. (1978). Floral coloration, its calorimetric and significance in anthecology. In Richards, A. J. (Ed.), The pollination offlowers by insects (pp. 51-78). Linnean Society Symposium Series.spa
dc.relation.referencesKevan, P. G. (1979). Vegetation and floral colors revealed by ultra- violet light: Interpretational difficulties for functional significance. American Journal of Botany, 66, 749-75spa
dc.relation.referencesKevan, P. G., Clark, E. A., & Thomas, V. G. (1990). Insect pollinators and sustainable agriculture. American Journal of Alternative Agriculture, 5(1), 13-22. https://doi.org/10.1017/S0889189300003179spa
dc.relation.referencesKevan, P. G., & Menzel, R. (2012). The plight of pollination and the interface of neurobiology, ecology and food security. The Environmentalist, 32(3), 300-310. https://doi.org/10.1007/s10669-012-9394-5spa
dc.relation.referencesKevan, P. G., & Viana, B. F. (2003). The global decline of pollination services. Biodiversity, 4(4), 3-8. https://doi.org/10.1080/14888386.2003.9712703spa
dc.relation.referencesKevan, P. G., & Backhaus, W. G. (1998). Color vision: ecology and evolution in making the best of the photic environment. En W. Backhaus, R. Kliegl, & J. Werner (Eds.), Color Vision. Perspectives From Different Disciplines. De Gruyter.spa
dc.relation.referencesKevan, P. G., Chittka, L., & Dyer, A. G. (2001). Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology, 204(14), 2571.spa
dc.relation.referencesKlein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303. https://doi.org/10.1098/rspb.2006.3721spa
dc.relation.referencesKomatsu, H., & Ideura, Y. (1993). Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey (Vol. 70). https://doi.org/10.1152/jn.1993.70.2.677spa
dc.relation.referencesKomischke, B., Sandoz, J.-C., Lachnit, H., & Giurfa, M. (2003). Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees. Behavioural Brain Research, 145(1), 135-143. https://doi.org/10.1016/S0166-4328(03)00105-0spa
dc.relation.referencesKraemer, P. J., & Golding, J. M. (1997). Adaptive forgetting in animals. Psychonomic Bulletin & Review, 4(4), 480-491. https://doi.org/10.3758/BF03214337spa
dc.relation.referencesKrebs, J. R., & Inman, A. J. (1994). Learning and foraging: Individuals, groups, and populations. Chicago, IL, US: University of Chicago Press.spa
dc.relation.referencesKrzywinski, M., Altman, N., & Blainey, P. (2014). Nested designs. Nature Methods, 11, 977.spa
dc.relation.referencesKunze, J., & Gumbert, A. (2001). The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behavioral Ecology, 12(4), 447-456. https://doi.org/10.1093/beheco/12.4.447spa
dc.relation.referencesLand, M. F. (1997). The resolution of insect compound eyes. Israel Journal of Plant Sciences, 45(2-3), 79-91. https://doi.org/10.1080/07929978.1997.10676675spa
dc.relation.referencesLaverty, T. M. (1994a). Costs to foraging bumble bees of switching plant species. Canadian Journal of Zoology, 72(1), 43-47. https://doi.org/10.1139/z94-007spa
dc.relation.referencesLaverty, T. M. (1994b). Bumble bee learning and flower morphology. Animal Behaviour, 47(3), 531-545. https://doi.org/10.1006/anbe.1994.1077spa
dc.relation.referencesLehrer, M. (1999). Dorsoventral asymmetry of colour discrimination in bees. Journal of Comparative Physiology A, 184(2), 195-206. https://doi.org/10.1007/s003590050318spa
dc.relation.referencesLehrer, M. (1993). Why do bees turn back and look? Journal of Comparative Physiology A, 172(5), 549-563. https://doi.org/10.1007/BF00213678spa
dc.relation.referencesLehrer, M., & Bischof, S. (1995). Detection of model flowers by honeybees: The role of chromatic and achromatic contrast. Naturwissenschaften, 82(3), 145-147. https://doi.org/10.1007/BF01177278spa
dc.relation.referencesLeonard, A. S., Dornhaus, A., & Papaj, D. R. (2011). Why are floral signals complex? an outline of functional hypotheses. In The Systematics Association Special Volume 81: Evolution of Plant-Pollinator Relationships (pp. 279-300). Cambridge University Press. DOI: 10.1017/CBO9781139014113.010spa
dc.relation.referencesLevin, D. A. (1972). The Adaptedness of Corolla-Color Variants in Experimental and Natural Populations of Phlox drummondii. The American Naturalist, 106(947), 57-70. https://doi.org/10.1086/282751spa
dc.relation.referencesLevin, D. A., & Anderson, W. W. (1970). Competition for Pollinators between Simultaneously Flowering Species. The American Naturalist, 104(939), 455-467.spa
dc.relation.referencesLindauer, M. 1975. Evolutionary aspects of orientation and learning. In: Function and Evolution in Behaviour: Essays in Honour ofProfessor Niko Tinbergen, F.R.S. (Ed. by G. Baerends, C. Beer & A. Manning), pp. 228–242. Oxford: Clarendon Pressspa
dc.relation.referencesLinné, C & Berger, AM. (1756). Calendarium Florae. Uppsala: excud. L. M. Hojer, Reg. Acad. typogr.5:19.spa
dc.relation.referencesLogan, F. A. (1968). Incentive Theory and Changes in Reward. En K. W. Spence & J. T. Spence (Eds.), Psychology of Learning and Motivation (Vol. 2, pp. 1-30). Academic Press. https://doi.org/10.1016/S0079-7421(08)60420-Xspa
dc.relation.referencesLoo, S. K., & Bitterman, M. E. (1992). Learning in honeybees (Apis mellifera) as a function of sucrose concentration. Journal of Comparative Psychology, 106(1), 29-36. https://doi.org/10.1037/0735-7036.106.1.29spa
dc.relation.referencesLythgoe, J. N. (1979). The Ecology of Vision. Clarendon Press. Recuperado de https://books.google.com.co/books?id=bVIXAQAAIAAJspa
dc.relation.referencesMangiafico, S. (2015). An R Companion for the Handbook of Biological Statistics.spa
dc.relation.referencesMarden, J. H., & Waddington K. D. (1981). Floral choices by honeybees in relation to the relative distances to flowers. Physiological Entomology, 6(4), 431-435. https://doi.org/10.1111/j.1365-3032.1981.tb00658.xspa
dc.relation.referencesMayr, E. (1963). Animal species and evolution. Belknap Press of Harvard University Press. Recuperado a partir de https://books.google.com.co/books?id=GDwuAAAAMAAJspa
dc.relation.referencesMazur, J. (1996). Past experience, recency, and spontaneous recovery in choice behavior (Vol. 24). https://doi.org/10.3758/BF03198948spa
dc.relation.referencesMenzel, R., & Giurfa, M. (2006). Dimensions of Cognition in an Insect, the Honeybee. Behavioral and Cognitive Neuroscience Reviews, 5(1), 24-40. https://doi.org/10.1177/1534582306289522spa
dc.relation.referencesMenzel, R. (2001). Searching for the memory trace in a mini-brain, the honeybee. Learning & Memory, 8(2), 53–62.spa
dc.relation.referencesMenzel, R. (1979). Behavioural access to short-term memory in bees. Nature, 281(5730), 368-369. https://doi.org/10.1038/281368a0spa
dc.relation.referencesMenzel, R. (1999). Memory dynamics in the honeybee. Journal of Comparative Physiology A, 185(4), 323-340. https://doi.org/10.1007/s003590050392spa
dc.relation.referencesMenzel, R., Geiger, K., Chittka, L., Joerges, J., Kunze, J., & Müller, U. (1996). The knowledge base of bee navigation. The Journal of Experimental Biology, 199(1), 141.spa
dc.relation.referencesMenzel, R., Greggers, U., & Hammer, M. (1993). Functional Organization of Appetitive Learning and Memory in a Generalist Pollinator, the Honey Bee. En D. R. Papaj & A. C. Lewis (Eds.), Insect Learning: Ecology and Evolutionary Perspectives (pp. 79-125). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-2814-2_4spa
dc.relation.referencesMenzel, R. (1993). Associative learning in honey bees. Apidologie, 24(3), 157-168. https://doi.org/10.1051/apido:19930301spa
dc.relation.referencesMenzel, R. (1990). Learning, memory, and «cognition» in honey bees. En R. P. Kesner & D. S. Olton (Eds.), Neurobiology of Comparative Cognition. Taylor & Francis. Recuperado a partir de https://books.google.com.co/books?id=GhTsAgAAQBAJspa
dc.relation.referencesMenzel, R., & Erber, J. (1978). Learning and Memory in Bees. Scientific American, 239(1), 102-111.spa
dc.relation.referencesMenzel, R. (1985). Learning in honey bees in an ecological and behavioral context Experimental Behavioral Ecology and Sociobiology: in Memoriam Karl von Frisch 1886-1982. Holldobler B, Lindauer M, editors. Erlbaum Associates. Hillsdale, New Jersey.spa
dc.relation.referencesMenzel, R., Greggers, U., Smith, A; Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., Watzl, S. (2005). Honey bees navigate according to a map-like spatial memory 102 (8) 3040-3045, doi:10.1073/pnas.0408550102spa
dc.relation.referencesMota, T., & Giurfa, M. (2010). Multiple reversal olfactory learning in honeybees. Front Behav Neurosci, 4. doi: 10.3389/fnbeh.2010.00048spa
dc.relation.referencesMorawetz, L., Svoboda, A., neume, J., & Dyer, A. G. (2013). Blue colour preference in honeybees distracts visual attention for learning closed shapes. Journal of Comparative Physiology A, 199(10), 817-827. https://doi.org/10.1007/s00359-013-0843-5spa
dc.relation.referencesMyung, I., Forster, M., & W. Browne, M. (2000). Special issue on model selection (Vol. 44). https://doi.org/10.1006/jmps.2000.1325spa
dc.relation.referencesNachev, V., & Winter, Y. (2012). The psychophysics of uneconomical choice: non-linear reward evaluation by a nectar feeder. Animal cognition, 15(3), 393-400. https://doi.org/10.1007/s10071-011-0465-7spa
dc.relation.referencesNachev, V., Stich, K. P., Winter, C., Bond, A., Kamil, A., & Winter, Y. (2017). Cognition-mediated evolution of low-quality floral nectars. Science, 355(6320), 75. https://doi.org/10.1126/science.aah4219spa
dc.relation.referencesNajera, D., McCullough, E., & Jander, R. (2012). Interpatch foraging in honeybees-rational decision making at secondary hubs based upon time and motivation. Animal Cognition, 15(6), 1195.spa
dc.relation.referencesNates-Parra G. (ed.). 2016. Iniciativa Colombiana de Polinizadores - Abejas - icpa. Bogotá, D. C. Departamento de Biología, Universidad Nacional de Colombia. 364 pp.spa
dc.relation.referencesNewhall, S., W. Burnham, R., & R. Clark, J. (1957). Comparison of Successive with Simultaneous Color Matching (Vol. 47). https://doi.org/10.1364/JOSA.47.000979spa
dc.relation.referencesNewell, K. M. (1991). Motor Skill Acquisition. Annual Review of Psychology, 42(1), 213-237. https://doi.org/10.1146/annurev.ps.42.020191.001241spa
dc.relation.referencesNúñez, J. (1977). Nectar flow by melliferous flora and gathering flow by Apis mellifera ligustica (Vol. 23). https://doi.org/10.1016/0022-1910(77)90041-5spa
dc.relation.referencesNúñez, J. (1970). The relationship between sugar flow and foraging and recruiting behaviour of honey bees (Apis mellifera L.). Animal Behaviour, 18, 527-538. https://doi.org/10.1016/0003-3472(70)90049-7spa
dc.relation.referencesO’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95.spa
dc.relation.referencesOhyama, T., Couvillon, P. A., & Bitterman, M. E. (1994). Perseveration in the color choices of honeybees. Journal of Insect Behavior, 8(3), 409-415. https://doi.org/10.1007/BF01989368spa
dc.relation.referencesOster, G. F., & Wilson, E. O. (1978). Caste and Ecology in the Social Insects. Princeton University Press. Recuperado a partir de https://books.google.com.co/books?id=RGE0MwY_NWICspa
dc.relation.referencesPage Jr, R. E., Erber, J., & Fondrk, M. K. (1998). The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 182(4), 489-500. https://doi.org/10.1007/s003590050196spa
dc.relation.referencesPapaj, D & Lewis, C. (1993). Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York https://doi.org/10.1007/978-1-4615-2814-2spa
dc.relation.referencesPapini, M. R. (2008). Comparative psychology: Evolution and development of behavior, 2nd ed. New York, NY, US: Psychology Press.spa
dc.relation.referencesPapiorek, S., Rohde, K., & Lunau, K. (2013). Bees’ subtle colour preferences: How bees respond to small changes in pigment concentration (Vol. 100). https://doi.org/10.1007/s00114-013-1060-3spa
dc.relation.referencesPearce, J. (1994). Similarity and Discrimination: a Selective Review and a Connectionist Model (Vol. 101). https://doi.org/10.1037/0033-295X.101.4.587spa
dc.relation.referencesPeitsch, D., Fietz, A., Hertel, H., de Souza, J., Ventura, D. F., & Menzel, R. (1992). The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A, 170(1), 23-40. https://doi.org/10.1007/BF00190398spa
dc.relation.referencesPerry, C. J., Barron, A. B., & Chittka, L. (2017). The frontiers of insect cognition. Comparative cognition, 16, 111-118. https://doi.org/10.1016/j.cobeha.2017.05.011spa
dc.relation.referencesPeterson, G. B., Wheeler, R. L., & Armstrong, G. D. (1978). Expectancies as mediators in the differential-reward conditional discrimination performance of pigeons. Animal Learning & Behavior, 6(3), 279-285. https://doi.org/10.3758/BF03209614spa
dc.relation.referencesPlomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics: a primer (Sixth edition). New York: Worth Publishers.spa
dc.relation.referencesPyke, G. H. (1984). Optimal Foraging Theory: A Critical Review. Annual Review of Ecology and Systematics, 15(1), 523-575. https://doi.org/10.1146/annurev.es.15.110184.002515spa
dc.relation.referencesQuené, H., & van den Bergh, H. (2008). Examples of mixed-effects modeling with crossed random effects and with binomial data. Special Issue: Emerging Data Analysis, 59(4), 413-425. https://doi.org/10.1016/j.jml.2008.02.002spa
dc.relation.referencesRathcke, B., & Lacey, E. P. (1985). Phenological Patterns of Terrestrial Plants. Annual Review of Ecology and Systematics, 16(1), 179-214. https://doi.org/10.1146/annurev.es.16.110185.001143spa
dc.relation.referencesReal, L. A. (1981). Uncertainty and Pollinator-Plant Interactions: The Foraging Behavior of Bees and Wasps on Artificial Flowers. Ecology, 62(1), 20-26. https://doi.org/10.2307/1936663spa
dc.relation.referencesReal, L., & Rathcke, B. J. (1988). Patterns of Individual Variability in Floral Resources. Ecology, 69(3), 728-735. https://doi.org/10.2307/1941021spa
dc.relation.referencesReal, L. A. 1991. Animal choice behavior and the evolution of cognitive architecture. Science, 253,980-985.spa
dc.relation.referencesRenner, S. (2017). The evolutionary biology of floral mimicry. https://doi.org/10.1111/evo.13303spa
dc.relation.referencesRibbands, C. R. (1954). Communication between honeybees. I: the response of crop-attached bees to the scent of their crop. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 29(10‐12), 141-144. https://doi.org/10.1111/j.1365-3032.1954.tb01187.xspa
dc.relation.referencesRichards, R. J. (1987). Darwinism and the Emergence of Evolutionary Theories of Mind and Behavior. Chicago and London, 2(5), 385-387. https://doi.org/10.1046/j.1420-9101.1989.2050385.xspa
dc.relation.referencesRibbands , C. R. 1953. The Behavior and Social Life of Honey Bees. London: Bee Research Association.spa
dc.relation.referencesRichter, M. R., & Waddington, K. D. (1993). Past foraging experience influences honey bee dance behaviour. Animal Behaviour, 46(1), 123-128. https://doi.org/10.1006/anbe.1993.1167spa
dc.relation.referencesRoberts, W. A. (1998). Principles of animal cognition. Boston: McGraw-Hill.spa
dc.relation.referencesRomero, J., Hita, E., & Jiménez Del Barco, L. (1986). A comparative study of successive and simultaneous methods in color discrimination (Vol. 26). https://doi.org/10.1016/0042-6989(86)90189-6spa
dc.relation.referencesRössler, W., & Groh, C. (2012). Plasticity of Synaptic Microcircuits in the Mushroom-Body Calyx of the Honey Bee. https://doi.org/10.1007/978-94-007-2099-2_12spa
dc.relation.referencesSale, D.G. (1991). Neural adaptation to strength training. In: Strength and Power in Sport (ed P.V. Komi), pp. 249–265. Blackwell Scientific Publications, Oxfordspa
dc.relation.referencesSandoz, J.-C., & Menzel, R. (2001). Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides. Learning & Memory, 8(5), 286-294. https://doi.org/10.1101/lm.41401spa
dc.relation.referencesSanderson, C., Cook, P., Hill, P., S Orozco, B., Abramson, C., & Wells, H. (2013). Nectar Quality Perception by Honey Bees (Apis mellifera ligustica) (Vol. 127). https://doi.org/10.1037/a0032613spa
dc.relation.referencesSanderson, C; Orozco, B; Hill, P; Wells, H. (2006). Honeybee (Apis mellifera ligustica) Response to Differences in Handling Time, Rewards and Flower Colours. Ethology. 112(10):937-46.spa
dc.relation.referencesScheiner, S. M. (1993). Genetics and Evolution of Phenotypic Plasticity. Annual Review of Ecology and Systematics, 24(1), 35-68. https://doi.org/10.1146/annurev.es.24.110193.000343spa
dc.relation.referencesScheiner, R., Erber, J., & Page Jr., R. E. (1999). Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 185(1), 1-10. https://doi.org/10.1007/s003590050360spa
dc.relation.referencesSchubert, M., Lachnit, H., Francucci, S., & Giurfa, M. (2002). Nonelemental visual learning in honeybees. Animal Behaviour, 64(2), 175-184. https://doi.org/10.1006/anbe.2002.3055spa
dc.relation.referencesSchultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199-207.spa
dc.relation.referencesSeeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28(4), 277-290. https://doi.org/10.1007/BF00175101spa
dc.relation.referencesSeeley, T. D. (1986). Social Foraging by Honeybees: How Colonies Allocate Foragers among Patches of Flowers. Behavioral Ecology and Sociobiology, 19(5), 343-354.spa
dc.relation.referencesSeeley, T. D. (1994). Honey Bee Foragers as Sensory Units of Their Colonies. Behavioral Ecology and Sociobiology, 34(1), 51-62.spa
dc.relation.referencesSeeley, T. D. (1995). The Wisdom of the Hive. Harvard University Press. Recuperado de https://books.google.com.co/books?id=zjggAQAAMAAJspa
dc.relation.referencesShafir, S. (1994). Intransitivity of preferences in honey bees: support for «comparative» evaluation of foraging options. Animal Behaviour, 48(1), 55-67. https://doi.org/10.1006/anbe.1994.1211spa
dc.relation.referencesShafir, S., Bechar, A., & Weber, E. U. (2003). Cognition-mediated coevolution – context-dependent evaluations and sensitivity of pollinators to variability in nectar rewards. Plant Systematics and Evolution, 238(1), 195-209. https://doi.org/10.1007/s00606-003-0280-yspa
dc.relation.referencesShafir, S., Waite, T. A., & Smith, B. H. (2002). Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behavioral Ecology and Sociobiology, 51(2), 180-187. https://doi.org/10.1007/s00265-001-0420-8spa
dc.relation.referencesShafir, S., Wiegmann, D. D., Smith, B. H., & Real, L. A. (1999). Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward. Animal Behaviour, 57(5), 1055-1061. https://doi.org/10.1006/anbe.1998.1078spa
dc.relation.referencesShapiro, M., Couvillon, P., & E Bitterman, M. (2001). Quantitative tests of an associative theory of risk-sensitivity in honeybees (Vol. 204).spa
dc.relation.referencesSkinner, B. F. (1956). A case history in scientific method. American Psychologist, 11(5), 221-233. https://doi.org/10.1037/h0047662spa
dc.relation.referencesSmith, B. H., & Burden, C. M. (2014). A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research. Journal of Visualized Experiments, (91). https://doi.org/10.3791/51057spa
dc.relation.referencesSpaethe, J., Streinzer, M., Eckert, J., May, S., & Dyer, A. G. (2014). Behavioural evidence of colour vision in free flying stingless bees. Journal of Comparative Physiology A, 200(6), 485-496. https://doi.org/10.1007/s00359-014-0886-2spa
dc.relation.referencesSpaethe, J., Tautz, J., & Chittka, L. (2001). Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences, 98(7), 3898. https://doi.org/10.1073/pnas.071053098spa
dc.relation.referencesSpaethe, J., & Chittka, L. (2003). Interindividual variation of eye optics and single object resolution in bumblebees (Vol. 206). https://doi.org/10.1242/jeb.00570spa
dc.relation.referencesSrinivasan, M. (2009). Honey Bees as a Model for Vision, Perception, and Cognition (Vol. 55). https://doi.org/10.1146/annurev.ento.010908.164537spa
dc.relation.referencesStaddon, J. E. R. (1983). Adaptive Behavior and Learning. Cambridge University Press. Recuperado a partir de https://books.google.com.co/books?id=9Po3AAAAIAAJspa
dc.relation.referencesStamps, J. (1995). Motor Learning and the Value of Familiar Space. The American Naturalist, 146(1), 41-58.spa
dc.relation.referencesStephens, D; Krebs, J. (1986). Foraging Theory [Internet]. Vol. 1. New Jersey: Princenton University. 247 p. Disponible en: http://dx.doi.org/10.1046/j.1420-9101.1988.1010086.xspa
dc.relation.referencesThéry, M., & Casas, J. (2002). Predator and prey views of spider camouflage. Nature, 415, 133.spa
dc.relation.referencesThomson, J. D. (1980). A Simulation of Optimal Foraging: The Nuts and Bolts Approach. The American Biology Teacher, 42(9), 528-533. https://doi.org/10.2307/4447089spa
dc.relation.referencesTinbergen, N. (1951). The study of instinct. New York, NY, US: Clarendon Press/Oxford University Press.spa
dc.relation.referencesTolman, E. C. (1957). Principles of Purposive Behavior. Recuperado de https://books.google.com.co/books?id=DZAQAQAAIAAJspa
dc.relation.referencesTownsend-Mehler, J. M., & Dyer, F. C. (2012). An integrated look at decision-making in bees as they abandon a depleted food source. Behavioral Ecology and Sociobiology, 66(2), 275-286. https://doi.org/10.1007/s00265-011-1275-2spa
dc.relation.referencesvan der Kooi, C. J., Dyer, A. G., Kevan, P. G., & Lunau, K. (2018). Functional significance of the optical properties of flowers for visual signalling. Annals of Botany, 123(2), 263-276. https://doi.org/10.1093/aob/mcy119spa
dc.relation.referencesvan Hateren, J. H., Srinivasan, M. V., & Wait, P. B. (1990). Pattern recognition in bees: orientation discrimination. Journal of Comparative Physiology A, 167(5), 649-654. https://doi.org/10.1007/BF00192658spa
dc.relation.referencesVia, S. (1987). Genetic Constraints on the Evolution of Phenotypic Plasticity. En V. Loeschcke (Ed.), Genetic Constraints on Adaptive Evolution (pp. 47-71). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-72770-2_4spa
dc.relation.referencesVogel, S. (1983). Ecophysiology of Zoophilic Pollination. En O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler (Eds.), Physiological Plant Ecology III: Responses to the Chemical and Biological Environment (pp. 559-624). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-68153-0_16spa
dc.relation.referencesvon Frisch, K. (1969). The Dance Language and Orientation of Bees (Vol. 5). https://doi.org/10.2307/2785spa
dc.relation.referencesvon Frisch, K. (1957). La vida de las abejas. (E. Rodríguez, Trad.). Labor. Recuperado de https://books.google.com.co/books?id=RDy7GQAACAAJspa
dc.relation.referencesVorobyev, M., & Menzel, R. (1999). Flower advertisement for insects: Bees, a case study. En S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge, & S. Vallerga (Eds.), Adaptive Mechanisms in the Ecology of Vision (pp. 537-553). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-0619-3_18spa
dc.relation.referencesVorobyev, M., & Brandt, R. (1997). How do insect pollinators discriminate colors? Israel Journal of Plant Sciences, 45(2-3), 103-113. https://doi.org/10.1080/07929978.1997.10676677spa
dc.relation.referencesVorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B., & Menzel, R. (2001). Colour thresholds and receptor noise: behaviour and physiology compared. Vision Research, 41(5), 639-653. https://doi.org/10.1016/S0042-6989(00)00288-1spa
dc.relation.referencesUchikawa, K., & Ikeda, M. (1981). Temporal deterioration of wavelength discrimination with successive comparison method. Vision Research, 21(4), 591-595.spa
dc.relation.referencesWaddington, K. D. (2001). Subjective evaluation and choice behavior by nectar-and pollen-collecting bees. En J. D. Thomson & L. Chittka (Eds.), Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution (pp. 41-60). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542268.004spa
dc.relation.referencesWaddington, K. D., Allen, T., & Heinrich, B. (1981). Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Animal Behaviour, 29(3), 779-784. https://doi.org/10.1016/S0003-3472(81)80011-5spa
dc.relation.referencesWaddington, K. D., & Gottlieb, N. (1990). Actual vs perceived profitability: A study of floral choice of honey bees. Journal of Insect Behavior, 3(4), 429-441. https://doi.org/10.1007/BF01052010spa
dc.relation.referencesWaddington, K. D. (1987). Perception of Foraging Costs and Intakes, and Foraging Decisions. En R. Menzel & A. Mercer (Eds.), Neurobiology and Behavior of Honeybees (pp. 66-75). Springer Berlin Heidelberg.spa
dc.relation.referencesWatanabe, M., Cromwell, H., Tremblay, L., R. Hollerman, J., Hikosaka, K., & Schultz, W. (2001). Behavioral reactions reflecting differential reward expectations in monkeys (Vol. 140). https://doi.org/10.1007/s002210100856spa
dc.relation.referencesWatson, J. B. (1914). Behavior: an introduction to comparative psychology. H. Holt and company. Recuperado de https://books.google.com.co/books?id=5HBawAEACAAJspa
dc.relation.referencesWaser, N. M. (1978). Interspecific pollen transfer and competition between co-occurring plant species. Oecologia, 36(2), 223-236. https://doi.org/10.1007/BF00349811spa
dc.relation.referencesWaser, N. M. (1986).Flower Constancy: Definition, Cause, and Measurement. The American Naturalist.127(5):593-603.spa
dc.relation.referencesWeiss, P. A., & Buechner, H. K. (1971). Hierarchically organized systems in theory and practice. Hafner Pub. Co. Recuperado de https://books.google.com.co/books?id=m9XwuAEACAAJspa
dc.relation.referencesWest-Eberhard, M. J. (1989). Phenotypic Plasticity and the Origins of Diversity. Annual Review of Ecology and Systematics, 20(1), 249-278. https://doi.org/10.1146/annurev.es.20.110189.001341spa
dc.relation.referencesWeber, E. H. (1934/1996). On the sensitivity of the tactile senses. In H. E. Ross, & D. J. Murray (Eds. and Trans.), E. H. Weber on the tactile senses (pp. 21–136). Hove, England: Erlbaum UK Taylor & Francis (Original work published in 1934).spa
dc.relation.referencesWiegmann, D. D., Wiegmann, D. A., & Waldron, F. A. (2003). Effects of a reward downshift on the consummatory behavior and flower choices of bumblebee foragers. Physiology & Behavior, 79(4), 561-566. https://doi.org/10.1016/S0031-9384(03)00122-7spa
dc.relation.referencesWells, P. H., & Wells, H. (1985). Ethological Isolation of Plants 2. Odour Selection By Honeybees. Journal of Apicultural Research, 24(2), 86-92. https://doi.org/10.1080/00218839.1985.11100654spa
dc.relation.referencesWells, H. & Wells, P. H. 1983. Honey bee foraging ecology: optimal diet, minimal uncertainty or individual constancy? Journal of Animal Ecology, 52, 829-836.spa
dc.relation.referencesWells, P. H. & Wells, H. 1984. Can honey bees change foraging patterns? Ecological Entomology, 9, 467-473spa
dc.relation.referencesWells, H. & Wells, P. H. 1986. Optimal diet, minimal uncertainty and individual constancy in the foraging of honey bees, Apis mellifera.Journal of Animal Ecology, 55,375-384.spa
dc.relation.referencesWells, H., Hill, P. S. & Wells, P. H. 1992. Nectarivore foraging ecology: rewards diVering in sugar types. Ecol. Entomol., 17, 280–288.spa
dc.relation.referencesWhitham, T. G. (1977). Coevolution of Foraging in Bombus and Nectar Dispensing in Chilopsis: A Last Dreg Theory. Science, 197(4303), 593-596.spa
dc.relation.referencesWhitlow, J. W., & Wagner, A. R. (1972). Negative patterning in classical conditioning: Summation of response tendencies to isolable and configurai components. Psychonomic Science, 27(5), 299-301. https://doi.org/10.3758/BF03328970spa
dc.relation.referencesWinston, M. L. (1991). The Biology of the Honey Bee. Harvard University Press. Recuperado a partir de https://books.google.com.co/books?id=-5iobWHLtAQCspa
dc.relation.referencesWorthey, J. A., & Brill, M. H. (1986). Heuristic analysis of von Kries color constancy. J. Opt. Soc. Am. A, 3(10), 1708–1712. https://doi.org/10.1364/JOSAA.3.001708spa
dc.relation.referencesZentall, T. R. (1997). Animal Memory: The Role of “Instructions”. Learning and Motivation, 28(2), 280-308. https://doi.org/10.1006/lmot.1996.0968spa
dc.relation.referencesZhang, S., Lehrer, M., & Srinivasan, M. (1998) Stimulus-conditioned sequence learning in honeybees. In: Elsner, N., & Wehner, R (eds) Proceedings of the 26th Göttingen Neurobiology Conference. Thieme, Stuttgart, p 519spa
dc.relation.referencesZhang, S., Schwarz, S., Pahl, M., Zhu, H., & Tautz, J. (2006). Honeybee memory: a honeybee knows what to do and when. Journal of Experimental Biology, 209(22), 4420. https://doi.org/10.1242/jeb.02522spa
dc.relation.referencesZhang, S. (2000). Maze Navigation by Honeybees: Learning Path Regularity (Vol. 7). https://doi.org/10.1101/lm.32900spa
dc.relation.referencesZhang, S., Si, A., & Pahl, M. (2012). Visually Guided Decision Making in Foraging Honeybees (Vol. 6). https://doi.org/10.3389/fnins.2012.00088spa
dc.relation.references. Zhang, S., & Srinivasan, M. (1994). Prior experience enhances pattern discrimination in insect vision (Vol. 368). https://doi.org/10.1038/368330a0spa
dc.relation.referencesZhang, S., Srinivasan, M. V., Zhu, H., & Wong, J. (2004). Grouping of visual objects by honeybees. Journal of Experimental Biology, 207(19), 3289. https://doi.org/10.1242/jeb.01155spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcAnimales::Invertebradosspa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalDecision makingeng
dc.subject.proposalToma de decisionesspa
dc.subject.proposalColor floralspa
dc.subject.proposalColor flowereng
dc.subject.proposalOptimizaciónspa
dc.subject.proposalOptimizationeng
dc.subject.proposalLearningeng
dc.subject.proposalAprendizajespa
dc.subject.proposalPollinatorseng
dc.subject.proposalPolinizadoresspa
dc.subject.proposalEnvironmental changeeng
dc.subject.proposalCambio ambientalspa
dc.subject.proposalPlasticidad comportamentalspa
dc.subject.proposalBehavioral plasticityeng
dc.titleEfecto de las señales visuales y la calidad del néctar en la toma de decisiones económicas en Apis melliferaspa
dc.title.alternativeEffect of visual cues and nectar quality in economic decision making in Apis melliferaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022955844.2019.pdf
Tamaño:
3.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: